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Abstract

Uncertain differential equations are a type of differential equations driven by canonical process, and
are quite different from stochastic differential equations that are driven by Brownian motion. A solution
of an uncertain differential equation is an uncertain process. This paper presents an analytic method to
solve a particular class of nonlinear uncertain differential equations and gives some examples to illustrate
the proposed analytic method.
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1 Introduction

Some information and knowledge are usually represented by human language like “about 100km”, “approx-
imately 80kg”, “fast”, and “heavy”. A lot of surveys showed that these imprecise quantities behave neither
like randomness nor like fuzziness [16]. In order to model these imprecise quantities, an uncertainty theory
was founded by Liu [8] in 2007 and refined by Liu [12] in 2010. In addition, Liu [11], Gao [3], You [24], Liu
and Ha [17], Peng and Iwamura [20], and Liu [14] made significant contributions to the uncertainty theory.
Nowadays uncertainty theory has become a branch of mathematics for modeling human uncertainty.

Uncertain statistics is a methodology for collecting and interpreting expert’s experimental data by uncer-
tainty theory. The study of uncertain statistics was started by Liu [12] in 2010 in which a questionnaire survey
for collecting expert’s experimental data was designed and the empirical uncertainty distribution (i.e., the
linear interpolation method) was proposed. In addition, the principle of least squares [12], the method of mo-
ments [21], the B-Spline method [2], and the Delphi method [22] were suggested to determine the uncertainty
distributions from expert’s experimental data.

Uncertain programming was first initialized by Liu [10] in 2009 for dealing with optimization problems
with uncertain parameters. After that, uncertain programming was applied to machine scheduling problem,
vehicle routing problem, and project scheduling problem.

Uncertain logic was designed by Liu [15] in 2011 as a mathematical logic for dealing with uncertain
knowledge via uncertain set theory, and provides a flexible means for extracting linguistic summary from a
collection of raw data. Uncertain inference is a process of deriving consequences from uncertain knowledge or
evidence via uncertain set theory. The first inference rule was proposed by Liu [13] in 2010. Then Gao, Gao
and Ralescu [4] extended the inference rule to the case with multiple antecedents and with multiple if-then
rules. Uncertain inference was applied to inference control via an inverted pendulum system.

Uncertain calculus, proposed by Liu [9] in 2008 and developed by Liu [11] in 2009, is a branch of mathe-
matics that deals with differentiation and integration of functions of uncertain processes. Based on uncertain
calculus, uncertain differential equations were defined by Liu [9] in 2008 as a type of differential equations
driven by canonical process. After that, an existence and uniqueness theorem of solution of uncertain differ-
ential equation was proved by Chen and Liu [1]. Uncertain differential equations were also applied to finance
by Liu [11] and Peng and Yao [19], and control by Zhu [25].

This paper will provide an analytic method to solve a particular class of nonlinear uncertain differential
equations. In Section 2, some basic results on uncertain calculus are recalled. The uncertain differential
equations of a special form are proposed in Section 3 and solved by an analytic method in Sections 4 and 5.

∗Corresponding author. Email: liuyuhan11@mails.tsinghua.edu.cn (Y. Liu).



Journal of Uncertain Systems, Vol.6, No.4, pp.244-249, 2012 245

2 Uncertain Calculus

In 1827 the botanist Robert Brown observed the irregular movement of pollen suspended in liquid. This
movement is now known as Brownian motion. A rigorous mathematical definition of Brownian motion was
given by Wiener [23] in 1923. After that, Ito [5] extended the classical calculus to Brownian motion and then
Ito’s calculus was invented in 1944. Based on Ito’s calculus, the concept of stochastic differential equation
was proposed by Ito [6]. For detailed explosions of stochastic calculus, the readers may consult Karatzas and
Shreve [7] and Øksendal [18]. Different from Ito’s calculus, Liu [9, 11] developed an uncertain calculus based
on uncertainty theory. This section will introduce some basic concepts and theorems of uncertain calculus.

Definition 1 [11] Let Xt be an uncertain process and Ct a canonical process. For any partition of closed
interval [a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is written as

∆ = max
1≤i≤k

|ti+1 − ti|. (1)

Then the Liu integral of Xt with respect to Ct is∫ b

a

XtdCt = lim
∆→0

k∑
i=1

Xti · (Cti+1
− Cti) (2)

provided that the limit exists almost surely and is finite.

Definition 2 [11] Let Ct be a canonical process and let Xt be an uncertain process. Assume there exist two
uncertain processes µt and σt such that

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdCs (3)

for any t ≥ 0. Then we say Xt has a Liu differential

dXt = µtdt+ σtdCt. (4)

Theorem 1 [11] (Fundamental Theorem of Uncertain Calculus) Let Ct be a canonical process, and let h(t, c)
be a continuously differentiable function. Then the uncertain process Xt = h(t, Ct) has a Liu integral

dXt =
∂h

∂t
(t, Ct)dt+

∂h

∂c
(t, Ct)dCt. (5)

Remark 1: (Chain Rule) Let f and g be continuously differentiable functions. Then the uncertain process
f(g(Ct)) has a Liu differential

df(g(Ct)) = f ′(g(Ct))g
′(Ct)dCt. (6)

Remark 2: (Change of Variable) Let f and g be continuously differentiable functions. Then for any s > 0,
we have ∫ s

0

f ′(g(Ct))g
′(Ct)dCt = f(g(Cs))− f(g(C0)). (7)

Remark 3: (Integration by Parts) Suppose Xt and Yt are differentiable uncertain processes. Then we have

d(XtYt) = YtdXt +XtdYt. (8)

3 Uncertain Differential Equations

Definition 3 [9] Suppose Ct is a canonical process, and f and g are some given functions. Then

dXt = f(t,Xt)dt+ g(t,Xt)dCt (9)

is called an uncertain differential equation. A solution is an uncertain process Xt that satisfies (9) identically
in t.
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Chen and Liu [1] proved that the uncertain differential equation has a unique solution if the coefficients
f(x, t) and g(x, t) satisfy the Lipschitz condition

|f(x, t)− f(y, t)|+ |g(x, t)− g(y, t)| ≤ L|x− y|, ∀x, y ∈ <, t ∈ [a, b]. (10)

and linear growth condition

|f(x, t)|+ |g(x, t)| ≤ L(1 + |x|), ∀x ∈ <, t ∈ [a, b] (11)

for some constant L. This is the so-called existence and uniqueness theorem.

Example 1: [1] Let u1t, u2t, v1t, v2t be integrable uncertain processes. Then the linear uncertain differential
equation

dXt = (u1tXt + u2t)dt+ (v1tXt + v2t)dCt (12)

has a solution

Xt = Ut

(
X0 +

∫ t

0

u2s

Us
ds+

∫ t

0

v2s

Us
dCs

)
(13)

where

Ut = exp

(∫ t

0

u1sds+

∫ t

0

v1sdCs

)
. (14)

4 Analytic Method - I

Theorem 2 Let f be a function of two variables and let σt be an integrable uncertain process. Then the
uncertain differential equation

dXt = f(t,Xt)dt+ σtXtdCt (15)

has a solution
Xt = Y −1

t Zt (16)

where

Yt = exp

(
−
∫ t

0

σsdCs

)
(17)

and Zt is the solution of uncertain differential equation

dZt = Ytf(t, Y −1
t Zt)dt (18)

with initial value Z0 = X0.

Proof: At first, by using the chain rule, the uncertain process Yt has an uncertain differential

dYt = − exp

(
−
∫ t

0

σsdCs

)
σtdCt = −YtσtdCt.

It follows from the integration by parts that

d(XtYt) = XtdYt + YtdXt = −XtYtσtdCt + Ytf(t,Xt)dt+ YtσtXtdCt.

That is,
d(XtYt) = Ytf(t,Xt)dt.

Defining Zt = XtYt, we obtain Xt = Y −1
t Zt and dZt = Ytf(t, Y −1

t Zt)dt. Furthermore, since Y0 = 1, the initial
value Z0 is just X0. The theorem is thus verified.

Remark 4: If σt becomes a constant σ, then Yt = exp(−σCt), and the uncertain differential equation

dXt = f(t,Xt)dt+ σXtdCt (19)

has a solution
Xt = exp(σCt)Zt (20)
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where Zt is the solution of uncertain differential equation

dZt = exp(−σCt)f(t, exp(σCt)Zt)dt (21)

with initial value Z0 = X0.

Example 2: Let α and σ be real numbers with α 6= 1. Consider the uncertain differential equation

dXt = Xα
t dt+ σXtdCt. (22)

At first, Yt = exp(−σCt) and Zt satisfies the uncertain differential equation,

dZt = exp(−σCt)(exp(σCt)Zt)
αdt = exp((α− 1)σCt)Z

α
t dt.

Since α 6= 1, we have
dZ1−α

t = (1− α) exp((α− 1)σCt)dt.

It follows from the fundamental theorem of uncertain calculus that

Z1−α
t = Z1−α

0 + (1− α)

∫ t

0

exp((α− 1)σCs)ds.

Theorem 2 says the uncertain differential equation (22) has a solution Xt = exp(σCt)Zt, i.e.,

Xt = exp(σCt)

(
X1−α

0 + (1− α)

∫ t

0

exp((α− 1)σCs)ds

)1/(1−α)

.

5 Analytic Method - II

Theorem 3 Let g be a function of two variables and let αt be an integrable uncertain process. Then the
uncertain differential equation

dXt = αtXtdt+ g(t,Xt)dCt (23)

has a solution
Xt = Y −1

t Zt (24)

where

Yt = exp

(
−
∫ t

0

αsds

)
(25)

and Zt is the solution of uncertain differential equation

dZt = Ytg(t, Y −1
t Zt)dCt (26)

with initial value Z0 = X0.

Proof: At first, by using the chain rule, the uncertain process Yt has an uncertain differential

dYt = − exp

(
−
∫ t

0

αsds

)
αtdt = −Ytαtdt.

It follows from the integration by parts that

d(XtYt) = XtdYt + YtdXt = −XtYtαtdt+ YtαtXtdt+ Ytg(t,Xt)dCt.

That is,
d(XtYt) = Ytg(t,Xt)dCt.

Defining Zt = XtYt, we obtain Xt = Y −1
t Zt and dZt = Ytg(t, Y −1

t Zt)dCt. Furthermore, since Y0 = 1, the
initial value Z0 is just X0. The theorem is thus verified.
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Remark 5: If αt becomes a constant α, then Yt = exp(−αt), and the uncertain differential equation

dXt = αXtdt+ g(t,Xt)dCt (27)

has a solution
Xt = exp(αt)Zt (28)

where Zt is the solution of uncertain differential equation

dZt = exp(−αt)g(t, exp(αt)Zt)dCt (29)

with initial value Z0 = X0.

Example 3: Let α and β be real numbers with β 6= 1. Consider the uncertain differential equation

dXt = αXtdt+Xβ
t dCt. (30)

At first, Yt = exp(−αt) and Zt satisfies the uncertain differential equation,

dZt = exp(−αt)(exp(αt)Zt)
βdCt = exp((β − 1)αt)Zβt dCt.

Since β 6= 1, we have
dZ1−β

t = (1− β) exp((β − 1)αt)dCt.

It follows from the fundamental theorem of uncertain calculus that

Z1−β
t = Z1−β

0 + (1− β)

∫ t

0

exp((β − 1)αs)dCs.

Theorem 3 says the uncertain differential equation (30) has a solution Xt = exp(αt)Zt, i.e.,

Xt = exp(αt)

(
X1−β

0 + (1− β)

∫ t

0

exp((β − 1)αs)dCs

)1/(1−β)

.

6 Conclusion

This paper presents an analytic method to solve a particular class of nonlinear uncertain differential equations.
Some examples are also presented for illustrating the effectiveness of the proposed method.
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