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Abstract

We present a robust method to study fuzzy portfolio selection problem, in which the uncertain param-
eters are characterized by reduced fuzzy returns with parametric possibility distributions. The reduced
fuzzy returns can be obtained by applying mean reduction methods to type-2 fuzzy return rates. If the in-
vestors expect to invest a portfolio with minimum regret, then we can formulate a fuzzy portfolio selection
model by minimizing the value-at-risk (VaR) of the regret degree. In the case when the return rates are
mutually independent type-2 triangular fuzzy variables, we can obtain the analytical representation of the
VaR objective and turn the proposed fuzzy portfolio selection model into a parametric programming one
so that conventional optimization methods can be used to solve it. Finally, we perform several numerical
experiments to illustrate the proposed new modeling idea and the efficiency of solution method.
c©2012 World Academic Press, UK. All rights reserved.
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1 Introduction

Portfolio selection is to select a combination of securities which is the best to meet the investors’ aim.
Markowitz [12] applied probability theory to portfolio selection problem and proposed the famous mean-
variance model which is the first mathematical formulation of the portfolio selection problem and is the
foundation of modern portfolio analysis. He considered return rates of individual bonds as random variables.
In the mean-variance model, the expected value and variance of the return rate were taken as the investment
return and risk, respectively. In order to improve the mean-variance model and discuss more issues in portfolio
field, some meaningful portfolio selection models have been proposed in the literature [13, 17, 19, 23]. In all
these models, the return rates of bonds have been treated as random variables and the portfolio selection
problems have been formulated as stochastic programming models.

It is well known that an investor will decide the investment proportion to each investment type according
to the return rate of each investment type. However, the investor often cannot know the return rate well in the
decision-making stage. In order to estimate the return rate, like the return rates of new stocks which are listed
in the stock market, the investor will take experts’ knowledge into account. In such cases, a fuzzy variable
may reflect the experts’ knowledge, and treat the return rate of the investment type as a fuzzy variable. On
the basis of fuzzy theory [6, 8, 9, 25], some researchers applied various optimization methods to portfolio
selection problem. In this respect, the interested reader may refer to the literature [1, 2, 3, 7, 18, 20]. For
hybrid uncertain portfolio selection, Liu et al. [11] gave a new chance-variance optimization criterion.

Since the membership function is usually difficult to be determined in practice, Zadeh [24] introduced the
concept of a type-2 fuzzy set as an extension of an ordinary fuzzy set. A type-2 fuzzy set is characterized
by a fuzzy membership function, i.e., the membership grades themselves are fuzzy sets in [0, 1]. Since then,
type-2 fuzzy sets have been applied successfully to type-2 fuzzy logic systems [14], pattern recognition [15],
and decision making [22]. Fuzzy possibility theory [10] is a variable-based approach to dealing with type-2
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fuzziness. On the basis of this theory, Chen and Wang [4] gave a scalar representative value to characterize the
properties of type-2 fuzzy variables, and discussed some basic properties of the representative value operator,
and Chen and Zhang [5] discussed the arithmetic of type-2 fuzzy variables. The literature [16] and [21]
gave the reduction methods for the type-2 fuzzy variable. In the current development, we study the portfolio
selection from a new viewpoint, and assume that the return rates are characterized by type-2 fuzzy variables
with known secondary possibility distributions. We first employ a method to reduce the type-2 fuzzy return
rates, then formulate a generalized credibility fuzzy portfolio selection model, in which reduced fuzzy returns
have parametric possibility distributions. We adopt VaR criteria in the objective when the investors expect
to invest with minimum regret. Under mild assumption, the established fuzzy portfolio selection model can
be transformed into its equivalent parametric programming problem so that the conventional optimization
method can apply.

The paper is organized as follows. In Section 2, we give some VaR formulas of three reduced fuzzy
variables for type-2 triangular fuzzy variables. In Section 3, we model the portfolio selection problem in which
the return rates are characterized by type-2 fuzzy variables with known secondary possibility distributions.
We use the mean reduction methods to reduce the type-2 fuzzy return rates. Then based on generalized
credibility measure, we give the portfolio selection model in the case that the investors expect a portfolio
with minimum regret. When the return rates are described with mutually independent type-2 triangular
fuzzy variables, we can turn the proposed model to be equivalent deterministic parametric programming. To
illustrate the modeling idea and the efficiency of the proposed domain decomposition method, one numerical
example is given in Section 4. Finally, Section 5 summarizes the main work in this paper.

2 VaR Parametric Formulas of Reduced Fuzzy Variables

Since the reduced fuzzy variables of type-2 triangular fuzzy variables obtained by the mean reduction methods
have parametric possibility distribution [16], in this section, we derive VaR parametric formulas for these
reduced fuzzy variables. For the reduced fuzzy variable by the E reduction method, its optimistic value is
given as follows.

Theorem 1 Let ξ̃ = (r1, r2, r3; θl, θr) be a type-2 triangular fuzzy variable and ξ its reduced fuzzy variable by
the E reduction method.

(i) If α ∈ (0, 4+θr−θl
16 ], then ξsup(α) = r3 − 8α(r3−r2)

4+θr−θl ;

(ii) If α ∈ ( 4+θr−θl
16 , 0.5], then ξsup(α) = 4(1−2α)r3+(8α−θr+θl)r2

4−θr+θl
;

(iii) If α ∈ (0.5, 12−θr+θl
16 ], then ξsup(α) = 4(2α−1)r1+(8(1−α)−θr+θl)r2

4−θr+θl
;

(iv) If α ∈ ( 12−θr+θl
16 , 1], then ξsup(α) = r1 + 8(1−α)(r2−r1)

4+θr−θl .

It is easy to know that −ξ̃ = (−r3,−r2,−r1; θl, θr) if ξ̃ = (r1, r2, r3; θl, θr). Therefore, if ξ is the reduced
fuzzy variable of ξ̃, then −ξ is the reduced fuzzy variable of −ξ̃. For any α ∈ (0, 1], it is easy to check
ξsup(α) = −(−ξ)inf(α), and ξinf(α) = −(−ξ)sup(α). The following theorem describes the optimistic value
formula of −ξ and the pessimistic value of ξ where ξ is the reduced fuzzy variable of a type-2 triangular fuzzy
variable by the E reduction method.

Theorem 2 Let ξ̃ = (r1, r2, r3; θl, θr) be a type-2 triangular fuzzy variable and ξ its reduced fuzzy variable by
the E reduction method.

(i) If α ∈ (0, 4+θr−θl
16 ], then (−ξ)sup(α) = −r1 − 8α(r2−r1)

4+θr−θl and ξinf(α) = r1 + 8α(r2−r1)
4+θr−θl ;

(ii) If α ∈ ( 4+θr−θl
16 , 0.5], then (−ξ)sup(α) = 4(1−2α)(−r1)+(8α−θr+θl)(−r2)

4−θr+θl
and

ξinf(α) = 4(1−2α)r1+(8α−θr+θl)r2
4−θr+θl

;

(iii) If α ∈ (0.5, 12−θr+θl
16 ], then (−ξ)sup(α) = 4(2α−1)(−r3)+(8(1−α)−θr+θl)(−r2)

4−θr+θl
and

ξinf(α) = 4(2α−1)r3+(8(1−α)−θr+θl)r2
4−θr+θl

;
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(iv) If α ∈ ( 12−θr+θl
16 , 1], then (−ξ)sup(α) = −r3 + 8(1−α)(r3−r2)

4+θr−θl and ξinf(α) = r3 − 8(1−α)(r3−r2)
4+θr−θl .

Similarly, for the reduced fuzzy variable ξ of a type-2 triangular fuzzy variable by the E∗ reduction method,
its optimistic value and pessimistic value are given in the following theorems.

Theorem 3 Let ξ̃ = (r1, r2, r3; θl, θr) be a type-2 triangular fuzzy variable and ξ its reduced fuzzy variable by
the E∗ reduction method.

(i) If α ∈ (0, 2+θr
8 ], then ξsup(α) = r3 − 4α(r3−r2)

2+θr
;

(ii) If α ∈ ( 2+θr
8 , 0.5], then ξsup(α) = (4α−θr)r2+(2−4α)r3

2−θr ;

(iii) If α ∈ (0.5, 6−θr
8 ], then ξsup(α) = (4α−2)r1+(4(1−α)−θr)r2

2−θr ;

(iv) If α ∈ ( 6−θr
8 , 1], then ξsup(α) = r1 + 4(1−α)(r2−r1)

2+θr
.

Theorem 4 Let ξ̃ = (r1, r2, r3; θl, θr) be a type-2 triangular fuzzy variable and ξ its reduced fuzzy variable by
the E∗ reduction method.

(i) If α ∈ (0, 2+θr
8 ], then (−ξ)sup(α) = −r1 − 4α(r2−r1)

2+θr
and ξinf(α) = r1 + 4α(r2−r1)

2+θr
;

(ii) If α ∈ ( 2+θr
8 , 0.5], then (−ξ)sup(α) = (4α−θr)(−r2)+(2−4α)(−r1)

2−θr and ξinf(α) = (4α−θr)r2+(2−4α)r1
2−θr ;

(iii) If α ∈ (0.5, 6−θr
8 ], then (−ξ)sup(α) = (4α−2)(−r3)+(4(1−α)−θr)(−r2)

2−θr and ξinf(α) = (4α−2)r3+(4(1−α)−θr)r2
2−θr ;

(iv) If α ∈ ( 6−θr
8 , 1], then (−ξ)sup(α) = −r3 + 4(1−α)(r3−r2)

2+θr
and ξinf(α) = r3 − 4(1−α)(r3−r2)

2+θr
.

Before ending the section we provide the results about the VaR formulas of the reduced fuzzy variable ξ
of a type-2 triangular fuzzy variable by the E∗ reduction method.

Theorem 5 Let ξ̃ = (r1, r2, r3; θl, θr) be a type-2 triangular fuzzy variable and ξ its reduced fuzzy variable by
the E∗ reduction method.

(i) If α ∈ (0, 2−θl
8 ], then ξsup(α) = r3 − 4α(r3−r2)

2−θl ;

(ii) If α ∈ ( 2−θl
8 , 0.5], then ξsup(α) = (2−4α)r3+(4α+θl)r2

2+θl
;

(iii) If α ∈ (0.5, 6+θl
8 ], then ξsup(α) = (4α−2)r1+(4(1−α)+θl)r2

2+θl
;

(iv) If α ∈ ( 6+θl
8 , 1], then ξsup(α) = r1 + 4(1−α)(r2−r1)

2−θl .

Theorem 6 Let ξ̃ = (r1, r2, r3; θl, θr) be a type-2 triangular fuzzy variable and ξ its reduced fuzzy variable by
the E∗ reduction method.

(i) If α ∈ (0, 2−θl
8 ], then (−ξ)sup(α) = −r1 − 4α(r2−r1)

2−θl and ξinf(α) = r1 + 4α(r2−r1)
2−θl ;

(ii) If α ∈ ( 2−θl
8 , 0.5], then (−ξ)sup(α) = (2−4α)(−r1)+(4α+θl)(−r2)

2+θl
and ξinf(α) = (2−4α)r1+(4α+θl)r2

2+θl
;

(iii) If α ∈ (0.5, 6+θl
8 ], then (−ξ)sup(α) = (4α−2)(−r3)+(4(1−α)+θl)(−r2)

2+θl
and ξinf(α) = (4α−2)r3+(4(1−α)+θl)r2

2+θl
;

(iv) If α ∈ ( 6+θl
8 , 1], then (−ξ)sup(α) = −r3 + 4(1−α)(r3−r2)

2−θl and ξinf(α) = r3 − 4(1−α)(r3−r2)
2−θl .
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3 Portfolio Selection Problem with VaR of the Regret Degree

Suppose that an investor want to allocate his wealth of one unit among n investment types which are risky.
It is well known that the investor will decide the investment proportion to the i-th investment type according
to the return rate of the i-th investment type. But the investor cannot know the return rates well in the
decision-making stage. Sometimes, we can only obtain limited information about the return rates such as the
distributions. In this section, we assume that we can only obtain the type-2 distributions of the return rates,
i.e., the return rates are characterized by type-2 fuzzy variables. In this case, we assume that all available
funds are invested and that short sales are not permitted, then we can describe the portfolio selection problem
as  maximize

∑n
i=1 ξ̃ixi

subject to:
∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, . . . , n
(1)

where ξ̃i (i = 1, 2, . . . , n) represents the type-2 fuzzy return rate of the i-th investment type, and xi is the
decision variable which shows the investment proportion to the i-th investment type, xi ≥ 0, i = 1, 2, . . . , n
such that

∑n
i=1 xi = 1 is a portfolio,

∑n
i=1 ξ̃ixi represents the corresponding return rate of the portfolio

xi ≥ 0, i = 1, 2, . . . , n.
If an investor has invested his money in some investment types according to a portfolio xi ≥ 0, i =

1, 2, . . . , n such that
∑n
i=1 xi = 1. The investor may feel regretful when the return rates of other investment

types become better than those of the invested ones as a result. Since we cannot know the return rates in the
decision-making stage, any investment decision may bring regret to the investor. Suppose that an investor is
informed about the determined return rates ξ̄i, i = 1, 2, . . . , n after he (she) has invested his (her) money in
some investment types according to a portfolio xi ≥ 0, i = 1, 2, . . . , n such that

∑n
i=1 xi = 1. The investor

will have regret degree r(
∑n
i=1 ξ̄ixi) which can be quantified by many different ways [7].

According to Inuiguchi and Tanino [7], let F : D1 ×D2 → R(D1, D2 ⊆ R) be a continuous function such
that F (·, x) is strictly increasing and F (x, ·) is strictly decreasing. Then r(

∑n
i=1 ξ̄ixi) can be quantified as

max∑n
i=1 yi=1,yi≥0

F (
∑n
i=1 ξ̄iyi,

∑n
i=1 ξ̄ixi).

We know that r(
∑n
i=1 ξ̄ixi) is continuous, and the higher the return rate of the portfolio xi ≥ 0, i = 1, 2, . . . , n

is, the smaller the regret degree is.
The investors are assumed to dislike regret. Thus, the investors would like to minimize the regret degree,

i.e., the investors will choose a portfolio with minimum regret degree. Then, if short sales are not permitted
and all available funds are invested, we can describe the portfolio selection problem as minimize r(

∑n
i=1 ξ̃ixi)

subject to:
∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, . . . , n
(2)

where ξ̃i (i = 1, 2, . . . , n) represents the type-2 fuzzy return rate of the i-th investment type, and xi is the
decision variable which shows the investment proportion to the i-th investment type, xi ≥ 0, i = 1, 2, . . . , n
such that

∑n
i=1 xi = 1 is a portfolio,

∑n
i=1 ξ̃ixi represents the corresponding return rate of the portfolio

xi ≥ 0, i = 1, 2, . . . , n, r(
∑n
i=1 ξ̃ixi) is the corresponding regret degree of the portfolio.

The programming problem (2) is not well-defined due to the type-2 fuzziness of the return rates. In order
to obtain a meaningful mathematical model, in this paper, we first use the mean reduction methods to reduce
the type-2 fuzzy return rates. Then rank fuzzy variables by pessimistic values, the portfolio selection problem
can be built as the following generalized credibility constrained programming with VaR objective

minimize r̄

subject to: C̃r{r(
∑n
i=1 ξixi) ≤ r̄} ≥ α,∑n

i=1 xi = 1,
xi ≥ 0, i = 1, 2, . . . , n

(3)

where ξi (i = 1, 2, . . . , n) represents the reduced fuzzy return rate of the type-2 fuzzy return rate ξ̃i according
to the mean reduction methods, and xi is the decision variable which shows the investment proportion to the
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i-th investment type, xi ≥ 0, i = 1, 2, . . . , n such that
∑n
i=1 xi = 1 is a portfolio,

∑n
i=1 ξixi represents the

corresponding reduced fuzzy return rate of the portfolio xi ≥ 0, i = 1, 2, . . . , n, r(
∑n
i=1 ξixi) is the reduced

regret degree, C̃r is the generalized credibility measure, α ∈ (0, 1] is a prescribed confidence level, and r̄ is the
level to the regret degree r(

∑n
i=1 ξixi).

In the following, Theorem 7 implies that the model (3) can be turned into a equivalent crisp form when
the regret degree r(

∑n
i=1 ξixi) is quantified as a mathematical expression.

Theorem 7 Suppose that ξi is the reduced fuzzy variable of mutually independent type-2 fuzzy variables ξ̃i, i =
1, 2, . . . , n in the model (2) with the mean reduction methods. Let r(

∑n
i=1 ξixi) = max

t
{ξt −

∑n
i=1 ξixi, t =

1, 2, . . . , n}. Then the model (3) is equivalent to the following crisp form
minimize r̄
subject to:

∑n
i=1,i6=t(ξi)sup(α)xi + (1− xt)(−ξt)sup(α) + r̄ ≥ 0, t = 1, 2, . . . , n,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, . . . , n.

(4)

If the return rates are characterized by mutually independent type-2 triangular fuzzy variable ξ̃i =
(r1,i, r2,i, r3,i; θl,i, θr,i), i = 1, 2, . . . , n and the parameters are known, then for any given α, by VaR para-
metric formulas of ξi in Section 2, we know that the model (4) is a linear programming problem.

In the model (3), we know that the larger α needs the larger r̄, vice versa. But we want to maximize α and
minimize r̄ simultaneously, in order to balance the two objects, we take r̄/α as objective function. Similar to
the model (4), we have the following equivalent deterministic programming problem

minimize r̄
α

subject to:
∑n
i=1,i6=t(ξi)sup(α)xi + (1− xt)(−ξt)sup(α) + r̄ ≥ 0, t = 1, 2, . . . , n,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, . . . , n.

(5)

If the return rates are characterized by mutually independent type-2 triangular fuzzy variable ξ̃i =
(r1,i, r2,i, r3,i; θl,i, θr,i), i = 1, 2, . . . , n and the parameters θl,i = θl and θr,i = θr for any i = 1, 2, . . . , n
are unknown, then the model (5) can be turned into equivalent deterministic programming problems under
some conditions. Now we suggest a domain decomposition method to find the optimal solutions to the deter-
ministic programming models. We take E reduction method as an example to describe the idea of domain
decomposition method. The similar idea can be applied to other mean reduction methods. We restrict the
domain of r̄/α in the following four disjoint feasible subregions. For the sake of presentation, the four feasible
subregions are denoted by

D1 =

{ ∑n
i=1,i6=t

(
r1,i +

8(1−α)(r2,i−r1,i)
4+θr−θl

)
xi − r3,t(1− xt) +

8(1−α)(r3,t−r2,t)(1−xt)
4+θr−θl + r̄ ≥ 0,

t = 1, 2, . . . , n, 12−θr+θl
16 < α ≤ 1,

∑n
i=1 xi = 1, xi ≥ 0, i = 1, 2, . . . , n

}
, (6)

D2 =

{ ∑n
i=1,i6=t

(8−8α−θr+θl)r2,i+4(2α−1)r1,i
4−θr+θl

xi − (8−8α−θr+θl)r2,t+4(2α−1)r3,t
4−θr+θl

(1− xt) + r̄ ≥ 0,

t = 1, 2, . . . , n, 0.5 < α ≤ 12−θr+θl
16 ,

∑n
i=1 xi = 1, xi ≥ 0, i = 1, 2, . . . , n

}
, (7)

D3 =

{ ∑n
i=1,i6=t

4(1−2α)r3,i+(8α−θr+θl)r2,i
4−θr+θl

xi − 4(1−2α)r1,t+(8α−θr+θl)r2,t
4−θr+θl

(1− xt) + r̄ ≥ 0,

t = 1, 2, . . . , n, 4+θr−θl
16 < α ≤ 0.5,

∑n
i=1 xi = 1, xi ≥ 0, i = 1, 2, . . . , n

}
, (8)

D4 =

{ ∑n
i=1,i6=t

(
r3,i − 8α(r3,i−r2,i)

4+θr−θl

)
xi − r1,t(1− xt)− 8α(r2,t−r1,t)(1−xt)

4+θr−θl + r̄ ≥ 0,

t = 1, 2, . . . , n, 0 < α ≤ 4+θr−θl
16 ,

∑n
i=1 xi = 1, xi ≥ 0, i = 1, 2, . . . , n

}
. (9)

If we denote the feasible region of problem (5) as D, then D = D1 ∪D2 ∪D3 ∪D4 and problem (5) can
be equivalently written as {

minimize r̄
α

subject to: x ∈ D (10)

where x = (x1, x2, . . . , xn). As a consequence, the corresponding four subproblems are as follows:{
minimize r̄

α
subject to: x ∈ Di

(11)
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for i = 1, 2, 3, 4. Therefore, we can solve problem (10) indirectly by solving their corresponding subproblems
(11) via conventional solution methods or general-purpose software. After the four subproblems have been
solved, the solution to problem (10) can be found by comparing the solutions to the four subproblems. In
the next section, we will demonstrate the effectiveness of the domain decomposition method via numerical
experiments, in which the software Lingo is employ to solve the subproblems.

4 A Numerical Example

In this section, we suppose that an investor want to allocate his wealth of one unit among 20 investment
types which are risky and short sales are not permitted. We assume that the return rates are characterized by
mutually independent type-2 triangular fuzzy variables ξ̃i, i = 1, 2, . . . , 20, which are shown in Table 1. Let
ξi (i = 1, 2, . . . , 20) represents the reduced fuzzy return rate according to the E reduction method, and xi is

the decision variable which shows the investment proportion to the i-th investment type,
∑20
i=1 ξixi represents

the corresponding reduced fuzzy return rate of the portfolio xi ≥ 0, i = 1, 2, . . . , 20. According to model (5),
the portfolio selection problem can be built as

minimize r̄
α

subject to:
∑20
i=1(ξi)sup(α)xi + (1− xt)(−ξt)sup(α) + r̄ ≥ 0, t = 1, 2, . . . , 20,∑n
i=1 xi = 1,

xi ≥ 0, i = 1, 2, . . . , 20

(12)

where α ∈ (0, 1] is a confidence level, and r̄ is the level to the regret degree r(
∑20
i=1 ξixi) = max

t
{ξt −∑20

i=1 ξixi, t = 1, 2, . . . , 20}.
If the parameters of ξ̃i are known as Table 2, then for the given α = 0.8125, the model (12) is a linear

programming problem, Lingo software provides the optimal decision-makings of distribution of funds

x = (0, 0.0642136, 0.6519550, 0, 0.0894621, 0.1021039, 0, 0.0160934, 0.0045299,
0, 0.0190554, 0.0118926, 0.0020362, 0, 0, 0, 0, 0, 0, 0.0386580),

(13)

and the level to the regret degree is r̄ = 0.1947703.

Table 1: The type-2 triangular fuzzy return rates ξ̃i, i = 1, 2, . . . , 20
i 1 2 3 4 5 6 7 8 9 10
r1,i -0.105 -0.12 -0.105 -0.09 -0.123 -0.121 -0.094 -0.127 -0.118 -0.096
r2,i 0.125 0.14 0.124 0.112 0.14 0.14 0.114 0.14 0.139 0.125
r3,i 0.185 0.23 0.182 0.176 0.24 0.24 0.18 0.22 0.22 0.19

i 11 12 13 14 15 16 17 18 19 20
r1,i -0.116 -0.116 -0.115 -0.106 -0.11 -0.11 -0.108 -0.113 -0.098 -0.118
r2,i 0.138 0.136 0.136 0.13 0.132 0.13 0.13 0.135 0.126 0.138
r3,i 0.217 0.217 0.215 0.2 0.21 0.21 0.205 0.213 0.19 0.217

Table 2: The parameters of type-2 triangular fuzzy return rates ξ̃i, i = 1, 2, . . . , 20
i 1 2 3 4 5 6 7 8 9 10
θl,i 0.1 0.5 0.9 0.8 0.7 0.2 0.3 0.9 1.0 0.8
θr,i 0.8 0.7 0.2 0.3 0.9 1.0 0.8 0.5 0.4 0.6

i 11 12 13 14 15 16 17 18 19 20
θl,i 0.5 0.4 0.6 0 0.3 0.4 0.6 0.7 0.8 0.1
θr,i 0.5 0.3 0.4 0.6 0.7 0.8 0.1 0.1 0.5 0.9

If parameters θl,i = θl and θr,i = θr for any i = 1, 2, . . . , 20 are unknown, we use domain decomposition
method to find the solution to the model (12). The corresponding four disjoint feasible subregions D1, D2, D3

and D4 are defined by the equations (6)-(9) in Section 3. In subregion D1, Lingo software provides the
investment proportions

x1 = (0, 0.1152966, 0, 0, 0.1387157, 0.1394842, 0, 0.0874749, 0.0868456, 0, 0.0761376, 0.0701316,
0.0647085, 0.0011562, 0.0386056, 0.0323556, 0.0171048, 0.0563000, 0, 0.0756830)

(14)
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with r̄ = 0.1551408, α = 0.8125 and objective value r̄/α = 0.1909426.
In subregion D2, Lingo software provides the investment proportions

x2 = (0, 0, 0, 0, 0.5181146, 0.0095068, 0, 0.4723786, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (15)

with r̄ = 0.0000008, α = 0.5 and objective value r̄/α = 0.0000016.
In subregion D3, Lingo software provides the investment proportions

x3 = (0.0557038, 0.0440142, 0.0564466, 0.0608338, 0.0418269, 0.0420808, 0.0588172,
0.0449190, 0.0461710, 0.0562415, 0.0470262, 0.0469241, 0.0474900, 0.0520273,

0.0491517, 0.0490455, 0.0505030, 0.0481737, 0.0558822, 0.0467216)
(16)

with r̄ = 0, α = 0.1961272 and objective value r̄/α = 0.
In subregion D4, Lingo software provides the investment proportions

x4 = (0.0555503, 0.0455764, 0.0559763, 0.0516329, 0.0409057, 0.0408921, 0.0511171,
0.0505004, 0.0496816, 0.0537544, 0.0503760, 0.0489335, 0.0498896, 0.0526432,

0.0494039, 0.0479729, 0.0503697, 0.0501177, 0.0543143, 0.0503921)
(17)

with r̄ = 0, α = 0.3125 and objective value r̄/α = 0.
Consequently, by comparing the four solutions, the investor obtains the investment proportions x = x4.
The numerical experiments demonstrate that model (12) can provide diversification investments to assets

for this portfolio problem.

5 Conclusions

In the current development, we studied the portfolio selection problem from a new viewpoint. The major new
results include the following four aspects:

(i) Based on generalized credibility measure of fuzzy event, we deduce some useful VaR formulas about
reduced fuzzy variables of type-2 triangular fuzzy variables;

(ii) We model the portfolio selection problem based on fuzzy possibility theory, in which the return rates
are characterized by type-2 fuzzy variables with known secondary possibility distributions. We use the
mean reduction methods to reduce the type-2 fuzzy return rates, then in the case that the investors
expect to invest according to a portfolio with minimum regret, we formulate a generalized credibility
constrained portfolio selection model with VaR objective;

(iii) When the regret degree of a portfolio is specified by some mathematical expression, and the return
rates are mutually independent type-2 triangular fuzzy variables, with the obtained VaR formulas, the
established fuzzy portfolio selection model can be transformed into the crisp equivalent parametric pro-
gramming (4). When the parameters are known, for any given α, the model (4) is a linear programming
problem. If the parameters are unknown, then we suggested a domain decomposition method to separate
the model (5) into four subproblems, and solved the subproblems by Lingo software;

(iv) For the proposed portfolio selection models, we provide one numerical example to illustrate the modeling
idea and the efficiency of the proposed method.
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