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Abstract

The mean and the variance value of a random variable play an important role in statistical analysis.
Sometimes the available observations are not precise, and we want to test the hypotheses of mean and
variance in such environment. Hence, in this paper, we first extend and introduced Lo—metric based on
imprecise (fuzzy) observations, and then, the concepts of fuzzy test statistics are defined based on the
extend La—metric for testing the fuzzy hypotheses of mean and variance. Finally, we propose a method
to evaluate the fuzzy hypotheses (for one-sample and two-sample) of interest.
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1 Introduction

Statistical analysis, in traditional form, is based on crispness of data, random variable, point estimation,
hypotheses, parameter and so on. As there are many different situations in which the above mentioned
concepts are imprecise. On the other hand, the theory of fuzzy sets is a well known tool for formulation
and analysis of imprecise and subjective concepts. Therefore the hypotheses testing for mean and variance
with fuzzy data can be important. The problem of statistical inference in fuzzy environment is developed in
different approaches.

Watanabe and Imaizumi [29] presented an approach for testing fuzzy hypotheses, in which they introduced
fuzzy critical regions and produced a fuzzy conclusion. Arnold [0, @] presented an approach to test fuzzy
hypotheses, in which he considered fuzzy constraints on the type I and II errors. Holena [13] considered a
fuzzy generalization of a sophisticated approach to exploratory data analysis, the general unary hypotheses
automation. Holena [14] presented a principally different approach and motivated the observational logic and
its success in automated knowledge discovery. Filzmoser and Viertl [I1] investigated an approach for testing
statistical hypotheses based on the fuzzy p—value. Taheri and Behboodian [24] and Torabi et. al. [27] studied
a method on Neyman-Pearson Lemma for testing fuzzy hypotheses when the available data are crisp and
vague, respectively. Some methods of statistical inference proposed by Buckley [7, [8] and Viertl [28] in a fuzzy
environment. Thompson and Geyer [26] proposed the Fuzzy p-values in latent variable problems. Taheri
and Arefi [25] studied an approach for testing fuzzy hypotheses based on fuzzy test statistic, (see also, Arefi
and Taheri [5], when the available/observed data are fuzzy). Akbari and Rezaei [3] described a bootstrap
method for variance that is designed directly for testing hypothesis in case of fuzzy data based on Yao-Wu
signed distance. Parchami et al. [2I] considered the problem of testing hypotheses, when the hypotheses are
fuzzy and the data are crisp. They first introduce the notion of fuzzy p-value, by applying the extension
principle and then present an approach for testing fuzzy hypotheses by comparing a fuzzy p-value and a fuzzy
significance level, based on a comparison between two fuzzy sets.

The bootstrap using fuzzy data, is developed in different approaches.

Korner’s asymptotic development [I5] concerns general fuzzy random variables (taking on way-either finite
or infinite-number of values in the space of compact convex fuzzy sets of a finite-dimensional Euclidean space).
Montenegro et al. [I8] have presented asymptotic one-sample procedure. Gonzalez et al. [I2] have shown that
the one-sample method of testing the mean of a fuzzy random variable can be extended to general ones (more
precisely, to those whose range is not necessarily finite and whose values are fuzzy subsets of finite-dimensional
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Euclidean space). Akbari and Rezaei [I] describe a bootstrap method for variance that is designed directly for
hypothesis testing in the case of fuzzy data based on Yao-Wu signed distance. Akbari and Rezaei [4] exhibit
a method in order to bootstrap testing fuzzy hypotheses and observations on fuzzy statistics.

In this paper we construct a new method for testing hypotheses in fuzzy environment which is completely
different from those mentioned above. For this purpose we organize the paper in the following way. In Section
2 we describe some basic concepts of canonical fuzzy numbers, Ly—metric, and fuzzy hypotheses. In Section
3, we come up with testing hypotheses for one-sample based on Ls—metric. Section 4, provides a testing
hypothesis for two-sample based on Ly—metric. In Section 5, we compare our method with some other works.
At last, a brief conclusion is provided in Section 6.

2 Preliminaries

In this section, we study canonical fuzzy numbers, Lo—metric,and fuzzy hypotheses.

2.1 Canonical Numbers

Let X be the universal space, then a fuzzy subset Z of X is defined by its membership function uz : X — [0, 1].
We denote by Z,, = {x : uz(z) > a} the a—cut set of  and Zy is the closure of the set {x : uz(x) > 0}, and
(1) Z is called normal fuzzy set if there exist € X such that pz(x) = 1;

(2) 7 is called convex fuzzy set if uz(Az + (1 — N)y) > min(uz(x) , pz(y)) for all A € [0,1];

(3) the fuzzy set T is called a fuzzy number if T is normal convex fuzzy set and its a—cut sets, is bounded
Ya # 0;

(4) Z is called a closed fuzzy number if Z is fuzzy number and its membership function uz is upper semicon-
tinues;

(5) 7 is called a bounded fuzzy number if Z is a fuzzy number and its membership function puz has compact
support.

If 7 is a closed and bounded fuzzy number with zZ = inf{z : 2 € 7,} and 2¥ = sup{z : € Z,} and
its membership function be strictly increasing on the interval [x%, 2¥] and strictly decreasing on the interval
[#¥, 2¥], then 7 is called canonical fuzzy number.

Let “®” be a binary operation @ or © between two canonical fuzzy numbers @ and b. The membership
function of @ ® b is defined by

Hze5(2) = Sup min{yiz (), 5(y) }
for © =@ or & and o =+ or —.

In the following, let ®;,; be a binary operation @;,; or ©;,; between two closed intervals a, = [a,al]
and b, = [bE bY]. Then g Oint by, is defined by

(eI
EQQintga:{zeR:z:xoy, T € Uq, yega}.

If G and b be two closed fuzzy numbers. Then a @b and @ © b are also closed fuzzy numbers. Furthermore,
we have

(a@g)a = aa@intga:[a£+b£vag+bg]

(Ei @Z)a = Gq Oint ga = [a(Lx - bg7a[o{ - b(Lx]

2.2 L,—Metric

Now we define a distance between fuzzy numbers which will be used later.

Several ranking methods have been proposed so far, by Cheng [10], Yao and Wu [31] Modarres and Sadi-
Nezhad [I7], Nojavan and Ghazanfari [20], Puri and Ralescu [22], and Akbari and Rezaei [2].

In this paper we use another metric for canonical fuzzy numbers that is nominated Lo—metric.

Given a real number x € R, we can induce a fuzzy number Z with membership function uz(r) such that
pz(z) =1 and pz(r) < 1 for r # x. We call 7 as a fuzzy real number induced by the real number z.

Let F(R) be the set of all fuzzy real numbers induced by the real numbers R. We define the relation ~
on F(R) as T1 ~ Ty iff 1 and Ty are induced by the same real number x. Then ~ is an equivalence relation,
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which induces the equivalence classes [z] = {@:a ~ T}. The quotient set F(R)/ ~ is the set of all equivalence
classes. We call F(R)/ ~ as the fuzzy real number system. In practice, we take only one element Z from each
equivalence class [Z] to from the fuzzy real number system (F(R)/ ~) that is,

(F(R)/ ~)={z:Z € [Z],T is the only element from [Z]}.

If the fuzzy real number system (F(R)/ ~) consists all of canonical fuzzy real numbers then we call (F(R)/ ~)
as the canonical fuzzy real number system.

For each a—cuts of @ € F(R"™) the support function Sz, is defined as Sz, (1) = sup,c;, < x,t >,
t e Sn~1 §7=! the (n — 1)—dimensional unit sphere in R". Using support function we define L,—metric

~ 1 ~ 1 ~
da(a,b) = (n/o (p2(@a, ba))*da)2 a,be F(R"),

where

- 1
palinbe) = ([ 1850 = S5, (O Putdn)?.
Note that p is the normalized Lebesgue measure on S~ 1.

Lemma 2.1 Let =, y, and z be the intuitionistic fuzzy numbers. The Lo—metric of , y, and Z satisfies the
following properties

(i) 02(%,7)=0.
(i) 83(F.7) = 03(7,3)-
(iii) 53(%,%) < 63(7,7) + 63(7. ).

Example 1: As an example of a canonical fuzzy set on R consider so-called LR-fuzzy numbers @ = (i, 1, 7) g
with central value u € R, left and right spread I € RZ%, r € R=2?, decreasing left and right shape functions
L:R2%—10,1], R:R2% — [0,1] with L(0) = R(0) = 1, i.e., a fuzzy set a with

L(*%) z<np
pa(x) =
R(E) @ >
An LR-fuzzy number a@ = (u,l,7)pg with L = R and | = r = ¢ is called symmetric LR-fuzzy number and
abbreviated by a = (u — &, u, o + €).
Let a; = (w4, li,mi)Lr; @ = 1,2. We have

Ziia = [,ul - Lil(a)lia,ui + Ril(a)ri} 1= 17 2a
furthermore
—ui + L’l(a)li t=-1
Sam (t) =
pi+ R (a)r;  t=1.
Thus
~ o~ 1 ! 1 2 2 1 ' 1 2 2
53(a1,2) = — 2 + 5 [ (L7 @)da (b~ + 5 [ (R (@)Pda (1~ o)
0 0

- [ @ @)da  — o)~ 1)+ [ (R @))da (= )1~ ro)
0 0

For symmetric fuzzy numbers a; = (u; — €, fti, i + €;); @ = 1,2. We have

1
52(@0,G2) = (i1 — 2)* + / (L (0))%dar (21 — e0)?.
0
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2.3 Fuzzy Hypotheses

We define some models, as fuzzy sets of real numbers, for modeling the extended versions of the simple, the
one-sided, and the two-sided ordinary (crisp) hypotheses to the fuzzy ones [4].

Definition 2.1 Let 0y be a real number and known.

i) Any hypothesis of the form (H : 0 is approximately 6g) is called to be a fuzzy simple hypothesis.

ii) Any hypothesis of the form (H : 0 is not approzimately 6p) is called to be a fuzzy two-sided hypoth-
esis.

iii) Any hypothesis of the form (H : 0 is essentially smaller than  6p) is called to be a fuzzy left one-sided
hypothesis.

iv) Any hypothesis of the form (Hy : 8 is essentially larger than 6g) is called to be a fuzzy right one-
sided hypothesis.

We denote the above definitions by

) Hy:0 is approximately 0p
a
Hy:0 is not approximately 0g

b) Hy:0 is essentially larger than 6g
H,:0 is not essentially larger than 6

) Hy:0 is essentially smaller than 6
H,:0 is not essentially than 6

The above areas are shown in Figures 1, 2 and 3.

/JNAL
&

Figure 1: The fuzzy hypotheses of the form a)

3 Testing Fuzzy Hypotheses for One-Sample

We introduce a method to get testing hypotheses with one-sample of fuzzy data.
Let (Q,F,P) be a probability space. A compact convex random set (Cr.s.) X is a Borel measurable
function from (2, F, P) to (X, B, Px), where Px is the probability measure induced by X and is called the

distribution of the Cr.s. X , i.e.,

Px(A)=P(X € A) = / ap VA€ B.
XeA
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F

Figure 3: The fuzzy hypotheses of the form c)

Definition 3.1 A fuzzy random variable (Fr.v.) is a Borel measurable function X : Q — F(R™) where
{(w2):weQ, zeX,(w)}e FxB vV ael0,1].

Then, all a—cuts of X are Cr.s. and further more the above definition used here is equivalent to the often
used definition by Puri and Ralescu [23], and for n = 1 to the definition by Kwakernaak [16].

Lemma 3.1 Let F(R) be a canonical fuzzy real number system. Then X is a Fr.v. iff XL and XU are
random variables for all a € [0, 1].

The expected value E(X) of the Fr.v. X is defined by

Eo(X) = {EX)|X: Q= R", X(w)=Xyw)}

Definition 3.2 The variance of a Fr.v. X is defined as v(X) = E[62(X, E(X))]. Using Eo(X) = E(X4)
and SE(XQ)(t) = E(Sx_(t)) this can be written as

v(X) = n/o /S"-l Var(Sx_(1))p(dt)da.

Nather (2006) defined an scalar multiplication between X and Y given by

1
<X, Y >= n/ / Sx (t)Sg (t)u(dt)da,
0 Jgn-1 T °
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thus _ o _ _
v(X)=E<X,X>-<EX),EX)>

and similarly

o 1
Cow(X,Y) = n/o /SnilCov(Sia(t),S?Q(t))u(dt)doz

= E<XY>-<EX),EY)>.

Definition 3.3 Let X and Y be two Fr.v.’s. We say that X and Y are independent iff each random variable
in the set {XL XY :0 < a <1} is independent with any random variable in the set {YE YV :0 < a <1}.

Definition 3.4 We say X and Y are identically distributed iff XL, Y.L are identically distributed, and XY, Y.V
are identically distributed for all o € [0,1].

Definition 3.5 We say X = ()?1, )?2, e )A(:n) is a fuzzy random sample ijj”)?zfs are independent and identically
distributed.

Lemma 3.2 Let X = ()?1, XQ, . )Z'n) is a fuzzy random sample. The sample fuzzy mean value X = %@?:15@
is an unbiased estimator of the parameter E(X); and

lim 63( X, E(X) ) =0.

n—oo

Proof. We have

lim 55( X, B(X) ) — lim /0 1 /_ 11[Sia(t)—SE(;(Q)(t)Pdtda

n— oo n—oo

1 1 n
. 1 ,
~ i /O [ 23085, (0 = Six, ()P dtda

=1

1 1 1 n
= lim [= ) Sg (t) — Sg .z ()] dtdo
/0 /_1n—>oo[nz_zl Xm() E(Xa)( )]
= 0.

The latest equality is obtained from SE()?Q)(t) = E(Sg (t)) and strong law of large number.

a

Lemma 3.3 Let X = ()?1,)?2,...,)?”) is a fuzzy random sample. The sample fuzzy variance value S? =
ﬁ Z?:l (55 ( X’hi ) is an unbiased estimator of the parameter 1/()?); where % s the sample fuzzy mean
value % er X;.
Proof. We have
1 n 1 1
ElS)] = — z;/o /_1E[ng(t) — S¢ (1)]*dtda
i=

el

o

33 [ Bk (0= B, (0) + BSx,, () - S5_(0)dtd
i=1 -1

_ ni >3 [ (X)) + o 1 VarlSg (O)dtda —2 [ [, Cou(Sg, (1), Sg._(1))dtdar |

= v(X).
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Lemma 3.4 Consider Lemma 8.3. For given crisp value S2
nhﬁngo 5% = y(X).
Proof. It is a special condition of strong law of large numbers.
Lemma 3.5 If Var(X) be a variance of the crisp random variable X, then we have

v(X)=Var(X).

Proof. According to Example 2.1 it is obvious.

3.1 Simple Hypothesis Against the Two-Sided Hypothesis

Suppose that we have canonical fuzzy data x = (z1, Ta, ..., T, ). We want to test the following fuzzy hypotheses

Hy: the mean of population is approximately 6

Versus _

Hy: the mean of population is not approrimately 0o,
and B

Hy: the wariance of population is approximately 6
Versus

Eﬁ: the wariance of population is not approximately 0.

We obtain the a—cuts of the so-called fuzzy test statistics for mean and variance

<L U JU L
Xa 0004 Xa — 9004

T §a eint 50& _
Sn o [ Sn ’ Sn ]

To =

Vn vn Vn
and
(n—-1)S2 (n—1)8% (n—1)S2
S = 7 — B

respectively, where
x=1or, 1
(2) Su = /7y Y, B35,
We use the fuzzy test statistics to provide an approach for testing above fuzzy hypotheses based on the
following assumptions (see Figure 4).

e ASSUMPTIONS for mean(or variance)

1. Cy is the total area under T (or ¥2).
2. (7 and Cy are the areas according to Figure 4.
3. Cr=0C1 + C,.
t7 is the 100(1 — ~) percentile of the T distribution with n — 1 degree of freedom and x? is the 100(1 — )
percentile of the Chi — Square distribution with n — 1 degree of freedom.

e DECISION RULE

o If g—? < 27, then we accept ﬁo.

o If g—? > 27, then we reject Hy.
We choose a small probability v (significant level), like 0.01, 0.05 or 0.1, and observe g—i as an evident

against H, according to the following conventions:

C ~
“E <01 extrematy evident against Hy,
T
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pa T

o

P fl—}’

Figure 4: T (or X?) in testing fuzzy simple hypothesis versus fuzzy two-sided hypothesis

Cr
Cr
Cr
Cr

< 0.05 appealability evident against fNIh

< 0.05 strong evident against I;fl.

Example 2: Suppose that we have taken a fuzzy random sample of size n = 9 from a population and we
observed the following triangular fuzzy data:

Table 1: Fuzzy random sample of size n = 9 from a population

N | Observation | N | Observation | N | Observation
1 (32,35,40) | 4 | (60,63,63) 7 | (70,73,75)
2 | (80,82,82) | 5 | (41,45,47) | 8 | (54,56,59)
3| (60,60,60) | 6 | (93,95,96) | 9 | (34,35,36)

Now suppose that we want to test the following fuzzy hypotheses

Hy : mean is (69,70,72)
Hy :mean is not (69,70,72).

Here, H, suggests that mean is approximately 70, and H, suggests that mean is away from 70.
For significance level v = 0.05 (t177 = —t!77 = 1.86), we have T, = [-2.01 + 0.63a, —1 — 0.38q],

Cr=C14+Cy =0.0184+0 = 0.018, Cr = 0.51. Since g—g = 0.04 < 0.1, thus we certainly accept Hy (see
Figure 5).

Example 3: Consider Table 1. Now suppose that we want to test the following fuzzy hypotheses

Hy : variance is (1000, 1200, 1500)
H, : variance is mnot (1000, 1200, 1500).

For significance level v = 0.05 (x35 = 2.73 and x% g5 = 15.51), we have Y2 = [{zo02%2—, 1033&‘12‘3()& ,

Cr =0.26 +0=0.26, Cr = 0.58. Since g—? =0.41 > 0.1, thus we reject Hy (see Figure 6).

3.2 Right One-Sided Hypothesis Against the Left One-Sided Hypothesis
We want to test the fuzzy null hypotheses

I;TO: the mean (or variance) of population is essentially larger than 6
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Az T
1
&, — 0.018
r
-2.01 -1.86 -1.38 -1
Figure 5: Hy versus H; for mean
VA 3
Al oo
<,
Lo

Figure 6: Hy versus H; for variance

versus
}NI1: the mean (or variance) of population is not essentially larger than 6.

We obtain the a—cuts of fuzzy test statistics T (or X?) and use the fuzzy test statistics to provide an approach
for testing above fuzzy hypotheses, based on the following assumptions (see Figure 7).

¢ ASSUMPTIONS for mean (or variance)

1. Cr is the total area under T (or X2).
2. (1 is the area according to Figure 7.
3. CR = Cl-

e DECISION RULE for mean (or variance)

o If Cr/Cr < =, then we accept Hy.
o If Cr/Cr >+, then we reject Hy.

Example 4: Consider Table 1. Now suppose that we want to test the following fuzzy hypotheses

{f[g: the mean 1is essentially larger than 87

IA{H: the mean 1is not essentially larger than 87

where the fuzzy hypothesis H has the following membership function

0 y<85
pa, ) =q 5o 85<y <87
1 y > 87.
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Figure 7: T (or X?) in testing fuzzy right one-sided hypothesis against the left one-sided hypothesis

For significance level 2y = 0.05 (£27 = —1.86), we have T, = [~3.2240.72, —1.7—0.8a], Cr = Cy = 0.69,
Cp = 0.76. Since Cr/Cr = 0.91 > 0.05, thus we reject Hy. Similarly, we can use the above method for
testing the following hypotheses

fIO: the wvariance of population is essentially larger than 6

versus
Hy : the wariance of population is not essentially larger than 6.

According to Figure 8, the problem of left one-sided hypothesis against the right one-sided hypothesis for
mean and variance is similar.

—

7

e

Figure 8: T (or X2) in testing fuzzy left one-sided hypothesis against the right one-sided hypothesis

)

t27

4 Testing Hypotheses for Two-Sample

In this section we describe a method to testing hypotheses for two-sample of fuzzy data.

Let x = (21,22, ....,x,) and y = (y1,¥, ..., Ym) are two crisp random sample from normal populations. In
non-fuzzy form, if we are not willing to assume that the variances in the two populations are equal and wanted
to test only whether their means are equal, we could use the two-sample Student's T — distribution with

~2 ~2
G+ %
52 52
L (G
degrees of freedom as follows: o
T(xy) = ——
6% 1 o
"t

where 62 = L3 | (z; —X)? and 6%, = -3 (v, — ¥)%
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If we are willing to assume that the variances in the two populations are equal, and wanted to test whether
their means are equal, we could use the two-sample Student’s T' — distribution with with n +m — 2 degrees
of freedom. It uses the pooled estimate of standard error . We could base the test on

T<Xa Y> = x

y
Sp +

ﬁ
3=

where

5, — \/(n —1)62 + (m — 1)62,

n+m-—2

If we want to test the whether their variances are equal, under the null hypothesis (Hj : variances in the
two populations are equal), we could use the Fisher's F — distribution with n —1 and m — 1 degrees of
freedom as follows,

Lemma 4.1 Let X = ()?1,)?2, ,)A(:n) and Y = (}71,372,...,}7n) are two fuzzy random sample. The pooled
variance value S} = ((n —1)S% 4+ (m —1)S2)/(n +m — 2) is an unbiased estimator of the parameter v(X);
where v(X) = v(Y).

Let we have fuzzy random data X = (21, Za, ..., T,,) and ¥ = (Y1, Y2, -, Um) from possibly different probability

distribution, and we wish to test the null hypothesis

Hp : the mean (or variance) of first population is equal to the mean (or variance) of second population.

Hi : the mean (or variance) of first population is not equal to the mean (or variance) of second population.
Without any loss generation, let the variance of first population is equal to the variance of second popu-

lation. We obtain the a—cuts of the fuzzy test statistics of means as follows

e ia @int ?a _ ? g yg

To = = ;
S/ + 5 SV%% i g

and crisp test statistics of variances is

(n—1)S3

F=tmsy,

where
2 _ (n=1)Sa+(m-1)S3
(2) SP - n+m—2 )

(8) 51 = /315 iy B3(F0%) and S = /515 T, 625 ).

We use the fuzzy test statistics to provide an approach to testing above fuzzy hypotheses based on Figure

4.
e DECISION RULE

e For mean, if Cr/Cr < 27, then we accept Ho.
e For mean, if Cr/Cr > 2v, then we reject Hp.

e For variance, if F,] ,,, | < F < E- e y then we accept Hy.

e For variance, if F;/ ;> For F > )l m—1, then we reject Hy, where F | is the 100(1 — )
percentile of the Flbher’s F distribution Wlth n — 1 and m — 1 degrees of freedom.

Example 5: Suppose that we have taken two fuzzy random samples of size n = 9 and m = 7 from two
populations and we observed the following triangular fuzzy data:
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Table 2: Fuzzy random sample of size n = 9 and m = 7 from two populations

The first population | The second population
(51, 52,54) (92,94, 95)
(101,104, 107) (197,197,199)
(146,146, 146) (15,16, 17)
(80,10, 11) (36,38, 40)
(49,50, 51) (99,99, 99)
(29,31, 32) (140, 141,143)
(39, 40, 40) (23,23,23)
(25,27,28)
(46,46, 46)

Let we want to test
Hy : the mean of first population is equal to the mean of second population.

Hj : the mean of first population is not equal to the mean of second population.
For significance level v = 0.05, we have T, = [-1.92 4+ 0.7a, —0.34 — 0.88¢], Cr = C; + C2 = 04 0.04 = 0.04,
Cr = 0.79. Since CR = 0.051 < 0.1, thus we accept Hj certainly.

Furthermore, we " have FQ§° =0.28 < F =0.53 < Fg¢® = 4.15, thus we accept Hy certainly.

5 A Comparison Study

In this section, we want to compare our method with Arefi et al.’s [5] and Wu's [30] approaches.
e Comparison with Arefi et al.’s approach

Arefi et al.’s studied the problem of testing fuzzy hypotheses based on the fuzzy test statistic, when the
available data are fuzzy. They first introduced a method for obtaining a point estimation based on fuzzy data,
called the fuzzy point estimation. Then, the fuzzy test statistic could be defined based on the ae—cuts of the
fuzzy point estimation and the a—cuts of the fuzzy null hypothesis. Finally, they introduced a credit level
to evaluate the fuzzy hypotheses of interest. In the following, we list some comments between our proposed
approach and Arefi et al.’s approach.

1. We extended the L;—metric based on the a—cuts of fuzzy data for constructing the fuzzy test statistic,
but Arefi et al. used the interval arithmetic between the a—cuts of fuzzy hypotheses and fuzzy data for
obtaining the fuzzy test statistic.

2. We introduce a nonparametric statistic for testing statistical hypotheses, but Arefi et al.’s method is
constructed based on a parametric statistic.

e Comparison with Wws approach

Wu presented an approach for testing the fuzzy mean based on fuzzy data. He introduced a notation for
testing fuzzy hypotheses as follows:

Z Z;, — core(fig) =

where xL = inf{t : 7;(t) > a} and 2¥ = sup{t : Z;(t) > a}, and core(fig) is the center of the fuzzy number.

n
E ~U
Tjq — COTE MO)

=1

3\H

Then, he proposed to accept Hp in the a-cut sense if z{ < zl_gﬁ, and to accept H; in the a-cut sense if
xi > 21,5%.
Some advantages of our method can be listed as follows:

1. We introduce a nonparametric fuzzy test statistic based on the a—cuts of the fuzzy hypothesis and fuzzy
data, but Wu used the center of the fuzzy null hypotheses. Hence, with different withes and similar
centers, the our method has the different results as compared with Ww's method.

2. For testing fuzzy hypotheses, we use all the a—cuts of fuzzy data for obtaining the fuzzy test statistic,
but Wu only used the lower and upper of the cuts of fuzzy data.
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6 Conclusions

In this paper, we proposed a technique in order to get testing hypotheses with one-sample or two-sample fuzzy
observations based on Ls—metric. As for this paper, it sounds that the introduced method is more simple
and convenient than Buckley and Taheri. This metric is very realistic because

e which implies very good statistical properties in connection with variance;
e it involves distances between extreme points;
e it is distance with convenient statistical features.

Extension of the proposed method in order to hypotheses testing for the fuzzy coefficient of linear models
such as regression models, and design of experiment is a potential area for the future work. Furthermore, for
the hypotheses testing of the fuzzy hypothesis, we can apply methods introduced by Akbari et. al. [I] and
Akbari and Rezaei [4].
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