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Abstract 

 

In this paper, we will investigate the uncertainty statistics from the aspects of the potential scope, the spirit or soul, 
the starting ground, the foundations of uncertainty statistics, etc. We also, explore the non-parametric and parametric 
estimation of an empirical uncertainty distribution. Furthermore, we explore the concept of uncertainty statistics and 
the distribution, particularly, uncertainty 2  statistic and distribution, uncertainty T statistic and distribution and 
uncertainty F statistic and distribution in order to break into uncertainty hypothesis testing and estimation doctrine. 
The argument style of this paper is by comparison to the classical statistics via intensive literature search. 
© 2012 World Academic Press, UK. All rights reserved. 

Keywords: classical statistics, randomness study, uncertain measure, uncertainty data, uncertainty empirical 
distribution, uncertainty statistic, uncertainty chi-square distribution, uncertainty T distribution, uncertainty F 
distribution  

 
1 Introduction 
 
As a mathematical branch, Liu’s uncertainty theory includes the uncertainty calculus, uncertainty processes, 
uncertainty logic and inference and has gained wide applications already, for example, uncertainty programming in 
system reliability, equipment allocation, and uncertainty finance, etc. For details, see [11, 12, 13, 14, 15, 16, 17]. The 
current research focus in uncertainty theory is the uncertainty statistics.  

Ancient Chinese educationists Confucius said, it is the best way to learn new knowledge by reviewing the old 
ones. Liu’s axiomatic uncertain theory [16] is new. Particularly, the  -sub-addivitivity axiom brings an intrinsic 
feature into uncertain measure and uncertainty distribution theory [18]. Therefore, in order to avoid mixing 
unconsciously with the probabilistic thinking into the developments of uncertainty statistics and sharply recognize the 
new features of the uncertainty statistics, we will investigate the concepts and their connotations in the uncertainty 
statistics in comparative manner with its existing probabilistic counterpart, statistics, throughout this paper.  

The statistics is the subject with respect to how to collect, organize, and interpret data, which commonly take 
numerical form but other forms such as symbols, qualitative, and relationships between entities may be possible [5, 
24, 25, 26, 27, 28, 29]. 

General speaking, the contents of the statistics are abstractions of the real world. The abstraction layers in 
statistics are defined with clarity: population, sampling, data, data processing, presentation and inferences and 
drawing conclusions on the ground of the sampling data. It is evident that data are the starting ground of statistics and 
the whole data collection and analysis has to be guided by probability measure. 

Measure defines an event measuring grade system for abstracting a conceptual uncertainty environment. Without 
measure specification, there is no scientific ground or consensus language to discuss any individual form of 
uncertainty. In other words, a measure specification is a prerequisite for exploring any form of uncertainty and 
collecting and analyzing information from real world with mathematical rigor. 

                                                      
* Corresponding author. Email: renkuan.guo@gmail.com (R. Guo).   



 R. Guo et al.: Uncertainty Statistics 

 

164 

Probability measure, proposed by Kolmogorov [10], is a “completely additive measure”, i.e., the measure of 
union of disjoint events is just the sum of the individual measures. The statistics cannot make sense without 
probability measure [30, 31, 32]. 

Without any doubts, the future construction of an uncertainty statistics must solidly build on the uncertain 
measure foundation with normality, monotonicity, self-duality, and  -sub-addivitivity and product measure five 
axioms established by Liu [16]. One advantage of the uncertain measure is the sound consistency with the law of 
contradiction and law of excluded middle. Table 1 offers a comparison between the two measure systems. 
 

Table 1: Axiomatic probability measure and uncertain measure 

 Probability Measure Uncertain Measure 

Axioms 

Axiom 1: (Normality)   1P   . Axiom 1: (Normality)   1  . 

Axiom 2: (Boundedness) P  is 

bounded by 0 and 1 , i.e., for any 
event A ,  0 1P A  . 

Axiom 2: (Monotonicity)  is non-decreasing, i.e., whenever A B , 
   A B . 

 
Axiom 3: (Self-Duality)   is self-dual, i.e., for any 

 A A ,     1cA A  . 

Axiom 3: ( - additivity)  
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Axiom 5: (Product Measure Axiom) Let 
k be nonempty sets on which the 

uncertainty measures k   are defined, 1,2, ,k d , respectively. 
Then the product measure  on the product  -algebra  A , where 

1 2 d     , i.e.,        1 2 d       A A A A , is 
an uncertain measure. In other words, for any measurable rectangle 

1 2 d      , where  ,  1,2, ,k k k d   A ,  
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The structure of the remaining sections is stated as follows. Section II will be used to discuss the overall picture 

on classical statistics. In Section III, we will discuss the potential scope of the uncertainty statistics in order to guide 
the future developments of this new mathematical branch. Section IV we discuss the estimation problem of empirical 
uncertainty distribution. In the Section V we investigate the quadratic form related three uncertainty statistics, i.e., 2 , 
T and F and derive their uncertainty distributions. Section VI concludes this paper. 
 
2 The Soul of Statistics 
 
The classical statistics is a collection of mathematical developments and methodologies. Statistics is a mathematical 
branch but it is different from axiomatic foundational mathematical branch because statistics is application-oriented. 
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Whenever and wherever a real world problem appears in front of scientific community, it is always possible to 
develop an appropriate statistical methodology to associate with it.  

However, it must be emphasized that statistics is not a subject without soul or spirit. As matter of fact in its 
hundreds’ developments, it has gradually formed its soul or spirit. Statistical spirit guided thinking is referred to 
statistical thinking. Guided by statistical thinking, we can grasp the spine of the skeleton of the statistics and 
consequently to address the practical real world problems. Without soul, it is impossible to solidly understand the 
nature of statistics. Figure 1 gives an overview of shell or scope of statistics. 

 

 

Figure 1: Shell or scope of classical statistics 

 
From the scope of statistics, it is immediate to conclude that "statistics deals with techniques for collecting, 

analyzing, and drawing conclusions from data” [27]. To gain further inside of statistics, i.e., the fundamental spirit of 
statistics let further dig out the details. 

 

2.1 The Population 
 

The so-called population is in general referred to the collection of all the elements pertaining to a given feature or 
property. 
Definition 2.1 Population in statistics is referred to the distribution (function) of a random variable X , denoted by 

XF . 
In elemental statistics, it often is referred to a random variable or equivalently, the probability distribution 

function of the random variable. Examining the roles played by population, it is the original or primary object under 
statistical investigation. The aim to investigate a population is to reveal its intrinsic feature, the probability 
distribution, or some statistical relation (or mechanism) governing the population.  

Probability distribution fully characterizes a population. In other words, the full knowledge is contained in the 
distribution, or some of its equivalent functions, for example, moment generating function, characteristic function, 
and etc. In summary, the population is the working focus throughout the statistics. 
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2.2 The Data 

 
Data is the primary object of statistics, which gains information from data. Without data, statisticians have no 
working base. It is true that data comes with noise, which is assumed to be random in classical statistics and thus 
relies probability theory [25]. 
Definition 2.2 The data is the collection of the qualitative or quantitative attributes, recorded as numbers, or symbols, 
or characters, or images, or statements of a random variable or set of random variables. 

It is true that a population is the primary research object. However, it is seldom to scrutiny a population in one 
by one manner. The statistical methodology is to investigate a small group of the elements selected from the 
population and thus infer the relevant characteristic of the population. Intuitively speaking, such “a small group of the 
elements” is called as a data set, which should be a representative of the population and thus reveal the unbiased, 
efficient, and intrinsic feature(s) of the population.  

Data is not direct copy of the real world but an abstraction. Inevitably, the abstraction level determines the data 
level. “The terms information and knowledge are frequently used for overlapping concepts”. “Data is the lowest level 
of abstraction, information is the next level, and finally, knowledge is the highest level among all three”. Figure 2 
offers a general view on generating and data levels [25, 26, 27]. 

 

 
Figure 2: Data generation and abstraction level 

 
The data collection or selection of the elements is critical. What collection scheme pursued by statisticians is that 

the resulted dada can be direct analyzed and the inference on the population without any bias. Such a scheme is called 
as the data resulted from “randomness study”. 
Definition 2.3 Randomness is a term referred to a characteristic by which no outcomes with describable pattern can 
be generated. The occurrence of each outcome is governed by a probability law. 

 

2.3 The Statistical Data Analysis 
 

Once a data set is generated, the next task is to gain the inside information from the data in order to extract knowledge 
on the population. Such a process is referred to the statistical data analysis. Without the statistical thinking the 
processing is aimless and no spirit. In scope, statistical data analysis can be divided into sub-stages: exploratory data 
analysis (EDA) and confirmatory data analysis (CDA). 

 

2.3.1 The Exploratory Data Analysis 

 
Once a data set is generated, the next task is to gain the information from the data in order to extract knowledge on 
the population, which is called as the exploratory data analysis. Turkey [28, 29] sharply pointed out that the 
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exploratory data analysis (EDA) of statistics “is an approach to analyzing data for the purpose of formulating 
hypotheses worth testing, complementing the tools of conventional statistics for testing hypotheses. 

 

2.3.2 The Confirmatory Data Analysis 

 
Confirmatory Data Analysis (CDA), the term used for the set of ideas about hypothesis testing, p-values, confidence 
intervals etc. which formed the key tools in the arsenal of practicing statisticians at the time. In short, the two parts of 
statistics: EDA and CDA are all regarded hypothesis testing as the final destination [5, 24, 27]. 

Turkey [28, 29] initially suggested the distinction between exploratory and confirmatory data analysis. The first 
consisting in “finding patterns” in data, the second one in attempting to validate them, making sure that the perceived 
association are “real” and not due to random chance. 
  

 
Figure 3: Statistical data analysis and scope of statistics 

 
2.4 The Descriptive Statistics 

 
Descriptive statistics serves double-fold purpose: (1) get organized information on the sample data in terms of 
statistical spirit; (2) get some indication of the population. 

Descriptive statistics covers the central tendency and the dispersion about the central tendency of a set of  data, 
which  reveals the key summary of the data set quantitatively without probability measure but paves a way toward the 
inferential statements about the population, see [27]. 

Typically, the central tendency utilizes mean or median calculated from the data set, while the dispersion is 
presented by the standard error or inter-quantile.  Today, standard statistical software offers descriptive statistical 
summary table, which lists the mean, the median, the mode, standard deviation, inter-quantile, skewness and kurtosis 
etc. of the data under investigation. Figure 4 gives the basics of the descriptive statics. 
 

 
Figure 4: Descriptive statistics 

 

2.5 The Inferential Statistics 
 

Statistical inference is a subfield in statistics including statistical estimation, hypothesis testing and confidence 
interval. Typically, some statements on the population appeared as propositions, which reflect some relational 
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functions or some mathematical characteristics, such as the expectation, variance, or linear correlations etc. will be 
treated as the evidence to support or deny the population related statements. Figure 5 summarizes the scope of 
inferential statistics. 
 

 
Figure 5: Inferential statistics (including scope of CDA) 

 

 
Figure 6: Statistical inferences 

 
Statistical inference is classified into two important schools: the Frequentist inference school and the Bayesian 

inference school. Figure 6 shows the classification. The Frequentist inference school emphasizes the data drawn from 
the population is the only "source" to perform the inference on the population via the likelihood function, while the 
Bayesian inference stresses the modeler's experiences on the population, stated as a prior distribution as well as the 
data evidence stated as likelihood function together to contribute toward the inference on the population [1, 2, 4, 5]. It 
is worthwhile to mention that Bayesian inference is computationally intensive and becomes one of the frontier in 
modern statistics. 

 
2.6 The Statistical Proposition and Statistic 

 
At the inferential stage, the statistical proposition is the target or the focus. 
Definition 2.4 A statistical proposition is a statistical statement on the population under investigation or a statement 
on the statistical relation rooted in the population.    

In the definition above, we use adjective “statistical” repeatedly because a “statistical statement” or “statistical 
relation” is typically describing via statistical hypothesis testing or modeling component. Particularly, a statistic is 
specified to accurately express the statistical connotation of a “statistical proposition”. 
Definition 2.5 A statistic  t x is a measurable mapping    :t X TX,B T,B . 
Remark 2.6 A statistic is typically represented by a value of sample function. However, we should be fully aware 
that in mathematical statistics, statistic is a function of certain observations (i.e., a random sample typically) from a 
population. Therefore, a statistic is supposed to be described by a value of function calculated by the given sample 
and the sampling distribution of this function.  
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An observational value, in front of the eyes of statisticians, never is an isolated real number form observed data. 
It is a representative of the observed population. In mathematical statistics, a population is the distribution function of 
a random variable. Therefore, if denote a value in a sample as x  and population as the distribution 

XF of a random 
variable X , then x is a realization or a representative of 

XF . A random sample, denoted by  1 2, , , nx x x , where 

ix is called the thi sample value or sampling point, 1,2, ,i n , number n is called the size of a sample. Obviously, a 
sample  1 2, , , nx x x  is not just a group of real numbers, but the sample  1 2, , , nx x x is a series of n realizations or 

representatives of population
XF , thus a joint distribution 

1 2, , , nX X XF underlying the random sample  1 2, , , nX X X .  

A statistic, as sample function, denote by  1 2, , , ng x x x , is a sample function value and without any doubt, a 

distribution 
 1 2, , , ng X X X

F is standing behind sample function value  1 2, , , ng x x x . In other words, whenever a 

statistic appears, its sampling distribution must be available (or derivable) to characterize the specific statistic value 
under investigation. Without the sampling distribution of a statistic development, there is no information to evaluate 
the efficiency of the statistic interested. 

 

2.7 The Mathematical Statistics 
 
Mathematical statistics is the subfield or collection of all relevant mathematical theories for supporting statistical 
inferences, for example, linear models, probability distributions, and etc. [4, 5, 24, 25]. 

The scope of mathematical statistics includes (1) distributional foundation; (2) point estimation theory; (3) 
hypothesis testing theory; (4) interval estimation theory; (5) linear models and generalized models; (6) non-parametric 
statistical theory. Figure 7 describes the scope of mathematical statistics and Figure 8 offers the modeling level 
impacts to mathematical statistics. 

 
Figure 7: Scope of mathematical statistics 

 
Statisticians distinguish between three levels of modeling assumptions. 

 
Figure 8: Level of statistical modeling assumptions 

 
As the convention of the mathematical statistics, the connotation of statistic requires a statistic must be estimable 

and a sampling distribution at least an asymptotic distribution must available or derivable. In other words, the basic 
requirement of “statistic” is that the value of statistic is calculable. However, calculable or estimable quantity 
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calculated from a group of observations is in no way automatically stands for a “statistic”. For example, in 
engineering practices, assuming that we have three points  , ,  1,2,3,i ix y i   can we get a linear relationship between 
y and x ? The answer is yes. Or even further, we can ask if we can fit a quadratic curve to pass the three points 

because engineers see the least-square criterion fitted straight line only passes the points in between, the answer is yes, 
in terms of spline function we can calculate and plot the quadratic curve. It is often seen some commercial software to 
do the slope calculation and provide the plot to show what the fitted straight line looks. Do the calculable straight line 
(interception and slope are estimable) or the spline calculated quadratic curve (three coefficients: (a,b,c) in the fitted 
spline-quadratic curve, 2y ax bx c   ) brings you into statistics? No, not at all! Using least-square criterion or other 
optimization criterion, for example, minimax criterion does not warrant a statistic to be obtained. 

When talking statistic in probabilistic statistics, a statistic does not only require the calculated value of statistic 
but also require the sampling distribution as a part of statistic [5], at least the estimated variance of the statistic. We 
can understand the connotation is just containing these two aspects, which in a sense is guiding rule for facilitating a 
statistic. As a matter of fact, sampling is an integral part underlying the modern statistics [26]. 

The statistical decision theory proposed by Wald [5, 24], is an important doctrine, which is trying to unify the 
statistical estimation and hypothesis testing etc. into one theory. Although statistical decision theory is still a shell, 
however, the spirit of the statistical decision theory has merged into many sub-branches of statistical science. 
 
3 The Potential Scope of Uncertainty Statistics 

 
The uncertainty statistics may be defined as a subject of investigating the uncertainty data collection, analyzing the 
observations, and drawing conclusion from the observational data based on the uncertain measure theoretic 
foundation. It is obvious that the definition of uncertainty statistics is similar to the probabilistic counterpart – 
statistics. However, there is fundamental difference between the classical statistics and the uncertainty statistics to be 
developed. Figure 9 offers a potential scope of the uncertainty statistics. 

 
Figure 9: Potential scope of the uncertainty statistics 

 

3.1 The Soul of Uncertainty Statistics 
 
Parallel to statistics, the uncertainty statistics should be inevitably set up the uncertainty hypothesis testing as the 
cornerstone (uncertainty statistical proposition), i.e., the “soul” or the “nerve” of the uncertainty statistics is to carry 
on hypothesis testing on the uncertainty population based on observational data.  
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Whenever we talk about inference methodology, i.e., hypothesis testing, it does not mean a verification 
methodology but does mean the inference on population from the representative information, i.e., observational data. 
Verification of claim or statement is an important task and an integrated part of mathematical science, physical 
science, chemical science or other scientific branches. It is well known fact that a mathematical conjecture needs a 
formal rigorous proof to be a mathematical theorem. Any individual counter example to a mathematical theorem can 
lead to the full rejection of the theorem. The verification methodology is a deterministic one in nature. An uncertainty 
“observation” provided by a scientific experimentation or an expert’s experimentation may play a role in verifying the 
claim or the statement in certain sense. However, the uncertainty character of the random sample or uncertainty 
observation serves the intrinsic role to inference on the probability distribution or the uncertainty distribution 
respectively, not for the verification of a deterministic claim or a guess purpose. Table 2 gives a comparison between 
two statistics. 

Table 2: Concept comparisons between statistics and uncertainty statistics 

Concept Probabilistic Statistics Uncertainty Statistics 

Measure space Probability space  , ,P F  Uncertainty space   , , A  

Population Probability distribution of a random 
variable

XF  
Uncertainty distribution  of an uncertainty 
variable  

Collection of data 
on  population 

Sampling data by a probability 
measure, P  

Uncertainty data–expert’s experimentation, 
observation data, i.e., data at knowledge level. 

Data A realization from the population, 
 1 2, , , nx x x  

Knowledge data sequence  1 2, , , nz z z  in terms of 
expert’s opinion of the uncertainty population 

Feature of data Observable, sampling repeatedly, and 
objectively 

Subjective judgment or phenomenological data in 
the form of knowledge 

Inference 
Inference on probability distribution 

XF  from a sample  1 2, , , nx x x  
Inference on uncertainty distribution  from an 
knowledge data  1 2, , , nz z z  

 
Now, let us illustrate the similarity and dissimilarity between the two statistics and the related concepts by the 

following example. 
Example 3.1: To address the problem “the distance from Beijing to Tianjin”, there are three approaches available: (1) 
Random sampling; (2) Experts’ evaluations; (3) verification. Firstly, assuming that “the distance from Beijing to 
Tianjin” is a population, i.e., normal distribution, denoted by

XF  of random quantity–distance, denoted as 

 2,
d

X N   . This population by can be constituted of all the measurements by every possible devices available, 

from ruler, electronic to laser instruments. Form the population     XF x x    , we take a random sample of 

5 points  105,99,101,95,87 (unit: KM) from satellite remote sensing image measurements. Now, we can answer the 
claim “the distance from Beijing to Tianjin is about 100 Km”. For justification of this claim, a hypothesis testing: 

0: =100H   may be perused. The test statistic is    ˆ 97.4 100 3.0594 0.8498xt x         with a critical points 
2.776 or 2.776 at 5% significant level. Therefore, we say, at 5 percent significant level, there is no reason to reject 

the null hypothesis 0: =100H  . Consequently, we can confirm the claim “the distance from Beijing to Tianjin is 
about 100 Km” statistically. Secondly, assuming that “the distance from Beijing to Tianjin” is an uncertainty 
population, which is constituted of all experts’ opinion on “the distance from Beijing to Tianjin”. This population, i.e., 
Liu’s normal   of an normal uncertainty variable with standard deviation 0 3.0.   Assuming further an 

uncertainty observational data of size 5 is taken from the experts’ distance population  98,99,100,102,101 . From the 

uncertainty sample, bear the hypothesized uncertainty distribution    0( )=1 1 exp - 100 3z z     . We can 

construct an uncertainty chi-square statistic 
    

252
5 1

100 3.0 11.1111ii
z


   , while the uncertainty statistic 

 
 2

5
1.256667 0.71286


  does indicate that the uncertainty observational evidence rejects the hypothesized 
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population. Thirdly, for verifying the claim:  “the distance from Beijing to Tianjin is about 100 Km”. We either take a 
device measurement or an expert’s opinion to get a number, say, 98.8 Km.  Once the distance 98.8 Km is available, 
the verification task is done. We can accept the claim, since the relative error is merely 0.012 .  

The uncertainty statistical inference is just to utilize the information contained in the observational data -
knowledge to inference on the population as accurate as possible. In other words, uncertainty statistical inference is 
the spine or nerve system throughout the uncertainty statistics. Due to the fact that an uncertainty observational data 
do not contain full information of the population, the uncertainty statistical inference can not be 100% precise. 

 
3.2 Uncertainty Population 

 
As the starting or grounding point of uncertainty statistics, it is necessary to address is the concept of uncertainty 
population. The so-called “population” is just the distribution of an uncertainty variable, denoted by  , while the 
“observation” is the realization or the representative (denoted by z ) of the uncertainty variable,  .  The uncertainty 
distribution  is unknown or partially unknown. If  is fully known, there is no need to carry on any inference at 
the standing point of the uncertainty statistics. The uncertainty observational data-knowledge reveals some 
information with respect to the uncertainty population in certain degree. As a matter of fact, an uncertainty 
observational data–knowledge is the starting point or ground for inference on the uncertainty population, where the 
knowledge comes from.  
Definition 3.2 An uncertainty population in uncertainty statistics is the uncertainty distribution  of an uncertainty 
variable .  
Definition 3.3 An uncertain observational data is referred to the knowledge level data from observing the uncertainty 
population in terms of characteristic aspect, recording the observed feature in real value format, and collecting these 
values into knowledge data set.  
Remark 3.4 Different from sampling data in statistics, there is no uncertainty sampling data term being defined and 
thus available in the uncertainty statistics although an uncertainty population in uncertainty statistics is defined 
parallel to the probabilistic population in statistics. 

 
3.3 Uncertainty Data-Knowledge 

 
Liu [16] pointed out, Uncertainty statistics is a group of “methodology for collecting and interpreting expert’s 
experimental data by uncertainty theory”.   

Conventional statistical experimentation in its own standing is a structured procedure guided by statistical theory 
and methodology to generate experimental outcomes optimally for pursuing certain scientific truth.  

In contrast, the connotation of “expert’s experimental data by uncertainty theory” deserves an exploration. In 
certain degree, Liu’s uncertainty statistics intends to concentrate on expert’s opinions and therefore he regards the 
expert’s opinions as the basic data resources for uncertainty statistics.  

On the other hand, just as Liu emphasized in his book [16] uncertainty theory is an abstraction of human 
uncertainty and thus can guide the modeling efforts of human behavior and activities. Human is not an isolated living 
being, therefore human uncertainty comes from its basic individual life, social life, economic life, the interactions 
between human and its living environments, the Earth, the Solar System, and the Universal, etc. Just as the fields to 
which Liu’s uncertainty theory is applied are far beyond the scale of expert’s opinion.  
Remark 3.5 Parallel to revelation of the connotation of randomness. Impreciseness occupies an fundamental position 
in uncertainty statistics. Expert's knowledge is inevitably imprecise and imperfect.  Impreciseness is referred to a term 
with an intrinsic property governed by an uncertain measure or an uncertainty distribution for each of the actual or 
hypothetical members of an uncertainty population (i.e., collection of expert's knowledge). An uncertainty process is 
a repeating process whose outcomes follow no describable deterministic pattern, but follow an uncertainty 
distribution, such that the uncertain measure of the occurrence of each outcome can be only approximated or 
calculated. 
Definition 3.6 Impreciseness is an intrinsic property of a variable or an expert's knowledge being specified by an 
uncertainty measure. 
Remark 3.7 Impreciseness exists in engineering, business and research practices due to measurement imperfections, 
or due to more fundamental reasons, such as insufficient available information, ... , or due to a linguistic nature, 
because it is an unarguable fact that impreciseness exists intrinsically in expert’s knowledge on the real world. 
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Definition 3.8 Let ξ be a uncertainty quantity of impreciseness on an uncertainty measure space   , , A . The 

uncertainty distribution of ξ is     |x x       .  
Remark 3.9 An imprecise variable ξ is an uncertainty variable and thus is a measurable mapping, 
i.e., : ,     . An observation of an imprecise variable is a real number, (or more broadly, a symbol, or an 
interval, or a real-valued vector, a statement, etc), which is a representative of the population or equivalently of an 
uncertainty distribution     under a given scheme comprising set and  -algebra. The single value of a variable 
with impreciseness should not be understood as an isolated real number rather an interval or a set. 

In conclusion, data in uncertainty statistics should include both statistical knowledge, which are observable 
objectively and repeatedly, and expert’s experimental data, which may be subjective, even phenomenological, as long 
as the data collection, interpretation, and inference on the population are all with uncertainty statistical spirit. 

  
3.4 Uncertainty Statistic 

 
In classical statistics, the elementary function of sampling data is called a statistic, which implies two inter-related 
aspects: (1) a summary of sample data into a characteristic value; and (2) the distribution governs the statistic. 

Therefore, when we engage the developments of uncertainty statistics, we must keep the soul or spirit of 
statistics, an uncertainty statistic must have two aspects: value of the uncertainty statistic and the uncertainty 

distribution of the uncertainty statistic. Any part missing will prevent us from approaching the truth underlying the 
uncertainty observational data and therefore alienate us away from conventional statistics communities.  
Definition 3.10 An uncertainty statistic  t z is a measurable mapping    :t Z TZ,B T,B , where Z is the real 

valued set of experts’ knowledge, ZB is the Borel  -algebra of Z , T is the real valued set of the function t, and 

TB is the Borel  -algebra of T . 
Remark 3.11 The measurability of an uncertainty statistic warrants the two intrinsic sides of it: estimable and 
distribution extractability. Such a feature of an uncertainty statistic should be a lifeline throughout the whole 
uncertainty statistics. Table 3 gives a comparison between the two statistics. 

 
Table 3: Statistic and uncertainty statistic 

Item Probabilistic statistic Uncertainty statistic 

statistic Statistic: A measurable mapping 
    :t X TX,B T,B -  t x  

Uncertainty statistic: A measurable mapping  
   :t Z TZ,B T,B -  t z  

Connotation of 
a statistic 

(Sample) value of the statistic value of an uncertain statistic 

(Sampling) probability distribution of the 
statistic 

The uncertainty distribution of the uncertainty 
statistic 

Inferential role 
Inference on probability distribution 

XF  
from a sample  1 2, , , nx x x  in terms of a 
statistic,  t x  

Inference on uncertainty distribution  from a 
observational data  1 2, , , nz z z  in terms of an 
uncertainty statistic  t z  

    

3.5 Uncertainty Statistical Decision Theory 
 

In the paper of Guo et al. [7], the basic elements of decision analysis oriented to observational data arising from a 
general uncertainty environment, so that a shell for Bayesian uncertainty decision doctrine is established. Further, 
Guo et al propose a mechanism, which paves the way towards the establishment of a posterior uncertainty distribution 
of the parameter vector given the observational data, based on uncertain measure Axiom 5. The significance of this 
paper is to establish for the first time a Bayesian uncertainty data inference and decision framework, which constitutes 
a critical step towards the establishment of uncertainty statistics and a Bayesian uncertainty decision theory. 
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4 Estimating an Empirical Uncertainty Distribution 
 

An uncertainty distribution is just the population, i.e., the target of the uncertainty statistical inference. Hence it is 
vital to develop the estimation schemes of uncertainty distribution. 

Classical statistics put a data-constructed frequency distribution as the important step guiding the data analysts’ 
entrance into statistical analysis [5, 27]. It can be also parallel to argue the critical step to obtain an uncertainty 
observational data based empirical uncertainty distribution. Although different from probability and statistics, a 
distribution can determine or induce the probability measure uniquely, an uncertainty distribution could not. 
Nevertheless, in the sense of equivalent class, uncertainty distribution is still the ladder towards an uncertain measure.  

Gao [6] and Wang et al. [30] utilized the Delphi method to summarize experts’ opinion for establishing an 
empirical uncertainty distribution. The Delphi method was initiated by the Rand Corporation for the military projects 
during 1950-1960. Then it is developed as experts’ opinion-oriented methodology for forecasting technology, socio-
economic and business trends. The Delphi method is a structural survey and utilizes the intuitive available 
information of the (independently acting) participants, who are mainly experts. The “standard” process is that (1) set 
up the topic; (2) a facilitator collects opinions from individual panel member (i.e., expert); (3) The facilitator produces 
a synthesized and consistent feedback to all participants; (4) Panel members resubmit their opinions in the light of the 
first round feedback information provided; (5) Repeat the resubmit-feedback iterations until a consensus is reached [3, 
9, 21].  

The Delphi method is not of statistical nature, although the variation of Delphi method does add some statistical 
approaches to improve its efficiency. To be fair, Delphi method provides a successful methodology to expert’s 
knowledge processing until a consensus is reached. Recall that in (probabilistic) statistics, any data point, even 
generated from an expert’s opinion, is not regarded as an isolated qualitative index or a quantity number but a 
“representative” from a population, i.e., the uncertainty distribution of an uncertainty variable. Delphi method reaches 
a consensus, which is either a predicted qualitative index or a forecasted quantity number without a distribution 
underlying the future prediction and therefore disqualifies itself from a statistical method. In fact, no matter how 
popular the Delphi method in the circle dealing with experts’ opinions, it is not a part of statistics, including Bayesian 
statistics. While Gao [6] and Wang et al. [30] initiated an innovative uncertainty statistical scheme for utilizing 
experts’ opinion to facilitating an empirical uncertainty distribution via the Delphi-like procedure, it should not be 
attributed to Delphi method. Subsection 4.1 will further carry on the discussion.  

 
4.1 A Non-parametric Estimation Scheme of Empirical Uncertainty Distribution  

 
To fully understand the non-parametric estimation of an empirical uncertainty distribution, let us examine the 
methodology pursued in statistics. In [27], the frequency distribution is described and the construction method is 
detailed. Data are collected from a population, and every data point represents the population in certain degree. The 
frequency distribution is purely data based under the assumption that every data point comes with equal likelihood. 
Except equal likelihood assumption, there is no hypothesized distribution in curve shape or parameters underlying the 
data. Assuming that 130 data points are collected, denoted as  1 2 130, , ,x x x , total number 130n  , let us construct a 
frequency distribution from the 130 data points.  

The construction can be divided into ten steps:  
(1) Determine the domain for the distribution, [ , ]D a b  , typically,  

1 130
min i

i
a x c

 
  ,  

1 130
max i

i
b x c

 
  , where 

0c  , a small constant;  
(2) Determine the number of group or number of sub-intervals over [ , ]D a b , say, 10m  ;  
(3) Calculate the endpoints of all sub-intervals, denoted by  , , 1,2, ,10i i iI a b i  . It is obvious that 

1a a ,and 10b b , the length of sub-interval is   10l b a  , then   1 ,iI a i l a il    , 1,2, ,10i  ;  

(4) Grouping original data  1 2 130, , ,x x x into 10 groups according to a criterion that data point  i
jx  in the 

thi sub-group       1 2, ,
i

i i i

nx x x , satisfy the inequality  i
i j ia x b  , 1,2, ,10i  ;  

(5) Collect the number of data points within each sub-interval, 
in , 1,2, ,10i  , named as the frequency of sub-

interval   1 ,iI a i l a il    ;  

(6) Calculating the relative frequency, 
i if n n , where 10

1 ii
n n


 ;  



Journal of Uncertain Systems, Vol.6, No.3, pp.163-185, 2012                                                                                                           

 

175 

(7) Calculating accumulative relative frequency, denoted as 
1

i

i ij
F f


 , 1,2, ,10i  ;  

(8) Collecting relative frequencies  0 1 00, , , 1.0F F F ; 

(9) Calculate the mid-points of all sub-intervals, denoted by, 
 i

x , 
 

2
i

x a il  , 1,2, ,10i  ;  

(10) Connecting the m pairs 
  , ii

x F , 1,2, ,10i  , the frequency distribution F is obtained.  

In contrast, let us examine the “Delphi method” created by Wang et al. [30]. For a given statement, a group of 
m experts is invited. A delicate questionnaire is distributed among them. The thi expert is requested to evaluate the 
likelihood 

i of a specific event, denoted by 
iz . It is assumed that the facilitator pre-arrange the knowledge sequence: 

1 2 mz z z    and the likelihood evaluations are independent. Experts submit their evaluations 

  , , 1,2, ,i iz i m  . When the facilitator receive the   , , 1,2, ,i iz i m  , s/he check if the monotonic property 

of likelihoods 1 2 m     is satisfied. The facilitator can either discard a few 
i , the use ˆ

i    1 1 2i i    
to replace 

i or keep original
i as ˆ

i the utilize least-squares criterion fitting a monotonic curve 
F :  0 1.0F z  such that 

  
2

1

m

i i

i

F z 


  (1) 

is minimized, then  ˆ,i iz  , 1,2, ,i m is obtained. If the facilitator satisfies with the fitted empirical uncertainty 

distribution, the procedure stops, otherwise, feedback the first round results, i.e.,  ˆ,i iz  , 1,2, ,i m  to experts for 

the second round likelihood evaluations; each expert bases on feedback, re-evaluate and submit new pair   2,i iz   , 

1,2, ,i m . The facilitator will re-examine these   2,i iz  , 1,2, ,i m , re-fit the empirical uncertainty 

distribution, re-feedback, if necessary, otherwise, repeat until the consensus is reached. 
As to the arbitrary point z , the empirical uncertainty distribution may utilize a linear extrapolation approach  

   

1

1 1
1

0                         if 

if 

1                          if 

i

i i i i i

i i

m

z z

z z
F x z z z

z z

z z

   



 



    


 

 (2) 

which is referred to Liu’s empirical uncertainty distribution [16]. 
Remark 4.1 In viewing Wang et al.’s [30] fitting an empirical uncertainty distribution with comparison with 
Snedecor and Cochran’s [27] construction for a frequency distribution, it is obvious that Step 1 to Step 9 in Snedecor 
and Cochran’s construction of a frequency distribution is now replaced by experts’ knowledge processing and 
evaluation in Wang et al.’s [30] fitting an empirical uncertainty distribution. Whether the quality is high or not 
depends upon the knowledge level and processing skill of the experts as well as their psychological qualifications.  
Remark 4.2 Gao’s [6] fitting an empirical uncertainty distribution is more delicate than that of Wang et al.’s [30]. 
Both methods are of non-parametric empirical uncertainty distribution fitting. 

 
4.2 A Parametric Estimation of Uncertainty Distribution  

 
Wang [31] develops a moment method to estimate an empirical uncertainty distribution. For an uncertainty variable 
 , the thk moment is defined   k

km      , see [16]. 

Wang has shown that for an empirical uncertainty distribution with form as Eq.(2), the theoretical thk moment 

     
1

1 1 1 1
1 0

1 1
1

m k
k k j k j k

k i i i i m m

i j

m z z z z
k

     




 

 

         
 . (3) 

Accordingly, Wang defines an empirical moment  ˆ
km  in [31] if the expert’s knowledge on the empirical 

uncertainty distribution are given by  ˆˆ ,i iz  , 1,2, ,i n , such that    1 1ˆ ˆˆ ˆ, ,i i i iz z   , 1,2, ,i n ,  

     
1

1 1 1 1
1 0

1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 ,  1,2,
1

n k
k j k j k

k i i i i n n

i j

m z z z z k
k

    




 

 

     

 . (4) 
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The moment method is assuming that an uncertainty variable,  , has an uncertainty distribution 

 1 2; , , , pz    , where 1 2, , , p    are p unknown parameters. Furthermore, the expert’s knowledge on the 

empirical uncertainty distribution are given by  ˆˆ ,i iz  , 1,2, ,i n , such that    1 1ˆ ˆˆ ˆ, ,i i i iz z   , 1,2, ,i n , 

such that the empirical uncertainty distribution  and empirical moments  ˆ
km   are estimable, 1,2, ,k p . Then 

a non-linear equations system  

    1
1 20

ˆ 1 ; , , , ,  1,2, ,k

k pm k z z dz k p   


   . (5) 

Substitute the solution to equation system, 1 2
ˆ ˆ ˆ, , , p    into the theoretical uncertainty distribution 

 1 2; , , , pz    , the moment-method estimated uncertainty distribution is  1 2
ˆ ˆ ˆ; , , , pz    . For details and 

examples, see [31] and [32]. 
Remark 4.3 Many of Wang’s terms used in [30] had changed. For example, we change Wang’s “sample moment” 
into “empirical moment”, change “sample data” into “expert’s knowledge” etc, because in the uncertainty statistics, 
the uncertainty sample is undefined.  
Remark 4.4 The semi-parametric approach can be constructed, say, in terms of spline function, cross entropy, or 
other methodology. However, integration form should not apply to specify the empirical uncertainty distribution.   

 
5 Uncertainty Distributions for Quadratic Form Related Quantities 

 
Classical mathematical statistics addresses the inferential analysis under random uncertainty environment, where 
Gaussian distributional doctrine facilitates the basic sampling statistics and their sampling distributions. Under an 
uncertainty environment, the uncertainty mathematical statistics will address uncertainty, which differs from 
randomness. Gaussian distribution is disqualified in uncertainty statistics since that the integration involved in 
Gaussian specification violates the sub- -additivity axiom. It is expected that Liu’s uncertainty normal distributional 
theory will play the similar roles of those of Gaussian in probabilistic statistics [11, 12, 13, 14, 15, 16, 17, 18].  

As matter of fact, the mathematical statistics starts with the “sampling distributions”, e.g., chi-square distribution 
(including Gamma distribution), t-distribution, F-distributions, and etc, [5, 24, 25]. Without the sampling 
distributional theory, the inferential statistics, say, hypothesis testing or confidence intervals have no foundation. 
Therefore, we will investigate the uncertainty distributions of certain important uncertainty statistic related to 
uncertainty quadratic form. Now, let us investigate the uncertainty statistic of uncertainty observational data from an 
uncertainty population, i.e., an uncertainty normal distribution. 

 

5.1 Uncertainty Normal Population or Uncertainty Normal Distribution 
 

As previous section stated, an uncertainty statistic is a function of observations from a uncertainty population. Thus, 
let us discuss the connotation of an uncertainty normal population. 
Definition 5.1 [11, 12, 13, 14, 15, 16, 17] An uncertainty variable   on   , , A  is called normal if its uncertain 
distribution takes the form  

 
 

3

1 ,
1

x

x x

e

 



 

  



. (6) 

Definition 5.2 An uncertain normal distribution is standard if its uncertain distribution takes the form 

 
0

3

1 ,
1

x

x x

e

 


  



. (7) 

The standard uncertain normal distribution function ( 0, 1   ) is plotted in Figure 10. 
Table 4 gives an initial comparison between Gaussian and Liu’s uncertainty normal variable. 
Finally, we should emphasize that the functional form of an uncertainty normal distribution can be used in 

probability theory to play a role of cumulative distribution, while the probabilistic counterpart, Gaussian distribution 
cannot play any distributional roles in uncertainty theory because Gaussian distribution is expressed by an integration, 
which in nature is  -additive. 
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Figure 10: The standard uncertain normal distribution ( 0, 1   ) 

 
Table 4: Basic comparisons between uncertainty normal variable and Gaussian random variable  

(mean-standard deviation parametric form) 

 Uncertainty normal Variable Gaussian Random Variable 

Standard 
0  Z  

 
0

3

1

1
x

x

e

 


 



  
2 21

2

x

sx e ds






    

General 

  X  

 
 

3

1

1
x

x

e

 



 

 



  
 

2

221
2

xx

F x e ds












   

Link 0     X Z    

 

5.2 Uncertainty Chi-square Statistic 
 

Definition 5.3 Let 0 be single observation from a standard uncertainty normal population, define  
2 2

01  . Then we 
call it a chi-square statistic (with degree of freedom one).  
Definition 5.4 The uncertainty distribution of  an uncertainty statistic with degree of freedom one,  

2
1 , is defined by 

 
    2

1

2
1

0 0
1 0.

1 exp
3

x

xx x

x









    
      

 (8) 

Theorem 5.5 Let 0,1 0,2 0,, , , n   be i.i.d. observations from a standard uncertainty normal population. Then the 

uncertainty chi-square statistic 
 
2 2

0,
1

n

in
i

 


 has an uncertainty distribution taking a form 

 
    2

2

0 0
1 0.

1 exp
3

n
n

x

xx x

x
n










    
      

 (9) 

Proof: Based on Definition 5.4,  
2 2
0, 1 ,i i
  has uncertainty distribution 
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 
    2

1 ,

2
1 ,

1 ,  0
1 exp

3

i
i

x x x

x





    
 

  
 

. 
(10) 

Also, notice that function  1 2 1
, , , n

n ii
f x x x x


 is monotonic increasing. Hence, Theorem 1.19 [27] operational 

law is applicable. Further notice that the summand  
2
1 ,i follows distribution function 

 
 2

1 ,

1 ,  0
1 exp

3

i

x x

x
 

  
 

  
 

. 
(11) 

Its inverse takes the form 

      2
0

2

1 3 ln ln 1


  



 

    
 

. (12) 

Hence 

 
           2

2 2

1 3 3ln ln 1 ln ln 1
n

n
n


    

 


   

         
   

, (13) 

i.e., 

 
 2

0 0
1 0.

1 exp
3

n

x

xx

x
n

 





  
      

 (14) 

which concludes the proof of the theorem. 
Remark 5.6 If 0 is assumed to be a random variable with probability distribution 

   
0 0

1 ,  
1 exp

3

F x x x

x

  


   
 

  
 

, 
(15) 

in [8], the probability distribution of the random variable version 2 2
, 0,

1

n

pseudo n i

i

 


  where 0,1 ,  0,2 0,, , n   are 

assumed to be i.i.d. from probability distribution taking a form shown in Eq.(3), 2
,pseudo n  is called pseudo-chi-square 

random variable with degree of freedom .n  The random variable 2
0 has a probability distribution [8] takes a form 

   2
0

2
0

sinh
3 ,  0

1 cosh
3

x

F x x x

x




 


 
 
 

     
 

  
 

. (16) 

Also, in probability theory, the square of a standard normal random variable, 2Z , follows chi-square distribution with 
degree-of-freedom one and its density takes a form 

 
 

1 1
2 21 ,  0

1 2 2

t

f t t e t
 

 


. (17) 

Actually,  2
0

F x


 is very close to chi-square distribution with degree of one. The following plot gives a visual 

justification. The pseudo-chi-square distribution function of 2
0  is plotted in Figure 11. 

Figure 12 shows the overlay plot of the probability distribution of the pseudo-chi-square variable, 2
0 , and the 

chi-square distribution with degree-of-freedom one, 2Z . 
The plot of uncertainty chi-square distribution with degree of freedom one is shown in Figure 13, which clearly 

demonstrates the sharp differences between the probability distribution of the random variable 2
,1pseudo  and the 

uncertainty distribution of the uncertainty variable  
2
1 .  
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Figure 11: The probability distribution of the pseudo-chi-square variable 2
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Figure 12: The overlay plot of probability distribution of 2

0 (brown-colored curve)  
and 2 2

1Z  (navy-colored curve) 
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Figure 13: The plot of the uncertainty chi-square distribution with degree of freedom one 
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Figure 14:  The overlay plot of pseudo-chi-square of probability distribution (red-colored curve)  

and the uncertainty chi-square distribution (black-colored curve) 
 
The uncertainty distribution function 

 
 2

1
x


 of the uncertainty chi-square variable  

2
1  is a left horizontal 

shifted distributional curve of the pseudo-chi-square random variable, see Figure 14, Therefore, giving a name of 
uncertainty chi-square distribution seems inappropriate at the first place. However, considering about the composition 
of an uncertainty chi-square distribution with degree of freedom one, it seems similar to that of the probabilistic chi-
square distribution. 

The following table offers a systematic comparison of the probabilistic chi-square, the probabilistic pseudo-chi-
square, and the uncertainty chi-square distributions. 

Table 5: Comparison of three chi-square variables 

 Chi-square 2
n  Pseudo-chi-square 2

,pseudo n  Uncertainty chi-square  
2
n

  

Component Z  pseudoZ  0  

Component 
distribution  

21 exp
22

x s
x ds



 
   

 
  

 
1

1 exp
3

x

x


 
 

  
 

  
0

1

1 exp
3

x

x




 
 

  
 

 

Construction 2

1

n

n i

i

Z


  2
, ,

1

n

pseudo n pseudo i

i

Z


  
 
2 2

0,
1

n

in
i

 


  

Distribution 
 

1
2 2

0

1
2 2

x n s

n
s e ds

n

 


 

sinh
3

1 cosh
3

x
n

x
n





 
 
 

 
  

 

 

0 0
1 0

1 exp
3

x

x

x
n








      

 

Density 
 

1
2 21 , 0

2 2

n x

n
x e x

n

 




 
1

2 3 1 ch
3

x
n



 
  

 

 
Undefined 

 

5.3 Uncertainty T Statistic 
 

The next important uncertainty statistic is T statistic with n degree of freedom.  
Definition 5.7 Let 0 be a single observation from a standard uncertainty normal population and  

2
n

 be an 

uncertainty chi-square statistic constructed from n i.i.d. observations * * *
0,1 0,2 0,, , , n   from another standard normal 

population, *
0 . Furthermore, 0  and *

0 are assumed to be mutually independent. Then the function  
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 

0

2n

n

T
n




  (18) 

is called an uncertainty student statistic with degree of freedom n, where 

 
2 *

0,
1

n

in
i

 


 . (19) 

The uncertainty distribution of the uncertainty T statistic is called the uncertainty t distribution function. In order 
to derive uncertainty t distribution a series of theorems will be stated and proved as preparations.  
Theorem 5.8 Let 0,1 0,2 0,, , , n   be i.i.d. standard uncertainty normal variables. Then the uncertainty average chi-

square variable 
   
2 2 2

0,
1

1 n

in n
i

n
n

  


   has an uncertainty distribution 

 
 2

0 0
1 0.

1 exp
3

n

x

xx

x
n

 





  
      

 (20) 

Proof: Notice that we have shown that the uncertainty chi-square variable has a distribution function 

 
 2

0 0
1 0.

1 exp
3

n

x

xx

x
n

 





  
      

 (21) 

which has an inverse 

 
           2

2 2

1 3 3ln ln 1 ln ln 1
n

n
n


    

 


   

         
   

. (22) 

Thus, for the uncertainty variable      
2 21
n n

n  , its inverse of the uncertainty distribution is 

 
 

 
         2 2

2 2

1 1 2 3 3ln ln 1 ln ln 1
n n

n
n n

 
    

 

 
   

           
   

 (23) 

which leads to the conclusion:  

 
 2

0 0
1 0.

1 exp
3

n

x

xx

x
n

 





  
      

 (24) 

Theorem 5.9 Let  
2

n n
R  . Then the uncertainty distribution of 

nR  is 

 

0 0
1 0. 

1 exp
3

nR

r

rr

r
n







  
      

 (25) 

Proof: Notice that we have shown that the uncertainty variable  
2
n

  has an uncertainty distribution 

 
 2

0 0
1 0.

1 exp
3

n

x

xx

x
n

 





  
      

 (26) 

Further notice that  f x x  is monotonic increasing in x  for 0x  , the inverse of the uncertainty distribution of 

nR  
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 
 
  2

1 1
n n

R f


      (27) 

which implies 

 
 

  
 
 2 2

1 2

0 0
1 0,

1 exp
3

n n n
R

r

rr f r r

r
n

  







      
      

 (28) 

which concludes the proof. 

Corollary 5.10 Let  
21n n

S  . Then the uncertainty distribution of 
nS  is 

 

0 0
11 0.

11 exp
3

nS

s

ss

sn






   

      

 (29) 

Proof: Notice that the uncertainty distribution of 
 
2

1 1
n

n n

S
R n

   is 

    1

0 0
11 1 0.1 1

11 exp
3

n n nS R R

s

ss f s
s

sn







 
        

        

 (30) 

Corollary 5.11 Let  
21n n

W  . Then the uncertainty distribution of 
nW  is 

 

0 0
11 0.

11 exp
3

nW

w

ww

n w






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      

 (31) 

Proof: Notice that the uncertainty distribution of   
21n n

W   is 

 
 

  
 

2 2
1

0 0
11 0.1 1

11 exp
3

n n n
W

x

xw f w
w

n x
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



 

       
        

 (32) 

Theorem 5.12 The uncertainty statistic 

 

0

2n

n

T
n




  (33) 

has an uncertainty t distribution function 

 
1 2

1
2

1 1sup min ,
11 exp 1 exp

3 3

nT
x x t

t

x
xn

 

  
  
         
              

. (34) 

Proof: Notice that  

   

0 0
02 2n n

n n

T S
n

 


 
    . (35) 

According to Corollary 5.8, the uncertainty variable 
nS  follows an uncertainty distribution 
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    1
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11 1 0.1 1

11 exp
3

n n nS R R

s

ss f s
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
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

 
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 (36) 

Furthermore, 
nT  are monotonic increasing function of 0 and

nS , thus 

      0
1

1sup min ,
n nT S

x s x

t x s


     (37) 

which implies 

 
1 2

1
2

1 1sup min ,
11 exp 1 exp

3 3

nT
x x t

t

x
xn

 

  
  
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              

. (38) 

 

5.4 Uncertainty F Statistic 
 

The third important uncertainty statistic is the uncertainty F statistic.  
Definition 5.13 Let 0,1 0,2 0,, , , m    be m i.i.d observations from an uncertainty standard normal, 0 , and 

* * *
0,1 0,2 0,, , , n    be n i.i.d. observations from another uncertainty standard normal population, *

0 , respectively. Define 

   
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0,1

m

im m i
m m  


   and    
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m

jn n i
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
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2 2

, 2 2
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m
F v

n

 

 
   (39) 

is called uncertainty F statistic with degree of freedom m and n . 
Theorem 5.14 An uncertainty F statistic follows an uncertainty distribution taking a form 

 
 

,

1 2

1 2

1 2

1

2

0 0, 0

1 1sup min , 0, 0.
11 exp 1 exp3 3

m nF

x x v

x x

v
x x

x
m n x

 

 


  
  
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                      
   

 (40) 

Proof: Notice that  
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2 2

, 2 2
m n

m n

n n

m
F v

n

 

 
  . (41) 

According to Theorem 5.7 and Corollary 5.9, the uncertainty variable  
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  follows an uncertainty distribution 
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And the uncertainty variable  
21n n

W  follows an uncertainty distribution 
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Furthermore, 
 ,m n

F  are monotonic increasing function of  
2
m

 and
nW , thus 
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which implies 
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                      
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 (45) 

 
6 Conclusion 
 
In this paper, we systemically survey the classical statistics from the scope, the spirit or soul, the frequency 
distribution, the concept of statistic, and the hypothesis testing and interval theory, the scope of mathematical 
statistics, the statistical decision theory, for a solid understanding of the nature of statistics. Then we similarly study 
the potential scope and spirit of the uncertainty statistics, the starting ground - uncertainty data – knowledge, the 
empirical uncertainty distribution, the uncertainty statistic and its uncertainty distribution. For example, uncertainty 

2  statistic, uncertainty T  statistic and uncertainty F statistic and their uncertainty distributions are developed. It 
should be aware that the uncertainty data – expert’s knowledge is established on the ground of specification of an 
uncertainty measure space   , , A , i.e., the uncertainty knowledge must be the representatives of the 
uncertainty population (or alternatively, the uncertainty distribution of an uncertainty variable) according to the 
uncertain measure (of the events). It is also should be emphasized that impreciseness is an intrinsic feature to expert's 
knowledge (data), which is inevitably governed by an uncertain measure or by an uncertainty distribution. 
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