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Abstract

One of the main problems with neural networks is that they are often very slow in learning the desired
dependence. To speed up neural networks, Bruno Apolloni proposed to othogonalize neurons during
training, i.e., to select neurons whose output functions are orthogonal to each other. In this paper, we use
symmetries to provide a theoretical explanation for this heuristic idea.
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1 Formulation of the Problem

Neural networks: brief reminder. In the traditional (3-layer) neural networks, the input values x1, . . . , xn:

• first go through the non-linear layer of “hidden” neurons, resulting in the values

yi = s0

 n∑
j=1

wij · xj − wi0

 , 1 ≤ i ≤ m,

• after which a linear neuron combines the results yi into the output y =
m∑
i=1

Wi · yi −W0.

Here, Wi and wij are weights selected based on the data, and s0(x) is a non-linear activation function. Usually,
the “sigmoid” activation function s0(x) = 1/(1 + exp(−x)) is used.

The weights Wi and wij are selected so as to fit the data, i.e., that

y(k) ≈ f
(
x
(k)
1 , . . . , x(k)n

)
for all k,

where:

• x(k)1 , . . . , x
(k)
n (1 ≤ k ≤ N) are given values of the inputs, and

• y(k) are given values of the output.

One of the problems with the traditional neural networks is that in the process of learning – i.e., in the
process of adjusting the values of the weights to fit the data – some of the neurons are duplicated, i.e., we get
wij = wi′j for some i 6= i′ and thus, yi = yi′ .

As a result, we do not fully use the learning capacity of a neural network, since when yi = yi′ , we can get
the same approximation with fewer hidden neurons.

Apolloni’s idea. To avoid the above redundancy problem, B. Apolloni and others suggested [1] that we or-
thogonalize the neurons during training, i.e., that we make sure that the corresponding functions yi(x1, . . . , xn)
remain orthogonal in the sense that

〈yi, yj〉 =

∫
yi(x) · yj(x) dx = 0.
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Challenge. Since Apolloni et al. heuristic idea works well, it is desirable to look for its precise mathematical
justification.

What we do in this paper. We provide such a justification in terms of symmetries.

Comment. This result was first presented at a conference [3].

2 Why Symmetries?

Why symmetries. At first glance, the use of symmetries in neural networks may sound somewhat strange,
because there are no explicit symmetries there, but hidden symmetries have been actively used in neural
networks. For example, they are the only way to explain the empirically observed advantages of the sigmoid
activation function; see, e.g., [2, 4].

Symmetry: a fundamental property of the physical world. One of the main objectives of science is
prediction. What is the usual basis for prediction? We observed similar situations in the past, and we expect
similar outcomes. In mathematical terms, similarity corresponds to symmetry, and similarity of outcomes –
to invariance.

For example, we dropped the ball, it fell down. We conclude that if we drop it at a different location
and/or at a different orientation, it will also fall down. Why – because we believe that the process is invariant
with respect to shifts, rotations, etc.

This fundamental role of symmetries is well recognized in modern physics, to the extent that, starting
with the quark theory, theories are usually formulated in terms of the corresponding symmetries – and not
in terms of differential equations as it was in Netwon’s time and later. Of course, once the symmetries are
known, we can determine the equations, but they are no longer the original formulation.

It is therefore natural to apply symmetries to neural networks as well.

Basic symmetries: scaling and shift. What are the basic symmetries? Typically, we deal with the
numerical values of a physical quantity. Numerical values depend on the measuring unit. If we use a new unit
which is λ times smaller, numerical values are multiplied by λ: x → λ · x. For example, x meters = 100 · x
cm. The transformation x→ λ · x is usually called scaling.

Another possibility is to change the starting point. For example, instead of measuring time from year 0,
we can start measuring it from some more distant year in the past. If we use a new starting point which is s
units smaller, then the quantity which was originally represented by the number x is now represented by the
new value x+ s. The transformation x→ x+ s is usually called a shift.

So, we arrive at the following natural requirement: that the physical formulas should not depend on the
choice of a measuring unit or of a starting point. Together, scaling and shifts form linear transformations
x→ a · x+ b. Thus, in mathematical terms, this means that the physical formulas be invariant under linear
transformations.

Basic nonlinear symmetries. Sometimes, a system also has nonlinear symmetries. To find such non-linear
symmetries, we can take into account that if a system is invariant under f and g, then

• it is invariant under their composition f ◦ g, and

• it is invariant under the inverse transformation f−1.

In mathematical terms, this means that symmetries form a group.
In practice, at any given moment of time, we can only store and describe finitely many parameters. Thus,

it is reasonable to restrict ourselves to finite-dimensional groups.
One of the first researcher to explore this idea was Norbert Wiener, the father of cybernetics. He formulated

a question: describe all finite-dimensional groups that contain all linear transformations. For transformations
from real numbers to real numbers, the answer to this question are known: all elements of this group are
fractionally-linear functions x→ (a · x+ b)/(c · x+ d).
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Symmetries explain the choice of an activation function. Let us show that such non-linear symmetries
explain the formula for the activation function f(x) = 1/(1 + exp(−x)).

Indeed, a change in the input starting point has the form x → x+ s. It is reasonable to require that the
new output f(x+s) is equivalent to the f(x) modulo an appropriate transformation. We have just mentioned
that appropriate transformations are fractionally linear. Thus, we conclude that for every s, there exist values
a(s), b(s), c(s), and d(s) for which

f(x+ s) =
a(s) · f(x) + b(s)

c(s) · f(x) + d(s)
.

Differentiating both sides by s and equating s to 0, we get a differential equation for f(x). Its known solution
is the sigmoid activation function – which can thus be explained by symmetries.

3 Explanation of Apolloni’s Heuristic Idea

Towards formulating the problem in precise terms. We must select a basis e0(x), e1(x), . . . , en(x),
. . . so that each function f(x) is represented as f(x) =

∑
i

ci · ei(x). For example,

• an expansion in Taylor series corresponds to choosing the basis e0(x) = 1, e1(x) = x, e2(x) = x2, . . .

• an expansion in Fourier series corresponds to selecting the basis ei(x) = sin(ωi · x).

Once the basis is selected, to store the information about the function f(x), we store the coefficients c0, c1,
. . . , corresponding to this basis.

From this viewpoint, one of the possible criteria for selecting the basis can be that the selected basis should
require, on average, the smallest number of bits to store f(x) with given accuracy. We can come up with
several similar criteria.

For all these criteria, we can take into account that storing a number ci and storing the opposite number
−ci take the same space. Thus, changing one of the basis function ei(x) to e′i(x) = −ei(x) (which we lead to
exactly this change ci → −ci) does not change accuracy or storage space. So, we conclude that

• if e0(x), . . . , ei−1(x), ei(x), ei+1(x), . . . is an optimal basis,

• then the basis e0(x), . . . , ei−1(x), −ei(x), ei+1(x), . . . is also optimal.

Uniqueness of the optimal solution. Due to the previous argument, we do not select a single basis, we
select a family ±e0(x), ±e1(x), . . . , in which each function is determined modulo its sign. Out of all such
families, we should select the optimal one.

In general, an optimization problem may have have several optimal solutions. In this case, we can use this
non-uniqueness to optimize something else. For example,

• if two sorting algorithms are equally fast in the worst case tw(A) = tw(A′),

• we can select the one with the smallest average time ta(A)→ min.

In effect, by introducing the additional criterion, we now have a new criterion: A is better than A′ if either
tw(A) < tw(A′) or (tw(A) = tw(A′) and ta(A) < ta(A′)).

If this new criterion also has several optimal solutions, we can optimize something else, etc., until we
end up with a unique optimal solution. So, non-uniqueness means that the original criterion was not final.
Relative to a final criterion, there is only one optimal solution.

For our problem, this uniqueness means that

• once we have one optimal basis
e0(x), e1(x), e2(x), . . . ,

• all other optimal bases have the form

±e0(x), ±e1(x), ±e2(x), . . . .
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How to describe average accuracy. Our objective is to describe average accuracy, or average number of
bits, etc. For example, we may want to know the average value of the We also want to know the mean square
distance

∫
(f(x)− f≈(x))2 dx between the original function f(x) and its approximation f≈(x).

To describe these averages, we need to know the corresponding probability distribution on the set of all
possible functions f(x).

Dependencies f(x) come from many different factors. Due to Central Limit Theorem, it is thus reasonable

to assume that the distribution on f(x) is Gaussian. If m(x)
def
= E[f(x)] 6= 0, we can store differences

∆f(x)
def
= f(x) − m(x), for which E[∆f(x)] = 0. Thus, without losing generality, we can assume that

E[f(x)] = 0.

Such Gaussian distributions are uniquely determined by their covariances C(x, y)
def
= E[f(x) · f(y)]. A

general Gaussian distribution can be described by independent components: f(x) =
∑
i

ηi · fi(x), where

E[ηi ·ηj ] = 0, i 6= j. The corresponding functions fi(x) are eigenfunctions of the covariance function C(x, y) =
E[f(x)f(y)]: ∫

C(x, y) · fj(y) dy = λj · fj(x).

The basis formed by these functions is known as the Kahrunen-Loeve (KL) basis. The functions from the
KL basis together with the corresponding eigenvalues λi uniquely determine the corresponding probability
distribution – and thus, the value of the optimality criterion.

Functions from this KL basis are orthogonal; they are usually selected to be orthonormal, i.e., satisfy the
condition

∫
f2j (x) dx = 1.

In the general case, when all eigenvalues λj are different, each eigenfunction fj(x) is determined uniquely
modulo fj(x)→ −fj(x).

One can easily see that if we change one of functions fj(x) from the KL basis to to −fj(x), we get a KL
basis. Under these change, the values E[f(x) · f(y)] and

∫
f2(x) dx do not change – and thus, optimality

criteria based on these values do not change. Thus, we arrive at the following formulation of the problem.

Formulation of the problem in precise terms. We have an optimality criterion described in terms of a
sequence of orthonormal functions fj(x) and a sequence of corresponding numbers λi. We know that functions
±fj(x) determine the exact same criterion as the original functions fj(x).

We consider the generic case, if which all the eigenvalues λj are different.
Based on this criterion, we must select an optimal basis e0(x), e1(x), . . . , ei(x), . . . . Each function from

the desired basis can be represented as a linear combination of functions from the KL basis

ei(x) =
∑
j

aij · fj(x).

Thus, selecting an optimal basis is equivalent to selecting the matrix of values aij , and the optimality criterion
is equivalent to selecting a class of all matrices corresponding to optimal functions.

Of course, since the vectors ei(x) must form a basis, we cannot have ei(x) ≡ 0, i.e., for every i, at least
one value aij must e different from 0. We will call such matrices non-trivial.

We have mentioned that if we change one of the functions fj0(x) to −fj0(x), the criterion does not change.
Thus, the following functions also form an optimal basis

e′i(x) =
∑
j 6=j0

aij · fj(x)− aij0 · fj0(x).

These functions correspond to the new matrix a′ij for which a′ij0 = −aij0 and a′ij = aij for all j 6= j0.
We also require that every optimal basis has the form e′i(x) = ±ei(x). Thus, we arrive at the following

definition.

Definition. Let fi(x) be a sequence of linearly independent functions.

• We say that a matrix aij is non-trivial if for every i, there exists a j for which aij 6= 0.

• By an optimality criterion, we mean a class A of non-trivial matrices aij.
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• For each matrix aij ∈ A, the functions ei(x) =
∑
j

aij · fj(x) are called optimal functions corresponding

to this matrix.

• We say that the optimality criterion is invariant if for every matrix aij ∈ A and for every j0, the matrix
a′ij, for which a′ij0 = −aij0 and a′ij = aij for all j 6= j0, also belongs to the class A.

• We say that the optimality criterion is final if for every two matrices aij , a
′
ij ∈ A and for every i, the

corresponding optimal functions ei(x) =
∑
j

aij · fj(x) and e′i(x) =
∑
j

a′ij · fj(x) differ only by sign, i.e.,

either e′i(x) = ei(x) or e′i(x) = −ei(x).

Theorem. If an optimality criterion is invariant and final, then each optimal function ei(x) has the form
ei = aij0 · fj0(x) for some j0.

Proof. Indeed, let aij be a matrix from the optimal criterion. Since the matrix is non-trivial, for every i,
there exist a j0 for which aij0 6= 0. Since the optimality criterion is invariant, the class A also contains the
matrix a′ij for which a′ij0 = −aij0 and a′ij = aij for all j 6= j0. For this new matrix, the corresponding optimal
functions have the form

e′i(x) =
∑
j 6=j0

aij · fj(x)− aij0 · fj0(x).

Since the optimality criterion is final, this expression must be equal either to ei(x) or to −ei(x).

If e′i(x) = ei(x), we would have∑
j 6=j0

aij · fj(x)− aij0 · fj0(x) =
∑
j 6=j0

aij · fj(x) + aij0 · fj0(x).

The difference between the two sides is equal to 0, hence aij0 · fj0(x) = 0 and aij0 = 0, but we have selected
j0 for which aij0 6= 0. Thus, e′i(x) = ei(x) is impossible, so we must have e′i(x) = −ei(x), i.e.,∑

j 6=j0

aij · fj(x)− aij0 · fj0(x) = −
∑
j 6=j0

aij · fj(x)− aij0 · fj0(x).

Since the functions fj(x) are linearly independent, this equality implies that the coefficients at all fj(x) in
both sides must coincide. In particular, by comparing the coefficients at fj(x) for every j 6= j0, we conclude
that aij = −aij hence aij = 0. So, aij = 0 for all j 6= j0. The theorem is proven.

Discussion. We have proved that for the optimal basis ei(x) and for the KL basis fj(x), each ei(x) has the
form

ei(x) = aij0 · fj0(x) for some aij0 .

We know that the elements fj(x) of the KL basis are orthogonal. So, we conclude that the elements ei(x) of
the optimal basis are orthogonal as well.

Apolloni’s idea was to always make sure that we use an orthogonal basis. This idea has been empirically
successful. Our new result provides a theoretical justification for Apolloni’s idea.
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