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Abstract

Some students are late for classes. If we let in these late, this disrupts the class and decreases the
amount of effective lecture time for the students who arrived on time. On the other hand, if many
students are late and we do not let them in, these students will miss the whole lecture period. It is
therefore reasonable to sometimes let students in, but restrict the times when late students can enter the
class. In this paper, we show how, depending on the number of late students — and depending on how late
they are —we can find the optimal schedule of letting in late students.
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1 Formulation of the Problem

Letting in late students is disruptive. Some students are late for class. Letting them walk in all the
time disrupts others. As a result, some teachers in schools and even some professors at the universities do not
let late students in at all.

Comment. This is not only about classes. The famous Russian theater reformer Stanislasvky started his
reform by not letting late spectators in — and thus, minimizing disruptions for others. This tradition is held
in many theaters now.

Not letting in late students is probably too harsh. On the other hand, such a no-late policy may be
too harsh, especially if we take into account that lateness is often caused by things beyond a student’s control
— e.g., on a commuter campus like ours, an accident on a freeway that caused traffic delays make students
arrive late to their first class of the day.

Resulting problem: when to let in late students? Based on the above discussion, we conclude that:
e in principle, it is desirable to let late students in, but
e we cannot let them in all the time.

So, we should select specific times when the students will be allowed to enter.

How this problem is solved now? Sometimes, these times are determined by the event. For example, in
a symphony concert, late patrons have to wait for the end of the first musical piece to enter. What shall we
do in a lecture where there are no such easily determined least-disruption times?

There are many heuristic ways of dealing with such situations. For example, a recent recollection volume
by students from the Mathematical Department of St. Petersburg University, Russia, mentions that some
professors teaching big Calculus classes would ask late students to wait until it is exactly 10 minutes after the
beginning of the lecture, and let in all accumulated late students [I].

Need for an optimal solution. Instead of relying on such heuristic rules, it is desirable to come up with a
precise solution to the problem — a solution obtained by optimizing an appropriately chosen objective function.
This is what we do in this paper.
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2 Formalization and Analysis of the Problem

Towards formalization of the problem. Let T be the duration of the lecture, and let A denote the
disruption time cause by letting late students in. For every real number ¢ € [0, T], Let f(t) denote the total
proportion of students who arrive between the beginning of the lecture and time ¢ after the lecture started.

Our objective is to minimize the total disruption, i.e., minimize the disruption time per student.

When we do not let in late students. If we do not let any late students in, then the only disruption
comes from late students missing the class. Each of the late students missed time 7T, and the proportion of
late students is f(7"). Thus, the resulting disruption per student is

Dy =T - f(T).
When we let in late students at one single moment of time. If we let in late students at a single
moment of time 1, then there are three sources of disruption:

e there is a disruption A - (1 — f(T)) (caused by letting students in) for all students who arrived on time;

e there is a disruption t; - f(¢1) caused by the fact that students who arrive between times 0 and ¢; miss
time t1;

e finally, there us a disruption T'- (f(T") — f(¢1)) caused by the fact that students who arrive after moment
t1 miss the whole lecture.

The resulting overall disruption is equal to
di(ti) =A- (1= f(T) +t1- f(tr) +T- (f(T) = f(t1))-

The time t; should be selected from the condition that the resulting overall disruption is the smallest
possible. For such an optimal value t1, the resulting disruption is equal to

Dy =min{A - (1 - f(T)) +t1- f(t) + T (F(T) - f(t1)) : 0 <ty < T}.

The optimal value ¢; can be determined by the condition that the derivative of the minimized function is
equal to 0, i.e., that

ft) +to- fl(tn) =T f'(t1) =0,

where f/(t) denoted the derivative of the function f(t). This condition can be equivalently reformulated as

ft) = (T —t1) - f'(t1).

Shall we let in students or shall we not? Whether we should let in students at all or not depends on
whether D1 = d;(t1) < Dg. The corresponding inequality has the form

A-(I=fM) +ta- f(8) +T-(F(T) = f(ta)) <T- [(T),

i.e., equivalently,

A (1= f(T) +t1- f(tr) <T- f(tr),

which is, in turn, equivalent to

A-(1=f(T)) < (T —t)- f(tr).
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General case. Let us now consider the general case, in which we let students in at several (k > 0) moments
of time 0 < t; <ty < ... <ty <T. To simplify the description of this inequality, it makes sense to set to = 0
and tpy1 = T, then this inequality has the form

O=th <ty <tg...<tp <tpy1=1T.

For every i from 0 to k, students who arrive between times t; and ¢,;1 lose time ¢;11 — the next time late
students are let in. The proportion of such students is f(¢;+1) — f(¢;), so the disruption for all these students
is equal to t;11 - (f(ti+1 — f(¢;)). To those students who have already been sitting in class by the time of the
i-th disruption — their proportion is 1 — f(T') + f(¢;—1) — the disruption is equal to A - (1 — f(T) + f(ti-1))-
Thus, the overall disruption is equal to

k k
di(tr, - te) = D A (L= F(T) + f(tia)) + D tivr - (f(tisa — f(t2)).
i=1 i=0
The times t1, . .., tx should be selected from the condition that the resulting disruption is the smallest possible.
For such optimal values t1, ..., tx, the resulting disruption is equal to

k
Dy, = min {ZA (1= f(T) + f(ti-1))

i=1

k
+Zti+1 . (f(ti+1 — f(tL)) <t <ta<... < T}
=0

The optimal values t1, ..., t;, ..., tr can be determined by the condition that the partial derivative of the
minimized function with respect to each variable ¢;, 1 <1 < k, is equal to 0. For ¢ < k, we get

A fi(t) + (f(ti) = f(tia) +ti- f/(t) — tiga - f/(t:) = 0.
This condition can be equivalently reformulated as
f) = f(tima) = (tigr —ti = A) - f(ta).
For ¢ = k, we similarly get
fltr) = flto—r) = (T —ti) - f'(tx).

Whether we should let students in at k different moments of time depends on whether Dy, < D, for all ¢ # k.
As a result, we arrive at the following solution.

3 When to Let Late Students in: Solution

General solution. For each integer k, we find values 0 =ty < t; <ts < ... < tg <tgy1 =T for which the

expression
k

k
ZA (L= F(T) + (i) + D tigr - (f(tivn — f(E:)

=0

is the smallest possible. This can be done, e.g., by solving the following system of equations:
f(t) = f(tica) = (tigr —ti = A) - f/(ti), @ <k
fte) = fltr—1) = (T —t) - f'(tw)-

Let us denote the corresponding smallest value of the minimized expression by Dy.

Then, we select k for which the value Dy is the smallest possible, and for this k, take the corresponding
minimizing values t1,...,tx. These are the times at which we let late students in.

Comment. When k increases, the second term in the optimization function tends to the Stiltjes integral
[ t-df(t) describing the overall disruption in the case when every late student is let in right away.
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Example. Let us illustrate the above idea on the example when the students arrive uniformly, i.e., when
f(t) = fo -t for some fy. In this case, the above equation for determining ¢; for 45 takes the form

Jo- (ti —ti1) = (tig1 —ti — A) - fo,

i.e., equivalently, that At; def t;+1 — t; satisfies the condition At; = At;—1 + A.

In other word, in this case, if there are several moments of time when we let students in, the waiting time
before each letting-in increases by A from the previous waiting time.

For i = k, we similarly conclude that Aty = Atp_1.

In this case, At; = Atg+1i- A for i < k, in particular, Aty = Atg+ (kK — 1) - A. Thus, Aty = Aty
implies that Aty = Atg + (K —1) - A.

We can now express the optimal values ¢; in terms of the difference At;. Indeed, since ty = 0, we have

ti=t;—to=(t; —ti—1) + (tim1 —ti—2) + ...+ (t1 —to) = Aty_1 + At;a+ ...+ Aty

=Atg+(i—1) - A+Atg+ (i —2) - A+...+Atg=i-Atg+A-(1+2+...+ (i - 1)),
hence
(i1—1)-4
—

To complete our description of the optimal schedule corresponding to the given number k of letting students
in, we need to determine the value Aty. This value can be determined from the fact that

ti=i Atg+A-

Atk:T—tk:Ao-i-(k‘—l)-A.
From the above formula, we know that

(k—1)-k

tr =k -Atg+ A - 5

Thus, we conclude that

T=tr+ Aty =(k+1) Ao+ ((k_;)']“r(k—l)) -A
So, we have
T (k—=1)-(k+2) A
Ao = kfl
Substituting the resulting optimal values ¢; into the corresponding expression for di(ti,...,tx), we can

find the value Dy for each k£ and thus, find the optimal number of disruptions k.
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