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Abstract

In classical mechanics, we can uniquely reconstruct the state of each particle by measuring its spa-
tial location and momentum. In his 1958 paper, W. Pauli, one of the founders of quantum mechanics,
conjectured that the same should be true in the quantum case as well: that every quantum state can be
uniquely determined by measuring spatial location and momentum. This conjecture was disproven: there
are pairs of physically different states that cannot be distinguished if we only measure special location
and momentum. A natural question is: how frequent are such pairs? In this paper, we show that almost
all quantum states can be uniquely reconstructed by measuring spatial location and momentum. Thus, in
practice, Pauli’s conjecture is true.
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1 Standard Quantum Description of a Particle: A Brief Reminder

Classical (pre-quantum) description. In the traditional classical (pre-quantum) description of particles,
the state of each elementary particle can be characterized by its location 2 € R? in the 3-D space R?, by its
momentum p = m - v (where m denotes the particle’s mass and v its velocity), etc.

Quantum description is probabilistic. In quantum physics, a particle does not have a certain location
x or a certain momentum p: if we measure location of several particles prepared in the same state, we
get different locations with different probabilities. Similarly, we get different values of the momentum with
different probabilities.

In contrast to the classical (pre-quantum) case, a state of a quantum particle does not enable us to
determine the exact location or the exact momentum; instead, a quantum state uniquely determine the
probabilities of different locations and/or different momenta.

Case of a single particle. In the traditional quantum mechanics, a state is described by a complex-valued
function ¥(z) called a wave function.

For example, a state of a single particle is described by a complex-valued function ¢ (x) defined on the 3-D
space (r € R3). Under this description, for every set S, the probability to find this particle in an area S C R3
is equal to the integral [ | (x)|* dz, where |¢)(x)| denotes the absolute value (magnitude) of the complex
number (z). In other words, the function |¢)(x)|? is the probability density function of the probability
function which describes the particle’s location.

The total probability to get any value x € R? should be equal to 1, so we must have I} RS |Y(2)]? doe = 1.

The probability to find the moment p within a certain area S is similarly equal to [ |F(¢)(w)|* dw, where
F(v) denotes the Fourier transform of the wave function ¥ (x).

2 Pauli’s Question: What is Known and What is Still Open

Pauli’s original question: how uniquely can we determine the quantum state based on the
measurements? For a single particle, if all we measure is spatial location, then we can only determine the
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absolute values |1(x)| of the wave function ¢ (x). By measuring other characteristics such as momentum, we
can gain more information about the wave function.

W. Pauli asked the following natural question (see, e.g., [15]): to what extent can we determine the wave
function from the measurements? In particular, he asked whether we can uniquely reconstruct a state by
measuring spatial location and momentum.

Clarification. Tt is known that from the physical viewpoint, for every real value «, the functions ¥ (x) and
Y'(xz) = e" - ¢(x) describe the exact same physical state. Thus, we mean uniqueness modulo such a factor.

Pauli’s question: what is known. The original Pauli’s conjecture was that every quantum state can be
uniquely determined by measuring location and momentum. This conjecture turned out to be false: there are
cases when two physically different states lead to the same measurements of location and momentum: i.e., to
the same probabilities of different values of location and momentum.

It has also been shown that if we allow additional measurements — not just measurements of location and
momentum — then it is already possible to uniquely reconstruct the quantum state; see, e.g., |2, [5, [6] [7, 8] O]
10l M2, 13} [T4]. Specifically, in addition to measuring location and momenta at the initial moment of time, we
can place the particle in some (physically meaningful) potential fields and re-measure location and momentum
after a certain time.

Comment. It is worth mentioning that even when the reconstruction is theoretically possible, it is not always
computationally feasible. In general, the reconstructing problem is computationally difficult (NP-hard); see,
e.g., [TI]. Crudely speaking, this means that in some cases, for this reconstruction, we need computation time
which exceeds the lifetime of the Universe.

Remaining open problem. Counter-examples to the original Pauli’s conjecture are rare and exotic. It is
therefore reasonable to ask how frequent are these examples? If almost all states (in some reasonable sense)
can be uniquely reconstructed, then in practice, the chance of encountering such states are close to 0, so, in
effect, we can always reconstruct a state by measuring location and momentum.

What we do in this paper. In this paper, we show that indeed, almost all states can be uniquely
determined by measuring location and momentum. Thus, in practice, Pauli’s conjecture is true.

3 Main Result

How to meaningfully formalize “almost all”: a need for discretization. In a finite-dimensional
space R", there are natural notion of “almost all” — e.g., “almost all” in the sense of the Lebesque measure
on R™, when, crudely speaking, the volume of the set of all the states that do not satisfy the given property
is 0.

The space of all possible quantum states is the space of all possible wave functions. This set is infinite-
dimensional, in the sense that one needs infinitely many parameters to describe a general element from this
set. On such spaces, it is difficult to select a physically meaningful notion of “almost all”’. To be more precise,
there are such notion but they have weird properties: for example, if we define “almost all” in terms of a
natural measure on the set of all the functions (such as Wiener’s measure), then we conclude that almost all
functions are nowhere differentiable etc.

A reasonable solution to this problem is to take into account that in practice, at every moment of time, we
only know the values of finitely many parameters. As a result, it is reasonable to consider a finite-dimensional
approximation to the original problem.

To describe a general wave function (z), we need infinitely many parameters — the values of ¢ (z) at
different spatial locations x. Thus, if we want to restrict ourselves to a finite-dimensional case, we should
consider only finitely many spatial locations.

The simplest case is to consider an n X n x n 3-D grid of spatial locations.
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Precise formulation of the problem. Functions on a grid and their Fourier transforms have a natural
polynomial interpretation (see, e.g., [3]). Namely, on a grid, coordinates along each direction can be labeled as
0,1,...,n—1. As aresult, every point is labeled by a triple of integers (i1, i2,43), ; = 0,1,...,n—1. Thus, the
values of each function ¢ (z) on grid points & = (i1, iz, i3) form a 3-D array with values a;, i, i, = ¥((i1,2,13)).
We can form a polynomial with these coefficients

_ i ia i3
P(z1,22,23) = E Qiyjig,iz " 21~ 29 " 23 -

11,12,13

The Fourier transform F(w) consists of the values of this polynomial at points z; = exp (i-m; - (2-m)/n).
Based on these values, we can uniquely reconstruct the original coefficients a;, i, :, — and thus, the original
polynomial.

The complex conjugate F™*(w) to the Fourier transform is also a Fourier transform — corresponding to the
function ¢ _ (z) def Y(—2) and a related polynomial P,(z). The product |F(w)?| = F(w) - F*(w) corresponds
to the product P(z) - P.(z) of the corresponding polynomials.

When is reconstruction not unique? when we have a different state ¢’ (x), with a different Fourier transform
F'(w) that leads to the exact same polynomial, i.e., P(z) - Pi(z) = P'(z) - P.(2). If a polynomial P(z) can
be factorized into a product of two or more polynomial of lower order — which is usual for polynomials of one
variable — then, in principle, such an equality is possible. However, if a polynomial is irreducible — i.e., cannot
be represented as a product of polynomials of lower order — then the factors P’(z) and P](z) must, in effect,
coincide with the original factors P(z) and P’(z) — modulo constants, Thus, we have two options:

e P'(z) = ¢- P(z) for some constant ¢; in this case, '(x) = ¢ - ¥(x), so we get the exact same physical
state;

e P'(z) = c¢- Pu(z), meaning that ¢'(z) = ¢ ¢(—z); since we also assume that the results of measuring
location coincide, we also have |¢'(z)| = | (x)| hence |¢(—z)| = [ (x)]|, i.e., the modulus of the wave
function is symmetric; this is almost never true and thus, in almost all cases, the state can be uniquely
reconstructed by measuring location and momentum.

So, to prove the uniqueness in the general case, it is sufficient to prove that almost all polynomials are
irreducible.

Almost all polynomials of 3 variables are irreducible: a proof. For each monomial z{* - 22 - 22 its
degree is usually defined as the sum i; + i3 + i3. A degree of a polynomial is defined as the largest of the
degrees of its monomials. When two polynomials are multiplied, their degrees add.

Let us prove that for every overall degree d, almost all polynomials of degree < d are irreducible, i.e.,
cannot be represented as a product of two polynomials of smaller degrees d’ > 0 and d — d’. Specifically, we
will prove that the dimension of the set of all reducible polynomials is smaller than the dimension of the set
of all polynomials of degree < d — and thus, almost all polynomials are irreducible (because the volume of a
set of smaller dimension is always 0).

Let us first count the dimension of the set of all polynomials of degree < d, i.e., the total number of all
coefficients a;, ;,,i; With 41 + i3 + i3 < d. Each such triple can be described if we first list 4; Os, then place a
separating 1, then place i2 zeros, then a separating 1, then i3 zeros, then separating 1. Totally, we have d + 3
locations: d original locations plus 3 separators. Vice versa, if we place three 1s in a list of d + 3 locations,
then we can take, as i1, the number of Os before the first 1, etc. So, the desired dimension is equal to the
number of different ways to place three 1s in d + 3 different locations, i.e.,

d+3\ (d+3)-(d+2)-(d+1)
( 3 ) B 1-2-3
If we denote D = d+2, then the numerator of this expression takes the form (D+1)-D-(D—1) = (D?—1)-D =
D3 — D = (d+2)® — (d+ 2). Thus, the desired dimension is equal to ((d + 2)* — (d + 2)) /6.

For every d’, each factorization consists of a polynomial of degree d’ and a polynomial of degree d — d’.
To describe such factorization, we thus need to describe all ((d’ 4 2)% — (d' +2)) /6 coefficients of the first
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polynomial and all ((d —d +2)3 — (d—d +2)) /6 coefficients of the second polynomial. Thus, the total
number of parameters needed to describe such factorizations is equal to F'(d’)/6, where we denoted

F(d) S (d +22 —(d +2)+ (d—d +2)*— (d—d +2).
We want to prove that for every d’ € (0, d), this value is smaller than ((d + 2)* — (d + 2)) /6 — this will show
that the dimension is indeed smaller.

We will actually prove that this inequality holds not only for integer values d’ € (0, d), but for all possible
real values d' € (0,d) as well. To prove it, let us consider the corresponding function F(d’). Its derivative
is equal to 0 when 3+ (d' +2)2—1-3-(d—d +2)>+1 =0, ie, when (d' +2)? = (d — d’ + 2)?, hence
d+2=d-d +2,d=d—d,and d =d/2. For this value, this function F(d’) clearly has the minimum.
Thus, its maxima are at one the endpoints of the interval [0, d]. Since the values at both endpoints coincide,
the maximum is attained at both endpoints. Hence, all intermediate values are smaller than the values at the
endpoints— exactly what we tried to prove.

Thus, almost all polynomials of 3 variables are irreducible — and hence, we can almost always uniquely
reconstruct a quantum state by measuring location and momentum.

Comment. Similar real-valued results about almost always unique reconstruction of a function from the
modulus of its Fourier transform are known for images; see, e.g., [II 4].
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