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Abstract

This paper proposes a new method for solving a multi-objective linear programming model with fuzzy random
variables. In this model, a multi-objective linear programming problem with real variables and fuzzy random
coefficients is introduced. Then, a new algorithm is developed to solve the model based on the concepts of mean value
of fuzzy random variables, chance-constrained programming and piecewise linear approximation method. Furthermore,
an illustrative numerical example is also given to clarify the method discussed in this paper.
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1 Introduction

In a real world, we must often make a decision on the basis of uncertain data or information. For such decision
making problems involving uncertainty, there exist two typical approaches: stochastic programming and fuzzy
programming.

Stochastic programming model can be applied when probabilistic properties of unknown elements are at hand
[12, 30]. By having several objective functions, multi-objective stochastic linear programming model is appropriate.
Stancu-Minasian [28, 29] used the minimum risk approach, while Leclercq [17] and Teghem Jr. et al. [31] proposed
interactive methods for solving multi-objective stochastic linear programming problems.

Fuzzy optimization [4, 18, 19, 21] has to be chosen when we encounter inherent imprecision or vagueness [35,
36]. Therefore, fuzzy mathematical programming representing the uncertainty or ambiguity in decision making
situations by fuzzy concepts has attracted attention of many researchers [15, 16, 26, 27]. Fuzzy multi-objective linear
programming, first proposed by Zimmermann [37] has been rapidly developed by numerous researchers and it is most
frequently applied to the increasing number of real problems.

As a mixture of the stochastic approach and fuzzy approach, Wang and Zhong [33] considered mathematical
programming problems with fuzzy random variables. A Fuzzy Random Variable (FRV) is a random variable whose
actual value is a fuzzy number. The concept of fuzzy random variables was first introduced by Kwakernaak [14] and
then developed by Puri and Ralescu [25].

In addition, Chakraborty et al. [5] presented an interactive method for multi-objective linear programming
problems with fuzzy number coefficients and normal random variable in objective functions and/or constraints, and
Katagiri et al. [13] suggested an interactive method to solve the fuzzy random multi-objective 0-1 programming
problem. Eshghi et al. [10] discussed special classes of mathematical programming models with FRVs and fuzzy
random quadratic minimum spanning tree problem in which Er-expected value of FRVs was applied. They also used
fuzzy stochastic optimization in the redundancy optimization problem and in the resource-constraint project
scheduling problem [22, 23, 24].
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This paper considers multi-objective LP problems whose parameters are FRVs but the decision variables are
crisp. The aim of this paper is to introduce a new method for this type of problems by using fuzzy stochastic
optimization and integer programming.

Indeed, a new model is introduced for a multi-objective linear programming in which the parameters have both
fuzzy and random properties, simultaneously. We consider both of them and FRVs can be useful to illustrate this
hybrid uncertainty. Then, a new method is developed to solve this new model. Firstly, the mean value of FRVs and
Chance-Constrained Programming (CCP) method are used to convert fuzzy stochastic programming model to
mathematical programming model. Subsequently, Piecewise Linear Approximation (PLA) approach is applied to
obtain a linear programming model.

This paper is organized as follows: in Section 2 some basic concepts on fuzzy theory and fuzzy random theory
are presented. In Section 3, our model is introduced as a multi-objective linear programming with FRVs. Then the
proposed problem is converted to a new model by using the concepts of mean value of FRVs, CCP and PLA method
(integer programming). Furthermore, Er-expected value model [10, 11] will be used to solve the proposed problem.
Finally, appropriate algorithms for solving the proposed problem are presented and an example is also solved and
analyzed to clarify the algorithm.

2 Preliminaries

This section reviews some technical terms presented by Puri and Ralescu [25]. In the following definitions, we
assume that (Q, 3, P) is a probability space and (0, P(®), Pos) is a possibility space where © is universe, P(0) is the
power set of © and Pos is a possibility measure defined on fuzzy sets. Furthermore, F.(R) is a collection of all
normalized fuzzy numbers whose a-level sets are convex subsets of R .

A fuzzy set on R is called a fuzzy number if it is normal, convex and upper semi-continuous and its support set
is compact. LR fuzzy number [7, 9] is a special fuzzy number used frequently. We will use standard fuzzy arithmetic,
from the extension principle, to perform sums, products, etc. of fuzzy numbers [8].

A FRV is a random variable and a Borel measurable function whose actual value is a fuzzy number [25]. It is
frequently used in uncertain systems.

Lemma 1 [32] If X is a FRV, then an o-cut X,(w) = {t E R | Ux(w)(t) = a} = [X; (w),XS(w)] is a random
interval for every a € (0,1].

Expected value is a fundamental concept for FRV and. In order to define the expected value of an FRV, several
operators were introduced in literature [33]. The expectation of a FRV is a fuzzy number [32, 33].

Definition 1 [10, 11] Let X be a FRV then we can define the scalar expected value of X, denoted by Er(X) and

called it Er-expected value of X, as follows:
1

1
Er(0) = f (EXD) + EQX)}da
0
where E(X;) and E(X}) are expected values of X; and X} respectively.

Definition 2 If X is a FRV, then for any w € Q, X (w) is fuzzy number. We define the mean value of fuzzy number
X(w), denoted by M (X (w)), as follows:

M(X(w)) = % f Ko@) +Xr@lde Ve e
0

It is clear that M(X) is random variable.
Corollary 1 Let X be a FRV. E(M(X)) = Er(X).

Proof: M(X) is a random variable. Therefore, E (M (X)) = fn M (X (w))P(dw) and from definition 1 it is equal to
Er(X).
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Definition 3 Let X be a FRV. We define the scalar variance of X, denoted by Vr(X), as follows:

Vr(X) = Var(M(X)) = f (M(X(w)))ZP(dw)—(Er(X))Z.
Q

Corollary 2 Let X and Y be FRV and 1 € R then M(X + AY) = M(X) + AM(Y).
Proof: Since (X 4+ AY), = X, +AY, then M(X+1Y) = %fol{(x +AY) 7+ X+ AV }da = éfol(X‘; T+ XDda +
AL [ (Ve + YHda = M(X) + AM(Y).

Now we discuss a method to evaluate the fuzzy random inequality X < Y or X = Y where X and Y are FRVs. It
can be easily compared by Er-expected value of FRVs. Furthermore, it is obvious that M(X) and M(Y) in this case are
random variable according to definition 2 and can be compared based on CCP method.

Definition 4 Let X and Y be FRVs. Then the relations " = " and " <" are defined respectively as follows:
i) X=Y Iff M(X)=M(Y);
X<y Iff MX)<M®).

3 Problem Formulation

In this section, Fuzzy Multi-Objective Linear Programming (FMOLP) and Fuzzy Random Multi-Objective Linear
Programming (FRMOLP) are introduced and solved. Er-expected value model [10] and Mean & CCP Model which is
a new method will be used to FRMOLP.

3.1 Fuzzy Multi-Objective LP
The fuzzy multi-objective linear programming is proposed as follows:

(FMOLP) Max [é&lx,cix, ..., Elx]
st dix < Ei, i=1,...m

x=20
where all the parameters are fuzzy variables. Furthermore, x = (x4, x5, ..., X,) is the crisp decision variable vector. If

a FRV is degenerated to a fuzzy variable, its mean value is a real number. The mean value model of FMOLP, denoted
by M-FMOLP, is defined as follows:

(M-FMOLP) Max [M(éfx), M(&ix), ..., M(Etx)]
st. M(@x)< M(b), i=1,...m

x=0.

By this model whose all parameters are real, solutions with optimal expected return subject to expected
constraints will be obtained. Therefore, we can design the following algorithm to solve FMOLP:

Algorithm 3.1 (Expected Value Algorithm)

Step 1. Define fuzzy parameters of FMOLP by using information of experts or decision makers and determine their
mean values.

Step 2. Convert FMOLP to M-FMOLP by using mean value of fuzzy variables and Corollary (2).

Step 3. Solve M-FMOLP which is a multi-objective optimization problem by Zimmermann approach [37]. The
obtained optimal solution is called M-optimal solution of the original problem.
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We will explain Zimmermann approach at the end of this section.

3.2 Fuzzy Random Multi-Objective LP

Consider the following multi-objective linear programming with FRVs:

~t ~t ~t
(FRMOLP) Max [clx, C,X, ...,crx]
s.t aixs Ei, i=1,...m
x>0
~ ~ ~ ~ = ~ = ~ = = \t
where ¢; = (Ekl , Ck2 » ...,Ekn),k =1,..,l, A= [aij]mxn' b= (bl, b,, ...,bm) represent FRVs involved in the

objective functions and constraints respectively.

3.2.1 Er-expected Value Model

Er-expected value model of FRMOLP, represented by Er-FRMOLP, is defined as follows:
=t =t ~t
(Er-FRMOLP) Max [Er(clx),Er(czx),...,Er(crx)]

s.t. Er(ﬁl-x) < Er(b), i=1,..m

x = 0.
By this model whose all parameters are real, solutions with optimal Er-expected return subject to Er-expected
constraints will be obtained. We design the following algorithm to solve FRMOLP:

Algorithm 3.2 (Er-expected Value Algorithm)

Step 1. Define fuzzy random parameters of FRMOLP by using information of experts or decision makers and
determine their Er-expected values.

Step 2. Convert FRMOLP to Er-FRMOLP by using Er-expected value of fuzzy random variables and Corollary (2).

Step 3. Solve Er-FRMOLP which is a multi-objective optimization problem by Zimmermann approach. The obtained
optimal solution is called Er-optimal solution of the original problem.

3.2.2 Mean & CCP Model

In this model, mean value of FRVs and CCP method are used. The mean value of FRMOLP, denoted by
M-FRMOLP, is defined as follows:

(M-FRMOLP) Max [M(6x), M(Ex), .., M(G,)]
st. M@x) < M(b), i=1,.,m

x = 0.

Now, we have the following stochastic linear programming model:

_ _ — —t  —t —t
Max [zy,Z5, ..., 2,] = [clx,czx,...,crx]
st. aix<b;, i=1,...m

x=>0
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— = — _ _ _ ~ — _ = N — .t
where z;, = M(zk), Cr=(Cr1,Chzrers Cxn) =M(Cp), k=1,...,1, A= [aif]mxn =M(A), b= (bl,bz, ...,bm) =

M (E) are random variables.

By using the chance-constrained multi-objective programming model [20], M-FRMOLP can be written as
follows and denoted by M&CCP-FRMOLP:

(M&CCP-FRMOLP) Max [zq,23, ..., Z]
st Pr {E,t(x >z)=>a k=1,..,r

Pr{ﬁix < Ei} =B, i=1,...m

x=>0

where a and f§ are the predetermined confidence levels defined by a decision maker. In this model, the random
variables can have different probability distributions. Therefore, several models will be found from M&CCP-FRMOLP.
Based on probability properties and expert opinions, a proper model will be selected and solved by Zimmermann
approach. Anyway, the following algorithm is designed.

Algorithm 3.3 (M&CCP Algorithm)

Step 1. Define fuzzy random parameters of FRMOLP by using information of experts or decision makers and
determine their mean values.

Step 2. Convert FRMOLP to M-FRMOLP by using the mean value of fuzzy random variables and Corollary (2).

Step 3. Convert M-FRMOLP to M&CCP-FRMOLP by using chance-constrained multi-objective programming method.

Step 4. Solve M&CCP-FRMOLP which is a multi-objective optimization problem by Zimmermann approach.

3.2.3 FRMOLP Model with Normal Distribution

Let the random aspect of FRVs has a normal distribution with a definite expectation and an exact variance. Therefore,
we have the following mathematical programming:

(Problem 1) Max [zq,23, ..., Z]

st z, — E(E,t()x < ka\/zn Var(Ekj)x?, k=1,..r
j=1

E(a)x — kﬁ\/zr_l 1Var(ﬁij)xj2 + Var(Ei) SE(E), i=1,..,m
j=

x=>0

where k, is a point that Pr{U ~ N[0,1] = k,} = a. Problem (1) is a nonlinear programming model and we use PLA
approach [6, 34] to solve it and obtain an approximated global optimal solution.

Let f(xq,X5,...,X,) be a nonlinear function with n variables. We say that f is a separable function if
fOq, Xg e Xp) = Z}‘zl f]-(x]-) where fj(xj), j =1,...,n, are functions of a single variables. A nonlinear programming
model is a separable programming if all nonlinear functions can be converted to separable functions.

Separable programming has an important role in PLA approach. Fortunately, all nonlinear functions in our

model are convertible to separable functions. New, PLA approach is applied to obtain an approximated linear
programming model. The following problem is a separable programming form of problem (1):
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(Problem 2) Max [z,2y, ..., Z]

n
s.t. z, — Z 1ijXj < ka ty, k= 1, v, T
]:

n
ty? = Z Var(c,)x?, k=1,..,r
j=1

n
Z al‘]’Xj — kﬁwl Sbl‘, i = 1, v, m
j=1

|
3

n —
w? = Z Var(a;;)x? + Var(b;), i=
j=1

where ¢, = (C1, Chzs ooor Ckn) = E(C), k =1, ..., 7, [aij]mxn =E(A), (by, by, ..., b))t = E(b) .
Now, interval and break points for each decision variable are considered as descrlbed in Table 1.

Table 1: Break points and new decision variables of PLA programming

Decision variables Interval Break points New decision variables
Xj [aj. by] PjuPjz ~Pjs 4 =Py <P = = pjs = b At
tx [ex, di] Gkt Qi - Qks Ck = Qi1 S Qo <+ S Qs = di, Nkt
w; les, fi Ti1, Tizs s Tis =Ty ST < S =f; K

By using new decision variables and PLA programming approach, Problem (2) which is a separable
programming model can be converted as follows:

(Problem 3) Max [zl,zz, s Zp]
st Z"_ZZCRJPMI<" ZCIkﬂlkz, k=1,..r
J=11=

n N
Zzau PjiAj — kﬁzrzz’(u <b, i=1..,m
=11=
qul M = ZZVGT(CkJ)pﬂ i, k=1,..,7
1=1

j=11=
s s

n
Zr” Ky = ZZVar(aU)pﬂ A+ Var(b ) i=1,..,m

=1 i=11l=
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N

ZK” =1 i=1,...m

=1

(A1, Ajzs s Ajs) €S0S2,  j=1,..,n
M1 Mizs oo Mis) € SOS2, k=1,..,r
(Ki1, Kigy o  Kis) €S0S2, i=1,..,m
0<1;<1 j=1.,nl=1,.,s
0<nu<1, k=1,.,rl=1,.,s
0<k; <1, i=1..ml=1,..,s
where SOS2 constraints refer to special ordered sets of type 2 introduced by Beale and Tomlin [2] and developed by

Beale and Forrest [1]. The above problem is a multi-objective Mixed Integer Programming (MIP) problem. Now,

Zimmermann fuzzy approach [37] will be used to solve multi-objective optimization problem. In this approach,
Bellman and Zadeh’s max-min operator [3] has been used.

Let z® be upper bounds of i, k = 1, ..., 1, and 2 — p® be their initial values,k = 1, ...,r. By considering the

membership function of fuzzy objective function and using Bellman and Zadeh’s max-min operator, Problem (3) can
be converted to the following problem:

(Problem 4) Max A

st 2,2z - -Dp®, k=1,..,r

n N N
Zy —chkﬂﬂjzlﬂ < kq qulnkl: k=1,..,r

j=11=1
n s
Z Qij pjtdi — kﬁzrllkll <b, i=1.,m
J=1 =1
s
leznkl = Z Z VaT(Ekj)pj[ZAﬂ , k = 1, e, T
=1 j=11=

N N

n
Zru Ky = ZZ Var(au)pﬂ A+ Var(b ) i=1,...m

=1 i=1 1=
ZAjl:l’ j=1,...,n

=1

N
anl = 1, k = 1, A
=1

N

ZK”=1, i=1,...,m
=1

(A1, Ajzs s Ajs) €S0S2,  j=1,..,1n

Mk Mkzs - Nis) €SOS2, k=1,..,r

(Ki1, Kiz, - Kis) €S0S2, i=1,..,m
0<2;<1 j=1.,nl=1.,s
0<nu<1, k=1,.,rl=1,.,s

0<k; <1, i=1...ml=1,..,s.
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The above problem is a MIP problem which can be solved by one of the MIP solvers. If we suppose that
/1]-1*, NaHkyH i=1.,m, j=1,..,nk=1,..,rl=1,..,s are the optimal solution of Problem 4 then a PLA-

optimal solution of the original problem can be obtained by x;(PLA) = ¥j_; P4 ai=1.,n.

In the following steps, we summarize the necessary steps to solve the problem discussed in this section.

Algorithm 3.4: (PLA Algorithm)

Step 1. Convert M&CCP-FRMOLP to Problem (1) by using the concept of normal probability distribution of the
random aspect of FRVs.

Step 2. Convert Problem (1) to Problem (3) by applying Piecewise Linear Approximation method.

Step 3. Convert Problem (3) to Problem (4) by Zimmermann approach (Bellman and Zadeh’s Max-min operator).
Problem (4) is a mixed integer programming model.

Step 4. Solve Problem (4) as a mixed integer programming model by one of the MIP solvers. Then, Ajl* is an optimal

solution of PLA method and an optimal solution of the original problem is obtained by x; (PLA) =

Yi-1 pjllljz*, j=1,..,n

As this section shows, FMOLP and FRMOLP are used to modeling a multi-objective linear programming
problem whose parameters have vague properties. This vagueness can be possibilistic imprecision, probability
uncertainty or both of them. Fuzzy, random, and fuzzy random variables s can be applied for it respectively.
Furthermore, Expected value model is used for FMOLP and Er-expected value model and Mean & CCP model are
used for FRMOLP. Mean & CCP model is a quite complex approach but its results are more veracious because of
using the probability distribution function of the random aspect of fuzzy random parameters instead of using the
expect value of them.

In our model, parameters are assumed to be fuzzy random variables which are more suitable to real-world
problems. However, the model is not well defined theoretically in this case due to fuzzy randomness of parameters.
Therefore, we used the concept of mean value of fuzzy random variables, CCP and PLA approaches to overcome this
problem. This replacement enabled us to convert the original complex model to a mixed integer programming model.
Another advantage of our method is using the probability distribution function and the variance effect of parameter
which have a direct effect on the optimal solutions. However, using the expectation value is tantamount to focus on
the center of the distribution while neglecting other parameters of the distribution.

Unfortunately, obtaining the optimal solution is not an easy task due to the complexity of the final nonlinear
programming model if some other parameters of the fuzzy random variables are taken into consideration and the
generalization of the model in this case can be an interesting idea for future researches.

Now, we will formulate a problem with these different assumptions. Then, our proposed Algorithms will be
applied to obtain optimal solutions.

4 A Numerical Example

In this section, we will design a Production Planning problem with an uncertain framework and two objective
functions. One of the objective functions is to maximize the total benefit of the production process and the other one
is also to maximize the total quality rate. This problem has two resource constraints. Furthermore, parameters of this
problem have uncertain properties in both random and fuzzy aspects. Anyway, the problem is described as follows:

In a factory, a manager plans to manufacture two new products A and B. He has two major resources, resourcel
and resource 2. The estimated usage rates of resources for producing a batch of product A are the following: about 3,
for resource 1 and about az for resource 2. On the other hand, the usage rates of resources for producing a batch of
product B are as follows: about a, for resource 1 and about 3, for resource 2. The availability of resource 1 and 2 are
about d; and d, respectively and the profits of product A and B are about ¢; and ¢, respectively. Furthermore, the
quality performance rats of product A and B are about C; and €,.

For simplicity we have assumed that all uncertain parameters are FRVs and their values are given in Table 2.
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Table 2: Uncertain parameters of the example

A & & A A &, &, a, a, d, d,
r~N[uo?] | N(19,52) | N(29,4%) | N(32,4%) | N(21,5%) | N(4,22) N(2,2%) | N(3,1.5%) | N(6,3%) | N(34,4%) | N(40,5%)
B 2.3 2.7 3.8 2.5 1.8 1.5 2.3 3.7 1.8 42
Y 43 3.7 1.8 0.5 0.8 2.5 4.3 1.7 3.8 2.2
Er(j)
_ 19.5 29.25 31.5 20.5 3.75 2.25 35 5.5 34.5 39.5
=E(4)

Now, we want to determine how many Product A and B should be manufactured in order to maximize the total
production benefit and maximize the total quality performance.

The multi-objective linear programming model with FRVs of the problem is formulated as follows:

Max

(21, Z,] = [C1%1 + CaXp, C3Xg + CaXy]
s.t.

ayx1 + Ayx, < dy,
agxl + a4x2 < dz:
xq1 = 0,x, 2 0.

LetA = (r, B,v) be FRV where r is random variable, E(r) = p, Var(r) = 62. The mean value of A is calculated
as follows which is random variable:

A =r+Ba—-1), &L =r+y(1—-a),
=~ 1t 1 _
M(A)=§f (X,;+X;)da=r+z(y—ﬁ):A.
0

Apply Er-expected Value Algorithm to the above fuzzy random multi-objective linear programming problem
and solve the obtained LP problem by the one of the LP solver. The following LP model is generated:

Max A

s.t. 19.5x; +29.25x, = 2171 - 7(1 - 1),
31.5x; + 20.5x, = 293.2 —3.4(1 — 1),
3.75x;, + 2.25x, < 34.5,
3.5x; + 5.5x, < 39.5,
x; =20,x, =2 0.

The above problem can be easily solved by LINGO 8.0, which is one of the commercial ILP solvers, and the Er-
optimal solution of the problem is reported in the second column of Table 3.

Table 3: Numerical results of our example

Fuzzy random parameters

Er-expected value

Mean & CCP model

model (Er-optimal

Fuzzy parameters

(PLA-optimal Optimal solution by (optimal solution)
solution) solution) LINGO Global Solver
. x5 (FRMOLP) x5,4(FRMOLP) X}ingo(FRMOLP) x} (FMOLP)
* = =(7.91,2.15) = (4.20,2.07) = (4.37,2.02) =(6.13,2.71)
23 ([21, Z:D5r (21, Z2Dp1a ([21, 2D Lingo ([21, 2D
=(217.08,293.24) =(113.66,149.35) =(114.47,153.26) =(211.82,255.48)

Now apply M&CCP Algorithm to the above fuzzy random multi-objective linear programming problem. The
following nonlinear programming model is generated by considering the predetermined confidence levels:
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Max A
st 2z, 2z0 -1 -Dp®, k=12

7, — 19.5x; — 29.25x, < k, /25x12 + 16x3,
z, — 31.5x; — 20.5x, < k, /163(12 + 25x2,
3.75x; + 2.25x, — kg /4x12 + 4x3 + 16 < 34.5,

3.5x%; + 5.5x, — kﬁ\/2.25x12 + 9x2 + 25 < 39.5,

x, =2 0,x, 2 0.

Use the proposed PLA Algorithm to the nonlinear programming problem. The following separable programming
problem can be obtained:

Max A

st. 2z, 2z0 -1 -Dp®, k=12
z; — 19.5x; — 29.5x, < k,tq,
t? = 25x7 + 16x2,
Z, — 31.5x; — 20.5x, < k,t,,
t2 = 16x? + 25x7,
3.75 + 2.25x, — kgw; < 345,
wi = 4x? +4x2 + 16,
3.5x1 + 5.5x, — kgw, < 39.5,
wi = 2.25x% + 9x% + 25,
x =2 0,x, =2 0.

The estimated interval of x4, X, , t; , t, , w; and w, and their break points are given in Table 4 fora = 3 = 0.9.

Table 4: The estimated intervals and the break points

Variables Estimated intervals Break points
% [0,6] 0,2,4,6
X, [0,4] 0,2,4
t [0,25] 0,5, 10, 15, 20, 25
t, [0,20] 0, 5,10, 15,20
wy [4,12] 4,8,12
Wy [5,15] 5,10, 15

PLA method is used to convert the above separable programming problem to a Mixed Integer programming
Model. The PLA-optimal solution of the problem is reported in the second column of Table 5.

My new approach used mean value of fuzzy random variable to handle fuzzy properties of fuzzy stochastic
programming, chance-constrained programming to manage random properties of fuzzy stochastic programming and
PLA method to solve the obtained nonlinear programming problem. By comparing the results of Er-expected value
model, we realize that the variance effect of parameters is important and has a direct effect on the optimal solutions.
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Table 5: Numerical results of PLA method

Mean & CCP model
(PLA-optimal solution)

(11, A2y a3, Aa) (0,0,0.899,0.101)

(A21, 222, A25) (0,0.961,0.039)
(431, A32, A33, A34) A35, A36) (0,0,0,0,0.459,0.541)
(a1, Aazs Aazs Aaas Aas) (0,0,0,0,1)
(451, Asz, As3) (0,0.476,0.524)
(61, 262, A63) (0,0.954,0.046)
x* = (x1,x3) Xpa(FRMOLP) = (4.20,2.07)
(z1,73) ([Z1, Z,1)5.4=(113.66,149.35)

We also solve the nonlinear programming model, obtained by M&CCP Algorithm, by Global solver of LINGO
8.0 and the results are collected in the forth column of Table 3. By comparing the results, we can see that the results
of PLA method are extremely near to the optimal solution of LINGO Global Solver.

Now, the above production planning problem is also solved by considering the assumption that the parameters
are fuzzy numbers obtained by experts or decision makers and their values are given in Table 6. In this case,
information of experts is more effective to define and determine uncertain parameters.

Table 6: Fuzzy parameters of the example

A=(BY) G &) G Ca a, a, as ay d d,
22 27 34 19 5 1 4 6 32 43

2.3 2.7 3.8 2.5 1.8 L5 23 3.7 1.8 4.2

4.3 3.7 1.8 0.5 038 2.5 43 1.7 3.8 2.2

M(4) 22.5 27.25 335 18.5 4.75 1.25 4.5 5.5 32.5 42.5

The fuzzy multi-objective linear programming model can be used to formulate this production planning problem
with fuzzy number parameters.

We apply the expected value Algorithm and solve the obtained LP problem by LINGO 8.0. Its optimal solution
is reported in the fifth column of Table 3.

As this result shows, PLA -optimal solution has not been improved because of considering probability
distribution function and the variance effect. Therefore, PLA-optimal solution is more confident than optimal solution
of the other models for a decision maker.

Because this paper is an early step in the study of developing a fuzzy stochastic optimization, we compared the
results of our two methods and compared them to the results of fuzzy programming model. But, additional research is
also needed to see the efficiency of our methods in more practical cases.

5 Concluding Remarks

In this paper, a new method for multi-objective linear programming models with fuzzy random variables has been
discussed. Then a new algorithm based on mean value of fuzzy random variables, chance-constrained programming
and integer programming developed to solve the model. Because of using variance effect, our optimal solution is
more confident. Furthermore, a nonlinear programming problem which is obtained by Charnes and Cooper’s chance-
constrained approach has been converted to a mixed integer programming problem by using the piecewise linear
approximation method. We also find that the global optimal solution of this nonlinear programming problem is
incredibly near to the optimal solution of PLA approach.

As it was mentioned before, considering probability distribution function and the variance effect have direct
effect on optimal solutions and its optimal solution is more confident than other optimal solutions.
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This paper is also necessarily restricted to simple assumptions because of its early step in the study of developing
a fuzzy random approach. To improve the method discussed in this paper, the reader can generalize the model by
adding the effect of other factors of a fuzzy random variable to model. For example, in some circumstances the
selection of fuzzy membership function might be better described by new rules or the other probability distribution
can be discussed for random property of fuzzy random variables.
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