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Abstract

In this article we prove the substantiation of the method of full averaging for the fuzzy differential
equations with small parameter on the metric space (En;D). Thereby we expand a circle of systems to
which it is possible to apply Krylov-Bogolyubov method of averaging.
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1 Instroduction

The absence of exact universal research methods for nonlinear systems has caused the development of numerous
approximate analytic and numerically-analytic methods that can be realized in effective computer algorithms.

Many important problems of analytical dynamics are described by the nonlinear mathematical models
that as a rule are presented by the nonlinear differential or the integro - differential equations. The absence of
exact universal research methods for nonlinear systems has caused the development of numerous approximate
analytic and numerically-analytic methods that can be realized in effective computer algorithms.

The averaging methods combined with the asymptotic representations (in Poincare sense) began to be
applied as the basic constructive tool for solving the complicated problems of analytical dynamics described
by the differential equations. It became possible due to the works of N.N. Bogolyubov, Yu.A. Mitropolskij,
A.M. Samojlenko, V.M. Volosov, M.A. Krasnoselskiy, N.N. Moiseev, S.G. Krein, F.L. Chernousko, L.D.
Akulenko, V.A. Plotnikov, A.N. Filatov, etc. (see [2, 3, 5, 15, 17, 23, 26, 27, 29]).

In recent years, the fuzzy set theory introduced by Zadeh [36] has emerged as an interesting and fascinating
branch of pure and applied sciences. The applications of fuzzy set theory can be found in many branches of
science as physical, mathematical, differential equations and engineering sciences. Recently there have been
new advances in the theory of fuzzy differential equations.

The theory of fuzzy differential equations has been studied by many authors [1, 8, 9, 10, 11, 12, 14, 16, 19,
24, 25, 26, 32, 33] by using the H-differentiability for the fuzzy valued mappings of a real variable whose values
are normal, convex, upper semicontinuous and compactly supported fuzzy sets in Rn. S. Seikkala [30, 31]
defined the fuzzy derivative which is generalization of the Hukuhara derivative in [7]. The local existence
theorems are given in [34], and the existence theorems under compactness-type conditions are investigated in
[35], for the Cauchy problem x′ = f(t, x), x(t0) = x0 when the fuzzy valued mapping f satisfies the generalized
Lipschitz condition. Park et al [20, 21, 22] studied the fuzzy differential equation with nonlocal condition.
J.J. Nieto [18] proved an existence theorem for fuzzy differential equations on the metric space (En;D).

In this article we prove the substantiation of the method of full averaging for the fuzzy differential equations
with small parameter on the metric space (En;D). Thereby we expand a circle of systems to which it is possible
to apply Krylov-Bogolyubov method of averaging.

2 Preliminaries

Let (conv(Rn), h) denote the family of all nonempty compact convex subsets of Rn. Let A and B be two
nonempty bounded subsets of Rn. The distance between A and B is defined by the Hausdorff metric

h(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖},
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where ‖ · ‖ denotes the usual Euclidean norm in Rn. It is clear that (conv(Rn), h) becomes a metric space.

Denote En = { x : Rn → [0, 1] | u satisfies (i)–(iv) below }, where
(i) x is normal, i.e., there exists an ξ0 ∈ Rn such that x(ξ0) = 1,
(ii) x is fuzzy convex; that is, for ξ, γ ∈ Rn and 0 ≤ β ≤ 1, x(βξ + (1− β)γ) ≥ min{x(ξ), x(γ)},
(iii) x is upper semicontinuous,
(iv) [x]0 = cl{ξ ∈ Rn |x(ξ) > 0 } is compact.

For 0 < α ≤ 0 denote [x]α = {ξ ∈ Rn |x(ξ) ≥ α }. Then from (i)–(iv), it follows that the α-level sets
[x]α ∈ conv(Rn) for all 0 ≤ α ≤ 1.

Let ô be the fuzzy set defined by ô(ξ) = 1 if ξ = 0 and ô(ξ) = 0 if ξ 6= 0.

Define D : En × En → R+
⋃
{0} by the equation D(x, y) = sup

0≤α≤1
h([x]α, [y]α). It is easy to show that D

is a metric in En. Using the results of [28], we know that
(1) (En, D) is a complete metric space,
(2) D(x+ z, y + z) = D(x, y) for all x, y, z ∈ En,
(3) D(kx, ky) = |k|D(x, y) for all x, y ∈ En, k ∈ R.
Definition 1 [20] A mapping f : [0, T ]×En → En is called continuous at point (t0, x0) ∈ (0, T )×En provided
for any ε > 0, there exists an δ > 0 such that D(f(t, x), f(t0, x0)) < ε whenever |t− t0| < δ and D(x, x0) < δ.

The fact that f : [0, T ]× En → En is continuous, we shall denote by f ∈ C([0, T ]× En,En).
Definition 2 [20] A mapping f : [0, T ] × En → En is called bounded if there exists a constant λ > 0 such
that ‖y‖ ≤ λ for all y ∈ [f(t, x)]0.

Definition 3 [9] Let f : [0, T ] → En. The integral of f(·) over [0, T ], denote by
T∫
0

f(t)dt, is defined by the

equation  T∫
0

f(t)dt

α =

T∫
0

[f(t)]αdt

=


T∫

0

φ(t)dt |φ : [0, T ]→ Rn is a measurable selection for [f(·)]α


for all 0 < α ≤ 1.
Definition 4 [9] A mapping f : [0, T ] → En is called differentiable at t ∈ [0, T ] if for any α ∈ [0, 1] the set-
valued mapping fα(t) = [f(t)]α is Hukuhara differentiable at point t [7] and the family {DHfα(t) | α ∈ [0, 1]}
defines a fuzzy number f ′(t) ∈ En.

If f : [0, T ]→ En is differentiable at t ∈ [0, T ], we say that f ′(t) is the fuzzy derivative of f(t) at the point
t.

3 Main Result

Consider the fuzzy differential equation with small parameter

x′ = εf(t, x), (1)

where t – time, x ∈ En, ε > 0 – small parameter, f : R× En → En.
Definition 5 [9, 20] A mapping x : R→ En is a solution of the problem (1) with initial value x(0) = x0, if it
is continuous and satisfies the integral equation

x(t) = x0 +

t∫
0

εf(s, x(s))ds. (2)

Consider also the following averaged system

y′ = εf(y), (3)
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where

lim
T→0

D

 1

T

T∫
0

f(t, x)dt, f(x)

 = 0. (4)

Theorem Let in the domain Q = {t ≥ 0, x ∈ P ⊂ En} the following hold:
1) the mapping f(t, x) is continuous, uniformly bounded with constant M, satisfies the Lipschitz condition

in x with constant λ, i.e.

D(f(t, x), 0̂) ≤M, D(f(t, x1), f(t, x2)) ≤ λD(x1, x2);

2) uniformly with respect to x in the domain P the limit (4)exists;
3) for any x0 ∈ P ′ ⊂ P and t ≥ 0 the solution of the differential equation (3) together with a ρ−neighborhood

belong to the domain P.
Then for any η > 0 and L > 0 there exists ε0(η, L) > 0 such that for all 0 < ε ≤ ε0 and 0 ≤ t ≤ Lε−1 the

following condition is satisfied
D(x(t), y(t)) ≤ η. (5)

Proof: From the conditions 1), 2) follows that the mapping f(x) is uniformly bounded and satisfies the
Lipschitz condition with constant λ. Really in view of the condition 2) of the theorem for any δ > 0 it is
possible to find T (δ) > 0 such that for all T > T (δ) the estimate is fair:

d

f(x),
1

T

T∫
0

f(t, x)dt

 < δ.

Then

D(f(x), ô) ≤ D

f(x),
1

T

T∫
0

f(t, x)dt

+D

 1

T

T∫
0

f(t, x)dt, ô


≤ D

f(x),
1

T

T∫
0

f(t, x)dt

+M ≤ δ +M,

D(f(y1), f(y2)) ≤ D

f(y1),
1

T

T∫
0

f(t, y1)dt

+D

 1

T

T∫
0

f(t, y1)dt,
1

T

T∫
0

f(t, y2)dt


+D

 1

T

T∫
0

f(t, y2)dt, f(y2)

 ≤ 2δ +
1

T

T∫
0

D(f(t, y1), f(t, y2))dt

≤ 2δ +
1

T

T∫
0

λD(y1, y2)dt = 2δ + λD(y1, y2).

As the value δ is chosen arbitrarily, in a limit we will receive:

|f(x)| ≤M, D(f(y1), f(y2)) ≤ λD(y1, y2).

From Definition 5, we have

x(t) = x0 + ε

t∫
0

f(s, x(s))ds, (6)

y(t) = x0 + ε

t∫
0

f(y(s))ds. (7)
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Then, we obtain

D(x(t), y(t)) ≤ ελ
t∫

0

D(x(s), y(s))ds+ εD

 t∫
0

f(s, y(s))ds,

t∫
0

f(y(s))ds

 . (8)

Let us consider the division 0 = t0 < t1 < . . . < tm = L
ε of [0, Lε ] such that ti+1− ti = L

εm , i = 0, 1, . . . ,m and
let yi = y(ti), i = 0, 1, . . . ,m.

Let t ∈ (tk, tk+1) for any k ∈ {0, 1, . . . ,m− 1}. Then

εD

 t∫
0

f(s, y(s))ds,

t∫
0

f(y(s))ds

 ≤ ε k−1∑
i=0

ti+1∫
ti

D(f(τ, y(τ)), f(τ, yi))dτ

+ε

k−1∑
i=0

ti+1∫
ti

D(f(yi), f(y(τ)))dτ + ε

k−1∑
i=0

D

 ti+1∫
0

f(τ, yi)dτ,

ti+1∫
0

f(yi)dτ


+ε

k∑
i=1

D

 ti∫
0

f(τ, yi)dτ,

ti∫
0

f(yi)dτ

+D

 t∫
0

f(τ, yk)dτ,

t∫
0

f(yk)dτ

 ,

ε

k−1∑
i=0

ti+1∫
ti

D(f(yi), f(y(τ)))dτ ≤ ML2λ

m
,

ε

k−1∑
i=0

ti+1∫
ti

D(f(τ, y(τ)), f(τ, yi))dτ ≤
ML2λ

m
.

From the condition 2) of the theorem there exists an increasing function ϕ(t), such that
a) lim

t→∞
ϕ(t) = 0;

b) D

(
t∫
0

f(τ, x)dτ,
t∫
0

f(x)dτ

)
< tϕ(t) for all x ∈ P.

Therefore,

εD

 t∫
0

f(τ, x)dτ,

t∫
0

f(x)dτ

 < εtϕ(t) ≤ F (ε),

where F (ε) = sup
τ∈[0,L]

(τϕ(τ/ε)), τ = εt and so, lim
ε→0

F (ε) = 0.

Hence, we obtain

ε

k−1∑
i=0

D

 ti+1∫
0

f(τ, yi)dτ,

ti+1∫
0

f(yi)dτ

+ ε

k∑
i=1

D

 ti∫
0

f(τ, yi)dτ,

ti∫
0

f(yi)dτ



+D

 t∫
0

f(τ, yk)dτ,

t∫
0

f(yk)dτ

 ≤ 2mF (ε)

and therefore,

εD

 t∫
0

f(s, y(s))ds,

t∫
0

f(y(s))ds

 ≤ 2ML2λ

m
+ 2mF (ε). (9)

From the estimates (8), (9) and Gronwall-Bellman’s lemma follows that

D(x(t), y(t)) ≤ ε exp(λL)D

 t∫
0

f(τ, y(τ))dτ,

t∫
0

f(y(τ))dτ


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≤ exp(λL)
2ML2λ

m
+ exp(λL)2mF (ε).

We take m such that

exp(λL)
λML2

m
≤ η/2. (10)

After that, we choose ε0 such that for all ε ∈ (0, ε0]

exp(λL)2mF (ε) ≤ η/2. (11)

From (8),(10) and (11), we obtain (5). The proof is completed. �
Remark If the condition 3) doesn’t hold it can be replaced by the following condition:

3’) for any x0 ∈ P ′ ⊂ P the solutions of the differential equation (4) together with a ρ−neighborhood
belong to the domain P for τ ∈ [0, T1], where τ = εt.

Then for any η ∈ (0, ρ] and L ∈ [0, T1] there exists ε0(η, L) > 0 such that for all ε ∈ (0, ε0] and t ∈ [0, Lε−1]
the condition (5) of the theorem fulfill. Let’s show outcomes of the given paper on several modelling examples:
Example We will consider now the averaging scheme for a linear Cauchy problem of the second order with
small parameter:

x′ = ε(A(t)x+B(t)), x(0) = x0, (12)

where u : I → E2, A : I → R2×2, B : I → E2.

Let A(t) =

(
cos(t) 1
−1 sin(t)

)
, B(t) such that Bα(t) = K40(1−α)| sin(t)|

(
10 sin(t)
10 cos(t)

)
,

x0(ξ) =


√

1− (ξ1 − 1)2 − (ξ2 − 1)2, ξ ∈ S1

(
1
1

)
,

0, ξ /∈ S1

(
1
1

)
.

Along with the differential equation (12) we will consider the averaged differential equation

x̄′ = ε(Āx̄+ B̄), x(0) = x0, (13)

where Ā =

(
0 1
−1 0

)
, B̄ such that B̄α = K40(1−α)/π

(
10
10

)
.

Further in drawings graphs of solutions of the initial (12) and averaged (13) systems and also as ”floating”
character of a constant term of an initial problem is exhibited on dynamics drawing the α−level sets are
reduced.

Figure 1: Fuzzy solutions x(t) (blue) and x̄(t) (red) for ε = 0.1, T = 10
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Figure 2: Fuzzy solutions x(t) (blue) and x̄(t) (red) for ε = 0.01, T = 10

4 Conclusions

This result generalize the results of M. Kisielewicz [13], A.V. Plotnikov [26, 27] for the differential equations
with the Hukuhara’s derivative and M. M. Hapaev [6] for the ordinary differential equations with small
parameter. Also, in this article, we expand a circle of systems to which it is possible to apply Krylov-
Bogolyubov method of averaging.

Figure 3: Dynamics drawing the α−level sets of the fuzzy solutions x(t) (blue) and x̄(t) (red) for α = 0.5, ε = 0.01
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