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Abstract

A method for online estimation of the volatility when observing a stock price is proposed. This is
based on modeling the volatility dynamics as a stochastic differential equation that is constructed using
a technique from the control theory. Identification of the model parameters using the observations is
proposed afterwards. It is based on some stochastic calculus. Volatility estimation is then reformulated
as a filtering problem. An alternative filter instead of the optimal one is proposed since the latter is not
computationally feasible. It is based on samples (or particles) drawn by discretization of the stochastic
volatility model. Besides, the main feature that makes online particle filtering possible is analytic resolu-
tion of the Fokker-Planck equation for the current return. To the best of our knowledge, these techniques
for modeling and estimating the volatility are quiet novel. The method is implemented on real data: the
Heng Seng index price; this shows a period of relatively high volatility that corresponds obviously to the
Asiatic crisis of October 1997.
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1 Introduction

Let S = (S;)ier, be an Ri-valued semimartingale based on a filtered probability space (Q, F, (F¢)ter, , IP)
which is assumed to be continuous. The process S is interpreted to model the price of a stock. A basic
problem arising in Mathematical Finance is to estimate the price volatility, i.e. the square of the parameter
o in the following stochastic differential equation

dSt = uSt dt + O'St th

where W = (W) er, is @ Wiener process. It turns out that the assumption of a constant volatility does not
hold in practice. Even to the most casual observer of the market, it should be clear that volatility is a random
function of time which we denote o7. It6’s formula for the return y; = log(S;/Sp) yields

2

dyt:(u—(;t) dt+o,dW; t>0 (1)

together with the initial condition yy = 0.

The main objective is to estimate in discrete real-time one particular sample path of the volatility process
using one observed sample path of the return. As regards the drift u, it is constant but unknown. Under
the so-called risk-neutral measure, the drift is a riskless rate which is well known; actually one finds that u
does not cancel out, for instance, when calculating conditional expectations in a filtering problem. For this
argument no change of measure is required, we work directly in the original measure IP, and p has to be
estimated from the observed sample path of the return as well.
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2 A Model for the Stochastic Volatility

Let (zt)iwer, be an arbitrary R-valued process; at the moment, this is not the unknown process o7 of in-

stantaneous volatility. Let us assume prior information about the process z;: wide sense stationarity and a
parametric model for its covariance function

v(7)=Dexp(-alr]) T€R

for some constants D, « > 0. Then the spectral density of z; is given by the formula

1 1 2D«
r = — f —jwr)dr = —
(W) =5 J y(T)exp(-jwr)dr = o ———
where j = /-1. The spectral density I'(w) may be rewritten as
1 |HGW) [
D(w)= — | = weR
27 | F(jw)

where H(jw) = v2D « and F(jw) = jw + a. Notice now that

H(s)
F(s)

B(s) = eC

represents the transfer function of some temporally homogeneous linear filter; this filter is furthermore stable
as the root of F(s) is in the left half-plane of the complex variable s. Recalling that 1/27 is the spectral
density of a white noise with unit intensity, we come to the conclusion that

Zt — IE [Zt]

may be considered as the response of the filter whose transfer function is ®(s), to a zero-mean white noise
with unit intensity. The differential equation describing such a filter is

u(t) + au(t) = V2D aw(t)

where w(t) and u(t) are respectively the input and the output of the filter. Setting m = [E[z;] and z;—m = u(t)
yields an unbounded diffusion process on IR:

dzy = —a(zy —m) dt + V2Da dW; (2)

Right now it is easy to see that is linear and thus z; is Gaussian. For finding the first and second
order moments of the process solving a linear stochastic differential equation (SDE) the reference [5] is our
key source. The ordinary differential equation (ODE) for the mean gives

[E.[2:]=(x-m)exp(-at)+m xeR.

Thus for any = € R,
tlim [E, [2:] =m.

The ODE for the variance gives
E, [27] - . [2]° = D(1 -exp(-at)) zeR.

Thus for any x € R,
lim [E, [22] -, [2]° = D.

The ODE for the covariance function

K. (t+1,t) =, [2(t+7)z(t)] - E. [zt +T)] Ex [2(t)] z€R
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yields
exp(—at)D (1 -exp(-at)) 720

exp(ar)D (1 - exp(—ar) exp(-at)) 7<0 telR,.

K, (t+T1,t)= {
Then
tlim K. (t+7,t)=Dexp(-alr]) T€R.

Since z; is Gaussian, the convergence of the its mean and variance as t - oo means the convergence in law (or
weak convergence) of z; as t - oo to a Gaussian distribution with mean m and variance D. In other words z;
is ergodic with ergodic distribution density

1 2
p.(x) = \/27T_Dexp ~5D zeR

and asymptotic covariance function
k.(7) = Dexp(-a|r]) 7€l

In case where m = 0 the asymptotic covariance function coincides with the asymptotic correlation function.
The asymptotic variance is also the asymptotic second order moment, and thus

lim IE, [2] = D.

In this case, with given initial condition zgy, consider the process |z, i.e., the reflected diffusion process, written
T¢. x¢ 1S a solution of
dxs = —axe dt +V2DadW, t>0 (3)

with reflection on the boundary {0} of its state space IR,. Starting from any fixed point strictly greater than
zero, x; reaches this boundary by a predictable stopping time with finite expectation because of the negative
sign of the drift. The initial condition xg is a random variable with known distribution since xg = |z9|. We
claim that z; is ergodic with ergodic distribution

prz(JU) dx

7T(A) = _[|R+pz(x) dﬂ?

AeB(R,)

because an invariant measure for z, is an invariant measure for |z too. But

1
(z)dz = ~.
fm+p($)$ 5

Therefore the ergodic distribution density of x; is given by

2 2
x
p(x) = mexp{—w} z€lR,.

This is beyond our expectation in view of the required wide sense stationarity. It follows that for each x € IR,
for any bounded continuous function f on IR,,

lim B, [f(x)]= [ f@)p(r)do

and in particular
2D

V2D .

Obviously, the asymptotic second order moment for x; coincides with that of z;, namely

Jim I, [2] =

lim [E[7] = lim [E[2] = D.
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Let us now compute r(7), the asymptotic correlation function of zy, for 7 # 0.

E[z(t+7)x(t)] = IE[|z2(t+7)z(t)]
= IE[z(t+7)2(t)] IP{even passage number by 0}
—E[z(t + 7)z(t)] IP {odd passage number by 0}

- Cexp(-alr]) ast - o0

for some constant 0 < C' < D. Note the discontinuity of r(7) at 7 =0:

7’(’7’):{ Cexp(-alr]) :ig

It should be noted that this type of correlation function may include short term or long-term memory in the
volatility. We shall freely call the process xt or equivalently the SDE (3)) our stochastic volatility model. We
Just have to denote the Wiener process in dlfferently, say W since 1t is independent of the Wiener process

m

3 Filtering

Now we consider the filtering problem associated to the couple (z¢,y:): we have noisy nonlinear observations
of z;, the R-valued discrete-time process of returns (yn )n-1,2,... indexed at irregularly spaced instants t1,ts, ....
The observation times are assumed to be rigourously determined. The observations process is related to the
state process (z):r, via the conditional distribution

IP{yn€F|y17"'7yn—1a(xt:OStStn)} nx1

for I' a Borel-measurable set from IR. For homogeneity of notation we set ¢y = 0 so that yn-o = y=t, = 0. Now
look at the distribution above and recall that v, = y(t,) and that the process y; solves the SDE

dyt:(u—%)dm\/x_tdwt Yo = 0. (4)
This is where o is denoted /x;. For t > ¢,

t t
yt:yn,1+/ (M—E)ds+f Jzs AW, (5)
tn,1 2 tn—l
and thus

P{yn € Tlyr, .y Yn-1, (@t : 0t <ty)} = P{yn €Dyn-1, (1 b1 <t <L)}

Given a sample path of (x4):, ,<t<t, and the observation yn-1, (i), ,<t<t, is a Markov process with state
space R satisfying . This leads to the central concept of this section: the Fokker-Planck equation [2] 3] [4] [6].
The domain of the Fokker-Planck operator:

15) z; 02
Lepp(y,t) = (5 - u) 85 (y,t) + Etan;(y’ £)

is the set of distribution densities on (IR, B(R)) under IP. Given a sample path of (z:):, ,<t<t, and the
observation y,_1, the distribution density p(y,t) of y; solves the Fokker-Planck equation

P
L) = Lerp(yt) s <t<ty (6)
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with the initial condition p(y,t,-1) = 6(y—yn-1)- The formal solution of the above partial differential equation
is

p(y,t) =exp{(t —tn-1)Lrp} p(y,tn-1)-

Since Lpp is a sum of two non commuting operators, the exponential operator exp {(¢ - t,,-1)Lrp} cannot be
expressed as simple products of terms involving each of these. Nevertheless, the solution of the Fokker-Planck
equation is obtained using the Trotter product formula [7]. For two arbitrary operators A and B

exp{t(A+ B)} = 7}1_{210 (exp{%A} exp {%B})n

Then the solution of @ is the limit as n — oo of

B I A

where
Tt Tt

p:?_,uﬂ 925

For algebraic manipulations we use the integral representation of the delta function and write the solution of

@as

: Lotee , .
p(y;t) = lim ©" —— [ exp{-jzy} exp{jzyn-1}dz
where

o - exp{p(t—tn—l) d}exp{g(t—tn—l) dz} )

n dy n dy?

We claim that )
t—tn1) d _ t—t,_ _
exp {Q( ) } exp{-jzy} = exp {—Q( ) 2% - JZ?J} ,
n

n dy?
t - t’ﬂ* d . t - tn— . .
eXp{p(l)}exp{—Jzy} = exp{—p(l)Jz —Jzy} :
n dy n
Therefore
t—t,_ t—tpn1) . .
O exp{—jzy} :eXp{—Q( ) 2o 1)JZ—Jzy},
n n
0" exp{—jzy} = exp {-o(t — tn_1)2* = p(t —tn_1)jz - jzy}
and thus

1 +o00 )
D) =5 [ expl-e(t = ta)2 + 2 [y + gaor - p(t ~ ta-1)]} d
Let Z be a Gaussian random variable and t(u), u € R, be its characteristic function:

P(u) = E[exp{juZ}]

_ (27r\Var[Z])_% [;ooexp{juz}e)(p{—(z\:/:i[[zz]])}dz

2
= exp {quE[Z] - uQ\Var[Z]}.

Then
1

p(y,t) = m V(=Y +Yn-1 = p(t —tn-1))
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with
1

E[Z]=0 War[Z]= YT

and hence we obtain for ¢,,_1 <t <t,

1
p(y,t) = mexp{—

Conditional Density Characterization: The Optimal Filter

[_y + Yn-1 + (:U/ - %) (t - tn—l)]2
224 (t —tp_1) '

The optimal estimate — in the sense of a least mean square error — of f(x;) given the observations yi,...,yn-1
up to time t is the conditional expectation

ELf(xe)lyrs o Yn-1] th1<t<t, n21

for all reasonable functions f on IR,. We assume that IP{z; < x|y, ..., yn—1} possesses a density with respect
to the Lebesgue measure A on RR,:

(@) - dP {z¢ < xly1, .., Yn-1}
" A(dz)
Now look at the SDE , the Fokker-Planck operator for x; is
Lppp(x) = ap(x) + a(z -m)p'(z) + Dap” (x).
The domain of this operator is the set of distribution densities p(x) on (R4, B(IR,)), under IP, satisfying
mp(0) — Dp'(0) = 0.

This is due to the reflection of the process x; on the boundary {0} of its state space R,.
It follows that the posterior distribution density II,, (x) for t,—1 <t <tp,n>1,solves the Fokker-
Planck equation

Yi,--Yn-1

%(axﬁ) =Lppp(z,t) th1 <t<ty,

ie.
2
%(m,t) = ap(x,t) +a(x—m)%(x,t) +Da%(m,t) (7)
with the initial condition
(@ tn-1) = Mot Dlys,.cynr (T) (8)
and the boundary condition
mp(0,t) — D@(O,t) =0. (9)
ox

This is a static relation for x = 0, i.e., it holds for any ¢ € [t,_1,tn[-

At each observation instant ¢,, n > 1, Il ¢, )y, ...,y (¥) solves the Bayes rule

Hw(tn)\yhm,yn (x) o< Hz(t;)lyl,m,ynq (I)Hynlyh...,ynq’x(tn)=w(yn) (10)

where

2
1 [_yn + Yn-1 + (‘LL - %)(tn - tn—l)]
Wy iy ynro(tn)=z(Yn) = ————=1exp |-

bt a(tn) = (Un) 2nx(ty —tno1) { 22 (ty —tp-1)

and Il (=) yy.,....yn-, () is the solution of (7H9) as ¢ 1 ¢,.
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4 Identification

It follows from that the variation process [y]; of y; is given by

t
= sd 3
[y]s fo zsds

[2%
[y]tn—[y]tn,I:/ zsds n=1,2, ...

tn—l

thus

On the other hand, so long as every duration between two successive observations is small, the following
approximation holds

[y]e, » zl<y Cyi)?

3

Thus ,
[ aads ® (=)
n-1

i.e., the couple of series below coincide approximatively

t'Vl
5= {[tn—l o ds}n:1 2 5= {(y" B yml)2}n:1,2,.,,

and so do their first and second order moments. The following is the computation of the mean and the

correlation function for the series S of aggregations of the instantaneous volatility on the observation intervals.
To do this we need to have t,, —t,_1 = § for each n =1,2,... and as mentioned above § must be small (we set

0 =1 time unit).
tn 2D
IE[ f 24 ds] -
tn-1 V2rD

tn tn—k tn tn—k
IE f Tu du,f Tydvu|= f f re(u—v)dudv.
tn-1 tn—k-1 tn-1 Jlp_k-1

If we replace 7, (u —v) by its expression, we obtain the following formula for k£ =1,2, ...

tn tn—k
IE[/ xudu,/ xvdv]:
trn-1 tn—k-1

% (exp{-ad(k -1)} — 2exp{-adk} + exp{-ad(k+1)}). (11)

and for k=1,2,...

It follows that C' and o may be obtained by least squares of the difference between the correlation function
of S’, estimated from the observations, and the correlation function given by formula .
The following gives an approximation for the drift parameter y in . We have

tn tn
Yn — Yn-1 :/ (,LL—%) d8+f Vs dWs.
tn-1

tn-1

Then
1 tn D6
E [y, - yp_1] = 5—45“ :Esds]: 5— ,
(Yn = Yn-1] = 1 &1, 0 D
and thus
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The Hang Seng index price of the market of Hong Kong is observed during 3191 successive trading days
from 1995 to 2007. This is plotted in Figure [I} Figure [2] shows the daily returns

S
Yn = Yn-1= log(t") n=1,..,3190.
Sy

n-1

The empirical mean of S’ yields an approximation for the second order moment D of 1.0977e — 007. This
approximation together with the empirical mean of the daily returns yield an approximation for the drift u
of 5.4008¢ — 004. The constant C' and the rate a that give a good fitting between the correlation function of
S and its approximation are 3.5926e — 007 and 0.0857 respectively. The model for the stochastic volatility of
the stock is thus calibrated, and we now go back to filtering.

x10*
35 : T . . T T

Daily Stock Price

05 L ' L L L L
0 500 1000 1500 2000 2500 3000 3500

Trading Days

Figure 1: The observed sample path for the daily price of the Hang Seng index

0.2

015

01

o
Q
<]

Daily Returns
o

-0.05F

-01}F

-0.15 L 1 L L L L
0 500 1000 1500 2000 2500 3000 3500

Trading Days

Figure 2: The observed sample path for the daily return

5 A Monte-Carlo Particle Filter

The true filter (7H10) which is optimal in a mean square sense involves a resolution of the Fokker-Planck
equation. Both analytic and numerical solutions for this partial differential equation are computationally
intractable. This drives us to an alternative Monte-Carlo filter [I]. We wish to approximate the posterior
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distribution as a weighted sum of random Dirac measures: for I' a Borel-measurable set from R,

K
P{z;el|y1, ..., Yn-1} Z wreg, () tpo1 <t<t, n>1
k=1

where the particles & are independent identically distributed random variables with “the same” law as xy;
these particles are indeed samples drawn from the Euler discretization of the SDE . Here we use the well
known Euler scheme since there isn’t a significant gain with more sophisticated discretization schemes. Then,
for any function f on R,

K
|E[f(xt)|y17"'7yn—1:| ~ Zwkf(gk) tn—l St<tn n>1.
k=1

The weights {wg }x-1,... .k are updated only as and when an observation y, proceeds, each one according
to the likelihood of its corresponding particle, i.e., at each observation time ¢,

_ Hyn‘ylv---ayn—hm(tn):fk (yn)
- K
L=t My oy r e (t) =60 (Yn)

Wk

where {&;}r-1,... .k are samples with the same law as z(t,).

Besides sampling, there may be (importance) resampling at each observation time: the set of particles is
updated for removing particles with small weights and duplicating those with important weights. We simulate
K new iid random variables according to the distribution

K
Z Wk €¢y, -
k=1

Obviously, the new particles have new weights and thus give a new approximation for the posterior distribu-
tion. On the other hand, these new particles are used to initialize the Euler discretization scheme for the next
sampling.

The following is the remainder of implementation details of the Monte-Carlo particle filter.
e Number of particles: K =1000
e Time step of the Euler discretization: 0.01 time unit

e In practice the distribution for the initial volatility x( is not available, here we take a uniform distribution
on [g,1] (¢ > 0 must be small); its density satisfies the imposed condition @[)

The sample path of the square root volatility (in percent) is displayed in Figure This sample path
exhibits relatively high volatilities that are clustered together round the 697th trading day; this corresponds
to the Asian financial crisis of October 1997.

6 Conclusion

Probabilistic management of uncertainty in dynamical systems can be illustrated with a financial engineering
application: volatility estimation. We treat volatility as a stochastic process and construct a filter that is
recursive and pathwise in observations. These two aspects are designated with the term online, or real-time,
filtering. The filter output is one particular sample path of the volatility process. The main feature that
makes online particle filtering possible is analytic resolution of a Fokker-Planck equation. Our method does
not require data transformation, such as removing seasonality. The conformity between the implementation
result—within a low simulation cost—and some practical issues prove the performance of the method to my
satisfaction.
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Figure 3: The estimated sample path for the volatility of the Hang Seng index
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