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Abstract 

 
In this article, the adaptive control scheme with only two controllers is applied to synchronization of the fractional-

order hyperchaotic Lü system with unknown parameters. Based on fractional stability theory of fractional-order 
systems, adaptive controllers and the parameter updating rule are designed. Numerical simulations confirm the 
effectiveness of the proposed synchronization approaches. Especially, the circuit experiment simulations also 
demonstrate that the experimental results are in agreement with numerical simulations. 
© 2012 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
The fractional calculus dates from 17th century, but its applications to physics, engineering and control processing are 
just a recent subject of interest [2, 7]. Many systems exist in interdisciplinary fields, such as dielectric polarization 
[15], viscoelastic systems [8], quantitative finance [10] and quantum evolution of complex systems [9]. It is known 
that some fractional systems behave chaotically, for example, the fractional-order Chua’s circuit [6], the fractional-
order unified chaotic system [17], the fractional-order Rössler system and so forth [11]. 

On the other hand, synchronization of chaotic fractional-order system has recently received considerable 
attention owing to its potential applications in secure communication and control processing, for example, Zhang et al. 
adopted Pecora-Carroll method, the linear feedback control and the bidirectional coupling to realize chaotic 
synchronization of the Rucklidge system [19]; Wang et al. analysis the synchronization conditions of the fractional 
order chaotic systems with activation feedback method [16]; Lu proposed to realize the synchronization of the 
fractional order unified chaotic systems using state observer in Ref.[12]; Wu investigate the synchronization of 
fractional-order Chen hyperchaotic systems based on Laplace transform theory [18].To our best knowledge, we can 
find that some methods such as linearization feedback control method and active control scheme, eliminate nonlinear 
terms of systems when designing controllers, which make the coefficient matrix of the system to be the constant 
matrix. Although this scheme can control the fractional-order chaotic system to synchronize, it costs too much. The 
adaptive control method proposed in this paper can achieve synchronization of fractional-order hyperchaotic systems 
only using two controllers, and we can see the feasibility of this technique. Moreover, since hyperchaotic systems 
have two positive Lyapunov exponents at least. The trajectories of hyperchaotic systems show more complex 
dynamical behaviors because they extend towards many directions. Complex hypechaotic signal can increase the 
reliability of encryption technique in chaotic secure communication. Therefore, study on synchronization of the 
fractional-order hyperchaotic systems will be a crutial question for discussion in aspects of chaos application. 

In the present paper, we propose the adaptive synchronization method with only two controllers for the 
fractional-order hyperchaotic Lü systems with unknown parameters. This scheme, based on stability theory of 

                                                      
* Corresponding author. Email: danny91184@163.com  (S. Miao).   



 S. Miao et al.: Adaptive Synchronization of the Fractional-Order LÜ Hyperchaotic System 

 

12 

fractional-order systems is simple, theoretically rigorous and convenient to realize synchronization. What’s more, not 
only do numerical simulations be performed to verify the effectiveness of the proposed synchronization techniques, 
but circuit experiment simulation results show the effectiveness of the presented method. 
 

2 Fractional Calculus Predictor-Corrector Algorithm 
 
There are several definitions of a fractional differential system. The most-used one in engineering field may be the 
Riemann-Liouville fractional derivatives, defined by  

( )( ) ( ), 0m mD x t J x t  
                                                                  (1) 

where [ ]m  , i.e., m is the first integer which is not less than  . ( 0)J     is the  -order Riemann-Liouville 

integral operator with expression: 
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Here  stands for the Gamma function. The operator D
 is generally called “ -order Caputo differential 

operator” [3]. 
According to Refs.[4-5], the predictor-corrector method, namely the generalized Adams-Bashforth-Moulton 

method is described. 
Consider the following fractal order differential equations: 
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0(0) , 0,1, , 1.k ky y k m                                                       (3) 

This is equivalent to the following Volterra integral equations: 
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Set h T N , , 0,1,2,nt nh n N Z    . Then, one can discrete this equation as 
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The algorithm convergence order of an error series in the above numerical scheme is p, that is 

0,1, ,max ( ) ( ) ( )p
j N j h jy t y t O h   , where min(2,1 )p   .Numerical solution of a fractional-order system can be 

determined by applying the mentioned method. 
 

3 Synchronization via Adaptive Control 
 
Recently, Min et al. proposed the fractional-order Lü hyperchaotic systems in Ref. [14] which is described by 
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where q is the fractional-order, when q=0.95, (a, b, c, d) = (36, 3, 20, 1), the system behaves hyperchaotic. Fig.1 
exhibits hyperchatioc attractor. 

 
Figure 1: Hyperchaotic attractors of the fractional-order Lü system with the order q=0.95 

 

3.1  Design of Controllers 
 

In this section, we introduce adaptive control method synchronize two identical hyperchaotic fractional-order Lü 
system. Here, only two controllers are adopted. The drive system is described by 
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whereas the response system is 
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                                                                           (8) 

where a1, b1, c1, d1 are unknown parameters, which need to be estimated in the response system, u=[u1, u2]
T are 

controllers which are to be designed. 
Now, we define the state errors between system (7) and (8) as e1= x2- x1, e2= y2- y1, e3= z2- z1, e4= w2- w1. 

Subtraction the system (7) from system (8), the error dynamical system can be expressed by 
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where ea= a1- a, eb=b1- b, ec= c1- c, ed= d1- d. 
Our objective is to design effective controllers u and the update law of parameters to make the response system 

(8) and drive system (7) to achieve synchronization. We choose the controllers (10) and the update law of parameters 
(11) as follows: 
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where *
1 1 1ke k k  , *

2 2 2ke k k  , *
ik (i=1,2) are real constants. 

And the update law of parameters: 

21
2

22
4

1 1 1

1 3

1 2

1 4

, ( 0)

, ( 0)

( )

.

q

q

q

q

q
a

q

q
b

q

q
c

q

q
b

q

d k
e

dt

d k
e

dt

d e
y x e

dt

d e
z e

dt

d e
y e

dt

d e
w e

dt

 

 


 




 



  

 

  

  

                                                                          (11) 

Theorem For any initial conditions, the drive systems (7) and response system (8) are globally asymptotically 
synchronized by the control law (10) and update law (11). 
Proof: Combining the control law (10), update law (11) and error system, we can get such that: 
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Obviously, 0   , and any eigenvalue of matrix A is satisfying | arg( ) | 0.5i q  , based on the stability 

theory of the fractional-order systems [13], the error ei(i=1,2,3,4) will converge to zero as t   which implies that 
the system (7) and (8) are globally synchronized. 

 
3.2  Numerical Simulation 

 
In the numerical simulation with the predictor-corrector method, select the true values of  “unknown” parameters of 
the drive system as a=36,  b=3,  c=20, and  d=1, and take the initial estimated parameters as a1(0)=-5,  b1(0)=-5/3,  
c1(0)=-18,  and d1(0)=-0.9;  we choose 1   , k1(0)= k2(0)=0. Also, the initial condition x1(0)=3, y1(0)=-4, z1(0)=2, 

w1(0)=2, x2(0)=-3, y2(0)=4, z2(0)=-2, w2(0)=-2. From Fig.2.(a), it can be seen that the synchronization error converges 
to zero. System (7) and  (8) have achieved absolute synchronization. In Fig.2 (b) and (c), the estimates a1, b1, c1, d1 of 
the unknown parameters converge to a1=a=36, b1=b=3, c1=c=20, d1=d=1, gradually with time increase, and k1, k2 will 
converge to constant, respectively, as t  . 
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Figure 2: The synchronization errors between system (7) and (8) and the estimate value 

of parameters a1, b1, c1, d1, k1 and k2 with time t 
 

3.3  Circuit Experimental Verification 
 

As is well known, using the standard integer order operators to approximate the fractional operators is an effective 
scheme to solve this kind of problem. In Ref.[1], approximations for 1 / qs  with q=0.1-0.9 in step size 0.1 were given 
with errors of approximately 2dB. Here, we take   q=0.95 as fractional order of hyperchaotic system. The following 
transfer function approximation method presented in Ref. [11]: 
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where C0 is the unit parameter. Letting C0=1 F and F(s)=H(s)C0 = 0.951/ s and comparing Eq.(15) with Expression of 
0.951 / s , we can obtain the values of resistances and capacitances as follows:R1=717.04 , R2=1514 k , R3=15 k , 

C1=1.2678μF , C2=4.5933μF , C3=3.6423μF . AD633 is used as multiplier with an output coefficient of 0.1, LM741 

chip is an operational amplifier. Other values of resistances in circuit are indicated in Fig.4. For simplicity, we choose 
the parameters of the drive system and response system with Ra= Ra1=2.78 k , Rb= Rb1=33.3 k , Rc= Rc1=5 k , Rd= 
Rd1=100 k . The parts in the dashed line are the circuitry of controller u, Rk1, Rk2 can be adjustable. The circuit 
simulation results are depicted in Fig.5. From it, we can find that the slope of state variables equals 1. It is clear that 
the drive system (7) and response system (8) achieve synchronization. 

 
Figure 3: Circuit diagram of fractional-order 1/s0.95 
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Figure 4: Circuit of synchronization between system (7) and (8) 
 

                 
a. x1- x2 (2V/div)                                                b. y1- y2 (2V/div) 

                
c. z1- z2 (2V/div)                                                d. w1- w2 (5V/div) 

Figure 5: Circuit experiment of states synchronization between system (7) and (8) 
 

Controllers U 
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4 Conclusion 
 
In this paper, we have studied the synchronization of the fractional-order Lü hyperchaotic systems applying adaptive 
approaches based on the stability theory of the fractional-order system. The synchronization techniques are simple, 
theoretically rigorous and convenient to realize synchronization. Numerical simulations are given to verify the 
effectiveness of the proposed synchronization schemes, and also, circuit experiment simulation results are in 
agreement with numerical simulations. Also, this method can also be extended to other hyperchaotic fractional-order 
differential systems. 
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