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Abstract

In this paper we propose a fuzzy risk measure. Risk measure is an important concept in order to
analyze risk under uncertainty. However, in the real world, we need more flexible risk measures including
human intelligence. In order to overcome this difficulty we consider the fuzzy risk measure using non-
precise a-priori densities.
c⃝2011 World Academic Press, UK. All rights reserved.
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1 Introduction

We consider a stochastic modelX ∼ f(·|θ), θ ∈ Θ with continuous parameter space Θ, a-priori density function
π(θ), where X ∈ L1(Ω,A, P ) on some probability space (Ω,A, P ). In classical statistical methods, we usually
use only one density function to apply maximum likelihood estimation or Bayesian estimation. However,
Viertl and Hareter [10] pointed out that this setting is insufficient because precise a-priori distributions are
questionable concerning their justification. This is why they proposed non-precise a-priori densities π̃(θ)
whose precise definition is given by Definition 1.

On the other hand, in recent years some risk measures have been generated and analyzed by an economically
motivated optimization problem, for example, value at risk(V@R), conditional value-at-risk (CV@R) [8],
convex risk of measure [3] and so on. In particular CV@R is a very useful and important criterion when

dealing with real problems, see [5, 6, 9]. In this paper we propose a fuzzy conditional value-at-risk C̃V@R
using a non-precise density π̃ in order to handle risk more flexibly. As far as we know, Yoshida [11] firstly
investigated risk measures under fuzzy environment. However prior distributions were not considered in this
paper. We believe that introducing non-precise a priori densities for risk analysis is very useful in order to
analyze more practical problems.

2 Preliminaries

Let R,Rn and Rm×n be the sets of real numbers, real n-dimensional column vectors and real m×n matrices,
respectively. Let B(R) be all Borel sets on R. The sets Rn and Rm×n are endowed with the norm ∥ · ∥, where
for x = (x(1), . . . , x(n)) ∈ Rn, ∥x∥ =

∑n
j=1 |x(j)| and for y = (yij) ∈ Rm×n, ∥y∥ = max1≤i≤m

∑n
j=1 |yij |.

For any set X, let F(X) be the set of all fuzzy sets X → [0, 1]. The α-cut of x̃ ∈ F(X) is given by
x̃α := {x ∈ X|x̃(x) ≥ α}(α ∈ (0, 1]) and x̃0 := cl{x ∈ X|x̃(x) > 0}, where cl is a closure of a set. Let R̃ be
the set of all fuzzy numbers, i.e., r̃ ∈ R̃ means that r̃ ∈ F(R) is normal, upper semi-continuous and fuzzy
convex and has a compact support. Let C be the set of all bounded and closed intervals of R. Then, for
r̃ ∈ F(R), it holds that r̃ ∈ R̃ if and only if r̃ normal and r̃α ∈ C for α ∈ [0, 1]. So, for r̃ ∈ R̃, we write
r̃α = [r̃−α , r̃

+
α ](α ∈ [0, 1]). We use the extension principle [2] by Zadeh to define arithmetics with fuzzy numbers

and fuzzy functions f̃(x) ∈ R̃ for each x ∈ R, respectively. Here, we will give a partial order 4 on C by the
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definition: For [a, b], [c, d] ∈ C,

[a, b] 4 [c, d] if a ≤ c and b ≤ d,

[a, b] ≺ [c, d] if [a, b] 4 [c, d] and [a, b] ̸= [c, d].

This partial order 4 on C is extended to that of R̃, called fuzzy max order,

ũ 4 ṽ if ũα 4 ṽα for all α ∈ [0, 1],

ũ ≺ ṽ if ũ 4 ṽ and ũ ̸= ṽ.

Also, as a further extension, the partial order for fuzzy functions [10] can be defined similarly. The Hausdorff
metric on C is denoted by δ, i.e.,

δ([a, b], [c, d]) = |a− c| ∨ |b− d| for [a, b], [c, d] ∈ C.

This metric can be extended to R̃ by

δ(ũ, ṽ) = sup
α∈[0,1]

δ((ũ)α, (ṽ)α)

for ũ, ṽ ∈ R̃. Then, it is known that the metric space (R̃n, δ) is complete [1].

Lemma 1 ([2]) Let x̃(x) = supα∈[0,1] αIAα(x), where Aβ ⊂ Aγ for Aβ , Aγ(0 ≤ γ ≤ β ≤ 1) ∈ C and

∩α<βAα = Aβ . Then, x̃ ∈ R̃ and x̃α = Aα.

This lemma is very popular so we omit the proof.
Owing to this decomposition lemma, we can define a fuzzy number if we can construct its α−cut. Referring

to [10], we define fuzzy integral F̃ for the fuzzy functions f̃ , non-precise densities π̃ and the fuzzy probability
P̃ (A), respectively.

Definition 1 ([10]) Assume that f̃−
α (x) and f̃+

α (x) are integrable functions on R. Then fuzzy integral is
defined by

F̃ = (F )

∫ b

a

f̃(x)dx,

where F̃−
α :=

∫ b

a
f̃−
α (x)dx and F̃+

α :=
∫ b

a
f̃+
α (x)dx for all α ∈ (0, 1] and a condition for π̃ is

(F )

∫
R
π̃(x)dx = 1̃

with 1̃ ∈ R̃ and 1 ∈ 1̃1.

Definition 2 ([10]) Let Sα = {f : f is a probability density s.t.π̃−
α (x) ≤ f(x) ≤ π̃+

α (x) for all x ∈ R}. The
α−cut [P̃−

α , P̃+
α ] of the fuzzy probability P̃ (A) is defined by

P̃+
α (A) = sup

f∈Sα

∫
A

f(x)dx =

{
1−

∫
Ac π̃

−
α (x)dx if

∫
A
π̃+
α (x)dx+

∫
Ac π̃

−
α (x)dx > 1,∫

A
π̃+
α (x)dx else,

P̃−
α (A) = inf

f∈Sα

∫
A

f(x)dx =

{∫
A
π̃−
α (x)dx if

∫
A
π̃−
α (x)dx+

∫
Ac π̃

+
α (x)dx > 1,

1−
∫
Ac π̃

+
α (x)dx else

(1)

for A ∈ B(R).
We denote the calculation of fuzzy probability P̃ (A) by

P̃ (A) = (FP )

∫
A

π̃(x)dx for A ∈ B(R). (2)

Recall that X ∼ f(·|θ), θ ∈ Θ with continuous parameter space Θ, a-priori density function π(θ). Then, a
distribution function of X for a prior density π(θ) is given by

FX(x|π) =
∫ x

−∞

∫
Θ

π(θ)f(y|θ)dθdy. (3)
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In case of non-precise a-priori density π̃(θ),

F̃X(x|π̃) = (FP )

∫ x

−∞
f̃(y|π̃)dy, (4)

where f̃(y|π̃) = (F )
∫
Θ
π̃(θ)f(y|θ)dθ.Note that f̃(y|π̃) is clearly a non-precise density, that is, (F )

∫∞
−∞ f̃(y|π̃)dy =

1̃.

Theorem 1 For any π̃, we have the following.
(i)limx→∞ F̃X(x|π̃) = 1, limx→−∞ F̃X(x|π̃) = 0.
(ii)F̃X(x|π̃) ≽ F̃X(y|π̃) if x ≥ y.
(iii) limx→y+0 F̃X(x|π̃) = F̃X(y|π̃).

Proof.(i) It is sufficient to prove that

lim
x→∞

(
(FP )

∫ x

−∞
f̃(y|π̃)dy

)+

α
= lim

x→∞

(
(FP )

∫ x

−∞
f̃(y|π̃)dy

)−

α
= 1

holds. From (1), we have

lim
x→∞

(
(FP )

∫ x

−∞
f̃(y|π̃)dy

)+

α

=


lim
x→∞

(
1−

∫ ∞

x

f̃−
α (y|π̃)

)
dy = 1 if

∫ x

−∞ f̃+
α (y|π̃)dy +

∫∞
x

f̃−
α (y|π̃)dy > 1,

lim
x→∞

∫ x

−∞
f̃+
α (y|π̃)dy = 1 else.

Similarly we can prove that limx→∞

(
(FP )

∫ x

−∞ f̃(y|π̃)dy
)−

α
= 1 holds. The remaining part can be proved

similarly. (ii), (iii) Also, we can prove straightforward from the definition. This completes the proof. �
According to Zadeh’s extension principle [2], we define the fuzzy value at risk Ṽ@Rγ(X|π̃) and conditional

value at risk C̃V@Rγ(X|π̃)(γ ∈ (0, 1)). Let V@Rγ(F ) = inf{y|F (y) ≥ γ}, CV@Rγ(F ) = 1
1−γ

∫ 1

γ
V@Rp(F )dp(γ ∈

(0, 1)), respectively, where F are distribution functions.

Definition 3 For a given π̃ and a density function f(x|θ) we define the fuzzy value at risk Ṽ@Rγ(X|π̃) and
conditional value at risk C̃V@Rγ(X|π̃)(γ ∈ (0, 1)) as follows:

Ṽ@Rγ(X|π̃)(x) = sup
V@Rγ(F )=x

inf
y
F̃X(y|π̃)(F (y)),

C̃V@Rγ(X|π̃)(x) = sup
CV@Rγ(F )=x

inf
y
F̃X(y|π̃)(F (y)).

(5)

Lemma 2 The α−cut of the fuzzy value at risk Ṽ@Rγ(X|π̃) and conditional value at risk C̃V@Rγ(X|π̃)(γ ∈
(0, 1)) are given by

Ṽ@R
+

γ,α(X|π̃) = inf{x|F̃−
X,α(x|π̃) ≥ γ},

Ṽ@R
−
γ,α(X|π̃) = inf{x|F̃+

X,α(x|π̃) ≥ γ},

C̃V@R
+

γ,α(X|π̃) = 1

1− γ

∫ 1

γ

Ṽ@R
+

p,α(X|π̃)dp,

C̃V@R
−
γ,α(X|π̃) = 1

1− γ

∫ 1

γ

Ṽ@R
−
p,α(X|π̃)dp.

(6)
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Proof.

Ṽ@Rγ,α(X|π̃) = {x|Ṽ@Rγ(X|π̃)(x) ≥ α}
= {V@Rγ(F )|F̃X(y|π̃)(F (y)) ≥ α for all y}
= {V@Rγ(F )|F (y) ∈ F̃X,α(y|π̃) for all y}
= {V@Rγ(F )|F (y) ∈ [F̃−

X,α(y|π̃), F̃
+
X,α(y|π̃)] for all y}

= [V@Rγ(F̃
+
X,α(y|π̃)), V@Rγ(F̃

−
X,α(y|π̃))].

Similarly, in case of C̃V@Rγ(X|π̃), we can prove. �

3 Main Results

Proposition 1 For any random variables X,Y and π̃, C̃V@Rγ has the following (i)-(iv):

(i) (Monotonicity) If X ≤ Y , C̃V@Rγ(X|π̃) ≼ C̃V@Rγ(Y |π̃).
(ii) (Translation invariance) For X and c ∈ R, C̃V@Rγ(X + c|π̃) = C̃V@Rγ(X|π̃) + c.

(iii) (Homogeneity) For X and λ > 0, C̃V@Rγ(λX|π̃) = λC̃V@Rγ(X|π̃).
(iv) (Convexity) For X,Y and 0 ≤ λ ≤ 1, C̃V@Rγ(λX+(1−λ)Y |π̃) ≼ λC̃V@Rγ(X|π̃)+(1−λ)C̃V@Rγ(Y |π̃).

Proof.(i) It is sufficient to prove the following. For all α ∈ [0, 1], if X ≤ Y , then

C̃V@R
−
γ,α(X|π̃) ≤ C̃V@R

−
γ,α(Y |π̃),

C̃V@R
+

γ,α(X|π̃) ≤ C̃V@R
+

γ,α(Y |π̃).

Above relationships are derived from a property of non-fuzzy conditional value at risk, see [7] and Lemma 2.
(ii) Since F̃X+c,α(x|π̃) = F̃X,α(x− c|π̃) holds, the assertion follows. Similarly the other parts can be proved.
�
Here we introduce a fuzzy version of the acceptance set [4] which play an important role when considering
risk measures.

Definition 4 For any π̃, the acceptance set of C̃V@Rγ is defined by

A
C̃V@Rγ

:= {X|C̃V@Rγ(X|π̃) ≼ 0̃}. (7)

Proposition 2 Let A := A
C̃V@Rγ

. Then,

(i) For X ∈ A, if it holds that Y ≤ X, Y ∈ A.
(ii) A is convex cone.

Proof.(i) From (i) of Proposition 1 and the definition of A, it holds that

C̃V@Rγ(Y |π̃) ≼ C̃V@Rγ(X|π̃) ≼ 0̃.

(ii) Clearly, homogeneity of C̃V@Rγ implies that A is a cone. For X,Y ∈ A, since C̃V@Rγ(X|π̃) ≼ 0̃ and

C̃V@Rγ(Y |π̃) ≼ 0̃ we have

C̃V@Rγ(λX + (1− λ)Y |π̃) ≼ λC̃V@Rγ(X|π̃) + (1− λ)C̃V@Rγ(Y |π̃)
≼ λ0̃ + (1− λ)0̃ = 0̃.

�
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4 A Numerical Example

Recall the example by Viertl [10]. Let Θ = R and let π̃−
1 (θ) = π̃+

1 (θ) be the density of a classical gamma
distribution γ(2, 1

4 ), i.e.

π̃−
1 (θ) = π̃+

1 (θ) = 42 × θ × e−4θ × I[0,∞)(θ)

and we consider triangle fuzzy numbers for each θ ∈ Θ, that is,

π̃α(θ) =
[ (α+ 1)π̃−

1 (θ)

2
,
(3− α)π̃+

1 (θ)

2

]
for each θ ∈ Θ.

In Fig.1, real line shows π̃−
1 (θ) = π̃+

1 (θ) and dashed lines show π̃−
0 (θ) and π̃+

0 (θ), respectively.

-

6

0 θFigure 1: Representation of π̃(θ)

Also, f(x|θ) is the density of the exponential distribution, i.e.

f(x|θ) = θe−θx x ≥ 0, x ∈ R.

We can obtain FX(x|π̃−
1 (θ) = π̃+

1 (θ)) = 1− 16
(x+4)2 from (3) and

Ṽ@R
+

γ,1(X|π̃−
1 (θ) = π̃+

1 (θ)) = Ṽ@R
−
γ,1(X|π̃−

1 (θ) = π̃+
1 (θ)) =

4√
1− γ

− 4,

C̃V@R
+

γ,1(X|π̃−
1 (θ) = π̃+

1 (θ)) = C̃V@R
−
γ,1(X|π̃−

1 (θ) = π̃+
1 (θ)) =

8
√
1− γ

1− γ
− 4

from the definition of non-fuzzy V@Rγ and CV@Rγ . From (1), we can get the following for each α.

F̃+
X,α(y|π̃) =

{
1− 8(1+α)

(4+y)2 if y > 4
√
2− 4,

(3− α)(12 − 8
(4+y)2 ) else,

F̃−
X,α(y|π̃) =

{
(1 + α)(12 − 8

(4+y)2 ) if 0 ≤ y < 4
√
2− 4,

1− 8(3−α)
(4+y)2 else.

(8)

Here, let γ = 0.99, then we have Ṽ@R
+

0.99,α(X|π̃) =
√

8(3−α)√
1−0.99

−4, Ṽ@R
−
0.99,α(X|π̃) =

√
8(α+1)√
1−0.99

−4, C̃V@R
+

0.99,α(X|π̃) =
4
√

2(3−α)(1−0.99)

1−0.99 −4 and C̃V@R
−
0.99,α(X|π̃) = 4

√
2(1+α)(1−0.99)

1−0.99 −4 from Lemma 2. Therefore we can estimate

Ṽ@Rγ and C̃V@Rγ from Lemma 1. Fig.2 and 3 show Ṽ@R0.99 and C̃V@R0.99, respectively.
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Figure 2: Representation of Ṽ@R0.99

Figure 3: Representation of C̃V@R0.99

5 Conclusion

In managing complex environmental systems, there are two types of uncertainties. One is a probabilistic
uncertainty which has been considered by a lot of authors [3, 4, 5, 6, 9] in order to represent risk under
uncertainty. However the another uncertainty, fuzziness is also very important concept. In this paper we
proposed fuzzy risk measures using non-precise a-priori densities. Owing to this approach, we can design
more flexible mathematical models. In the future work, referring to [6], we will construct fuzzy risk models
in Markov decision processes.
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[3] Föllmer, H., and I. Penner, Convex measures of risk and trading constraints, Finance and Stochastics, vol.6,
pp.429–447, 2002.
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