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Abstract

In this paper, we present an application of intuitionistic fuzzy optimization model to a two person multi-
objective bi-matrix games (pair of pay-offs matrices) for the Nash equilibrium solution(NES) with mixed
strategies. We use linear membership and non-membership function for such computation. We introduce
the intuitionistic fuzzy(IF) goal for a choice of a strategy in a pay-off matrix in order to incorporate
ambiguity of human judgements and a player wants to maximize his/her degree of attainment of the
IF goal. It is shown that this NES is the optimal solution of the mathematical programming problem,
namely a quadratic programming problem. In addition, numerical example is also presented to illustrate
the methodology.
c©2011 World Academic Press, UK. All rights reserved.
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1 Introduction

Fuzziness in bi-matrix game theory was studied by various researchers [15, 7], where the goals are viewed as
fuzzy sets, but they are very limited and in many cases they do not represent exactly the real problems. In
practical situation, due to insufficiency in the information available, it is not easy to describe the fuzzy con-
straint conditions by ordinary fuzzy sets and consequently, the evaluation of membership values is not always
possible up to Decision Maker (DM)’s satisfaction. Due to the same reason evaluation of non-membership
values is not always possible and consequently there remains an indeterministic part of which hesitation sur-
vives. In such situation intuitionistic fuzzy set (IFS), Atanassov [2] serve better our required purpose. Also,
in realistic models, the more extensive application of multiple pay-off has been found to be more rather than
the simple pay-off [11]. No studies, however, have been made for NES of multi-objective bi-matrix game with
IF goal which will be examined in this paper. We introduce here a new approach to solving multi-objective
bi-matrix payoff matrices in IF environment. IF goal for the pay-off matrices has been formulated in order to
incorporate the ambiguity of human judgement. We assume that each player has a IF goal for the choice of
the strategy and players want to maximize the degree of attainment of the IF goal.

For the purpose, this paper is organized as follows: In Section 2, we shall give some basic definitions,
notations and optimization model on IFS. In Section 3, a expected pay-off, IF goal for bi-matrix game is
defined and a degree of attainment of the IF goal is considered. The equilibrium solution with respect to
a degree of attainment of a IF goal is also defined. In Section 4, the methods of computing the NES of a
single-objective bi-matrix game are proposed, when the membership, nonmembership functions of the IF goals
are linear. In Section 5, the NES for multi-objective game is proposed. Lastly a numerical example is given
in Section 6.
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2 Intuitionistic Fuzzy Sets

The intuitionistic fuzzy set introduced by Atanassov [2] is characterized by two functions expressing the degree
of belonging and the degree of non-belongingness respectively.

Definition 1 Let U = {x1, x2, · · · , xn} be a finite universal set. An Atanassov’s intuitionistic fuzzy set (IFS)
A in a given universal set U is an object having the form

A = {〈xi, µA(xi), νA(xi)〉 : xi ∈ U} (1)

where the functions µA : U → [0, 1]; i.e., xi ∈ U → µA(xi) ∈ [0, 1]

and νA : U → [0, 1] i.e., xi ∈ U → νA(xi) ∈ [0, 1]

define the degree of membership and the degree of nonmembership of an element xi ∈ U to the set A ⊆ U,
respectively, such that they satisfy the following conditions :

0 ≤ µA(x) + νA(x) ≤ 1,∀xi ∈ U

which is known as intuitionistic condition. The degree of acceptance µA(x) and of nonacceptance νA(x) can
be arbitrary.

Definition 2 For all A ∈ IFS(U), let

πA(xi) = 1− µA(xi)− νA(xi), (2)

which is called the the Atanassov’s intuitionistic index of the element xi in the set A or the degree of uncertainty
or indeterministic part of xi. Obviously,

0 ≤ πA(x) ≤ 1; for all xi ∈ U. (3)

Obviously, when πA(x) = 0,∀x ∈ U, i.e., µA(x) + νA(x) = 1, the set A is a fuzzy set as follows:

A = {〈x, µA(x), 1− µA(x)〉 : x ∈ U} = {〈x, µA(x)〉 : x ∈ U}.

Therefore fuzzy set is a especial IFS.

If an Atanassov’s IFS C in U has only an element, then C is written as follows

C = {〈xk, µC(xk), νC(xk)〉} (4)

which is usually denoted by C = {〈µC(xk), νC(xk)〉} in short.

Definition 3 Let A and B be two Atanassov’s IFS in the set U . A ⊂ B if and only if

µA(xi) ≤ µB(xi) and νA(xi) ≥ νB(xi); for any xi ∈ U. (5)

Definition 4 Let A and B be two Atanassov’s IFS in the set U . A = B if and only if

µA(xi) = µB(xi) and νA(xi) = νB(xi); for any xi ∈ U. (6)

Namely, A = B, if and only if A ⊂ B and B ⊂ A.

Definition 5 Let A and B be two Atanassov’s IFS in the set U . The intersection of A and B is defined as

A ∩B = {〈xi,min(µA(xi), µB(xi)),max(νA(xi), νB(xi))〉|xi ∈ U}. (7)

Definition 6 Let A and B be two Atanassov’s IFS in the set U and λ > 0 be a real number. Designate:

(i) A+B = {〈xi, µA(xi)µB(xi)− µA(xi)µB(xi), νA(xi)νB(xi)〉|x ∈ U}

(ii) AB = {〈xi, µA(xi)µB(xi), νA(xi) + νB(xi)− νA(xi)νB(xi)〉|xi ∈ U}

(iii) λA = {< xi, 1− (1− µA(xi))
λ, (νA(xi))

λ >: xi ∈ U}.

Note: From the above definitions we see that the numbers µA(x) and νA(x) reflect respectively the extent
of acceptance and the degrees of rejection of the element x to the set A, and the numbers πA(x) is the extent
of indeterminacy between both.
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2.1 Intuitionistic Fuzzy Optimization Model

Generally, an optimization problem includes objective(s) and constraints. Let us consider an optimization
problem

fi(x)→ min; i = 1, 2, · · · , p
subject to, gj(x) ≤ 0; j = 1, 2, · · · , q,

where x denotes the unknowns, fi(x) denotes the objective functions, gj(x) denotes constraints (non-equalities),
p denotes the number of objectives and q denotes the number of constraints.

The solution of this crisp optimization problem satisfies all constraints exactly.

2.1.1 Fuzzy Optimization Model

In fuzzy optimization problem such as fuzzy mathematical programming, Zimmermann [17], fuzzy optimal
control, Zadeh [16], the objective(s) and/or constraints or parameters and relations are represented by fuzzy
sets. These fuzzy sets explain the degree of satisfaction of the respective condition and are expressed by
their membership functions [18]. Analogously as in the crisp case, fuzzy optimization problem the degree of
satisfaction of the objective(s) and the constraints is maximized:

fi(x)→ m̃in; i = 1, 2, · · · , p
subject to, gj(x)≤̃0; j = 1, 2, · · · , q,

where m̃in denotes fuzzy minimization and ≤̃ denotes fuzzy inequality.

According to Bellman-Zadeh’s approach [4] this problem can be transformed to the following optimization
problem

maxµi(x); x ∈ <n; i = 1, 2, · · · , p+ q

subject to, 0 ≤ µi(x) ≤ 1,

where µi(x) denotes degree of membership (acceptance) of x to the respective fuzzy sets. This application of
Bellman-Zadeh’s approach [4] to solve such fuzzy optimization problem realizes the min-aggregator.

2.1.2 Intuitionistic Fuzzy Optimization Model

Intuitionistic fuzzy optimization (IFO), a method of uncertainty optimization, is put forward on the basis of
intuitionistic fuzzy sets, Atanassov [2]. It is an extension of fuzzy optimization in which the degrees of rejection
of objective(s) and constraints are considered together with the degrees of satisfaction. This optimization
problems similar to fuzzy optimization problems can be represented as a two stage process which includes

(i) aggregation of constraints and objective(s) and

(ii) defuzzification (maximization of aggregation function)

According to IFO theory, we are to maximize the degree of acceptance of the IF objective(s) and constraints
and to minimize the degree of rejection of IF objective(s) and constraints as

max
x∈<n

{µk(x)};
min
x
{νk(x)};

µk(x), νk(x) ≥ 0;
µk(x) ≥ νk(x);

0 ≤ µk(x) + νk(x) ≤ 1;


k = 1, 2, . . . , p+ q

where µk(x) denotes the degree of acceptance of x from the kth IFS and νk(x) denotes the degree of rejection of
x from the kth IFS. According to Atanassov property of IFS, the conjunction of intuitionistic fuzzy objective(s)
and constraints in a space of alternatives U is defined as

A ∩B = {〈x,min{µA(x), µB(x)},max{νA(x), νB(x)}〉 : x ∈ U}, (8)
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which is defined as the intuitionistic fuzzy decision set (IFDS), where A denotes the integrated intuitionistic
fuzzy objective/ goals and B denotes integrated intuitionistic fuzzy constraint set and they can be written as

A = {〈x, µA(x), νA(x)〉 : x ∈ U} = {〈x,
p

min
i=1

µi(x),
p

max
i=1

νi(x)〉 : x ∈ U} (9)

B = {〈x, µB(x), νB(x)〉 : x ∈ U} = {〈x,
q

min
j=1

µj(x),
q

max
j=1

νj(x)〉 : x ∈ U}. (10)

Let the intuitionistic fuzzy decision set (8) be denoted by C, then min-aggregator is used for conjunction and
max operator for disjunction

C = A ∩B = {〈x, µC(x), νC(x)}〉|x ∈ U}, (11)

where, µC(x) = min{µA(x), µB(x)} =
p+q

min
k=1

µk(x) (12)

and νC(x) = max{νA(x), νB(x)} =
p+q
max
k=1

νk(x), (13)

where µC(x) denotes the degree of acceptance of IFDS and νC(x) denotes the degree of rejection of IFDS.
Therefore,

µC(x) ≤ µk(x), νC(x) ≥ νk(x); 1 ≤ k ≤ p+ q. (14)

The formula can be transformed to the following system

maxα, minβ
α ≤ µk(x); k = 1, 2, . . . , p+ q
β ≥ νk(x); k = 1, 2, . . . , p+ q
α ≥ β; and α+ β ≤ 1;α, β ≥ 0

where α denotes the minimal acceptable degree of objective(s) and constraints and β denotes the maximal
degree of rejection of objective(s) and constraints. The IFO model can be changed into the following certainty
(non-fuzzy) optimization model as :

max(α− β)
α ≤ µk(x); k = 1, 2, . . . , p+ q
β ≥ νk(x); k = 1, 2, . . . , p+ q
α ≥ β; and α+ β ≤ 1;α, β ≥ 0

 (15)

which can be easily solved by some simplex methods.

3 Bi-Matrix Game

A bi-matrix game, Nash [8], can be considered as a natural extension of the matrix game. Let I, II denote two
players and let M = {1, 2, ...,m} and N = {1, 2, ..., n} be the sets of all pure strategies available for players
I, II respectively. By αij and γij we denote the pay-offs that the player I and II receive when player I plays
the pure strategy i and player II plays the pure strategy j. Then we have the following pay-off matrix

A =


α11 α12 · · ·α1n

α21 α22 · · ·α2n

· · · · · · · · ·
αm1 αm2 · · ·αmn

 ;B =


γ11 γ12 · · · γ1n
γ21 γ22 · · · γ2n
· · · · · ·
γm1 γm1 · · · γmn

 (16)

where we assume that each of the two players chooses a strategy, a pay-off for each of them is represented as
a crisp number. We denote the game by Γ = 〈{I, II}, A,B〉.

For two person non zero sum multi objective game, multiple pair of m×n pay-off matrices can be written
as

A1 =


α1
11 α1

12 · · ·α1
1n

α1
21 α1

22 · · ·α1
2n

· · · · · · · · ·
α1
m1 α1

m2 · · ·α1
mn

 ; A2 =


α2
11 α2

12 · · ·α2
1n

α2
21 α2

22 · · ·α2
2n

· · · · · · · · ·
α2
m1 α2

m2 · · ·α2
mn

 ; . . .
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. . . ;An1 =


αn111 αn112 · · ·αn11n
αn121 αn122 · · ·αn12n
· · · · · · · · ·
αn1m1 αn1m2 · · ·αn1mn



B1 =


β1
11 β1

12 · · ·β1
1n

β1
21 β1

22 · · ·β1
2n

· · · · · · · · ·
β1
m1 β1

m2 · · ·β1
mn

 ; B2 =


β2
11 β2

12 · · ·β2
1n

β2
21 β2

22 · · ·β2
2n

· · · · · · · · ·
β2
m1 β2

m2 · · ·β2
mn

 ; . . .

. . . ;Bn2 =


βn211 βn212 · · ·βn21n

βn221 βn222 · · ·βn22n

· · · · · · · · ·
βn2m1 βn2m2 · · ·βn2mn


where the player I and the player II have n1 and n2 number of objectives. Let the domain for the player I be
defined by D1 = D1

1 ×D2
1 × . . .×Dn1

1 ⊆ <n1 and that for the player II be D2 = D1
2 ×D2

2 × . . .×Dn2
2 ⊆ <n2.

3.1 Nash Equilibrium Solution

Nash [8] defined the concept of Nash equilibrium solutions (NES) in crisp bi-matrix games for single pair of
payoff matrices and presented methodology for obtaining them.

3.1.1 Pure Strategy

Let I, II denote two players and let M = {1, 2, ...,m} and N = {1, 2, ..., n} be the sets of all pure strategies
available for players I, II respectively.

Definition 7 A pair of strategies (row r, column s) is said to constitute a NES to a bi-matrix game Γ if
the following pair of inequalities is satisfied for all i = 1, 2, ...,m and for all j = 1, 2, ..., n:

αis ≤ αrs; γrj ≤ γrs (17)

The pair (αrs, γrs) is known as a Nash equilibrium outcome of the bi-matrix game in pure strategies. A
bi-matrix game can admit more than one NES, with the equilibrium outcomes being different in each case.
The NES concept for bi-matrix games with single pair of IF payoffs in pure strategy has been proposed by
Nayak and Pal [11].

3.1.2 Mixed Strategy

In the previous section, we have encountered only cases in which a given bi-matrix game admits a unique
or a multiple of Nash equilibria. There are other cases, where the Nash equilibrium does not exist in pure
strategies. We denote the sets of all mixed strategies, called strategy spaces, available for players I, II by

SI = {(x1, x2, ..., xm) ∈ <m+ : xi ≥ 0; i = 1, 2, ...,m and

m∑
i=1

xi = 1}

SII = {(y1, y2, ..., yn) ∈ <n+ : yi ≥ 0; i = 1, 2, ..., n and

n∑
i=1

yi = 1},

where <m+ denotes the m−dimensional non negative Euclidean space. Since the player is uncertain about
what strategy he/she will choose, he/she will choose a probability distribution over the set of alternatives
available to him/her or a mixed strategy x in terms of game theory. We shall denote this bi-matrix game by

Γ1 = 〈{I, II}, SI × SII , A,B〉.

For x ∈ SI , y ∈ SII , xTAy and xTBy are the expected pay-off to the player I and player II respectively.The
NES concept for bi-matrix games with IF goals in mixed strategies for single pair of matrices has been proposed
by Nayak and Pal [11].
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Definition 8 (Expected pay-off ): If the mixed strategies x and y are proposed by the player I and player
II respectively, then the expected pay-off of the player I and player II are defined by

xTAy =

m∑
i=1

n∑
j=1

xiαijyj and xTBy =

m∑
i=1

n∑
j=1

xiγijyj . (18)

Definition 9 A pair (x∗ ∈ SI , y∗ ∈ SII) is called a NES to a bi-matrix game Γ1 in mixed strategies, if the
following inequalities are satisfied.

xTAy∗ ≤ x∗TAy∗; ∀x ∈ SI
x∗TBy ≤ x∗TBy∗; ∀y ∈ SII

}
(19)

x∗ and y∗ are also called the optimal strategies for the player I and player II respectively. Then the pair of
numbers V = 〈x∗TAy∗, x∗TBy∗〉 is said to be the Nash equilibrium outcome of Γ1 in mixed strategies, and
the triplet (x∗, y∗, V ) is said to be a solution of bi-matrix game.

4 Single Objective Bi-Matrix Game with IF Goal

To derive the computational procedure for NES with respect to degree of attainment of the IF goal in single
objective bi-matrix games, first, we define some terms which are useful in the solution procedure. Let the
domain for the player I be defined by

D1 = {xTAy : (x, y) ∈ SI × SII ⊂ <m ×<n} ⊆ < (20)

and that for the player II be defined by

D2 = {xTBy : (x, y) ∈ SI × SII ⊂ <m ×<n} ⊆ <. (21)

Definition 10 (IF goal ): A IF goal Ĝ1 for player I is defined as a IFS inD1 characterized by the membership
and nonmembership functions

µĜ1
: D1 → [0, 1] and νĜ1

: D1 → [0, 1]

or simply, µ1 : D1 → [0, 1] and ν1 : D1 → [0, 1], (22)

such that 0 ≤ µ1(x) + ν1(x) ≤ 1. Let Ĝ1 be the IF goal and Ĉ1 be the IF constraint in the space D1, for the
player I, then according to Atanassov’s property of IFS [2], the decision D̂, which is a IFS, is a given by

D̂ = Ĝ1 ∩ Ĉ1 = {〈x, µD̂(x), νD̂(x)〉 : x ∈ D1}
where, µD̂(x) = min{µĜ1

(x), µĈ1
(x)}; νC(x) = max{νĜ1

(x), νĈ1
(x)}, (23)

where µD̂(x) denotes the degree of acceptance of IF decision set D̂ and νD̂(x) denotes the degree of rejection
of IF decision set.

Similarly, a IF goal for player II is IFS on D2 characterized by the membership function µĜ2
: D2 → [0, 1]

and nonmembership function νĜ2
: D2 → [0, 1] such that 0 ≤ µĜ2

(x) + νĜ2
(x) ≤ 1.

A membership, non-membership function value for a IF goal can be interpreted as the degree of attainment
of the IF goal for a strategy of a payoff.

Definition 11 (Degree of attainment of IF goal): For any pair of mixed strategies,(x, y) ∈ SI × SII , let
the IF goal for player I be denoted by Ĝ1(x, y), then the degree of attainment of the IF goal is defined as

max
x
{µĜ1

(x, y)} and min
x
{νĜ1

(x, y)}. (24)

The degree of attainment of the IF goal can be considered to be a concept of a degree of satisfaction of the
fuzzy decision [2, 16], when the constraint can be replaced by expected pay-off. When the player I and II
choose strategies x and y respectively, the maximum degree of attainment of the IF goal is determined by the
relation (24).

Let the membership and non-membership function for the aggregated IF goal be µ1(x, y) and ν1(x, y)
respectively for the player I and that for the player II, they are µ2(x, y) and ν2(x, y) respectively. Thus, when
a player has two different strategies, he/she prefers the strategy possessing the higher membership function
value and lower nonmembership function value in comparison to the other.
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Definition 12 (Equilibrium solution of IF bi-matrix game): Let A and B be the pay-off matrices of a
single objective bi-matrix game Γ. If the player I chooses a mixed strategy x, the player II chooses a mixed
strategy y, the membership and non membership functions for player I and player II are µ1(x, y), ν1(x, y) and
µ2(x, y), ν2(x, y) respectively, and their expected pay-offs are xTAy and xTBy respectively, then

µ1(x, y) = µ1(xTAy); ν1(x, y) = ν1(xTAy)

µ2(x, y) = µ2(xTBy); ν2(x, y) = ν2(xTBy).

A pair (x∗, y∗) ∈ SI × SII is called a NES of the IF matrix game, with respect to the degree of attainment of
the IF goal in a single objective bi-matrix game if for any other mixed strategies x and y, the pair satisfies
the following inequalities

µ1(x∗TAy∗) ≥ µ1(xTAy∗) and ν1(x∗TAy∗) ≤ ν1(xTAy∗);∀x ∈ SI

µ2(x∗TBy∗) ≥ µ2(xTBy∗) and ν2(x∗TBy∗) ≤ ν2(xTBy∗);∀y ∈ SII .

(x∗TAy∗, x∗TBy∗) is called the Nash equilibrium outcome of the bi-matrix game in mixed strategies. Since
the membership and non-membership functions are convex and continuous [6, 2], the solution with respect to
the degree of attainment of the aggregated IF goal for Γ1 always exist.

Thus an equilibrium solution for IF games is defined with respect to the degree of attainment of the IF
goals.

4.1 Optimization Problem for Player I

The linear membership and nonmembership functions [2] of the IF goal µ1(xTAy) and ν1(xTAy), for the
player I can mathematically be represented as (Fig. 1):

µ1(xTAy) =


1; xTAy ≥ a

xTAy−a
a−a ; a < xTAy < a

0; xTAy ≤ a

ν1(xTAy) =


1; xTAy ≤ a

xTAy−a
a−a ; a < xTAy < a

0; xTAy ≥ a

where a and a are the tolerances of the expected pay-off xTAy and µ1(xTAy) should be determined in objective
allowable region [a, a]. For player I, a and a are the pay-off giving the worst and the best degree of satisfaction

6

-
xTAya a

µ1
ν11

µ1, ν1

�
�
�
�@

@
@
@

Figure 1: Membership and nonmembership functions for player I

respectively. Although a and a would be any scalars with a > a, Nishizaki [14] suggested that, parameters a
and a can be taken as

a = max
x

max
y

xTAy = max
i

max
j
aij

a = min
x

min
y
xTAy = min

i
min
j
aij .



278 P.K. Nayak and M. Pal: Intuitionistic Fuzzy Optimization Technique for Nash Equilibrium Solution

Therefore, the conditions a ≤ min
i,j

aij and a ≥ max
i,j

aij hold. Thus player I is not satisfied by the pay-off less

than a but is fully satisfied by the pay-off greater than a. Now,

xTAy − a
a− a

= (
−a
a− a

) + xT (
A

a− a
)y = c

(1)
1 + xT Ây,

where c
(1)
1 = −a

a−a and Â = 1
a−aA. Similarly, if we define c

(2)
1 = −a

a−a , then the membership and nonmembership

functions can be written as

µ1(xTAy) =


1 xTAy;≥ a

c
(1)
1 + xT Ây; a < xTAy < a

0; xTAy ≤ a

ν1(xTAy) =


1; xTAy;≤ a

c
(2)
1 − xT Ây; a < xTAy < a

0; xTAy ≥ a

4.2 Optimization Problem for Player II

Here we are consider player II solution with respect to the degree of attainment of his fuzzy goal. The
membership and nonmembership functions of the IF goal µ2(xTBy) and ν2(xTBy) can be represented as
(Fig. 2):

µ2(xTBy) =


1; xTBy ≤ b

xTBy−b
b−b ; b < xTBy < b

0; xTBy ≥ b

ν2(xTBy) =


1; xTBy ≥ b

xTBy−b
b−b ; b < xTBy < b

0; xTBy ≤ b

where b and b are the tolerances of the expected pay-off xTBy and µ2(xTBy) should be determined in objective

xTByb b

µ2ν2
1

µ2, ν26

-

@
@
@
@@�

�
�
�
�

Figure 2: Membership and nonmembership functions for player II

allowable region [b, b] and b ≤ min
i,j

bij , b ≥ max
i,j

bij . Also, the membership and nonmembership functions can

be written as

µ2(xTBy) =


1; xTBy;≥ b

c
(1)
2 + xT B̂y; b < xTBy < b

0; xTBy ≤ b

ν2(xTBy) =


1; xTBy;≤ b

c
(2)
2 − xT B̂y; b < xTBy < b

0; xTBy ≥ b

where B̂ = 1
b−bB, c

(1)
2 = −b

b−b and c
(2)
2 = −b

b−b .

Since all the membership and non-membership functions of the IF goals are linear, the optimal solution is
equal to degree of attainment of the fuzzy goal for the matrix game. Since SI and SII are convex polytopes,
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for the choice of such unimodal, linear membership and non-membership functions, the existence of Nash
equilibrium of the game is guaranteed.

Thus the NES is equal to optimal solution of the following mathematical problem

P1 : max
x

µ1(xT Ây∗) and min
x
ν1(xT Ây∗)

s.t.

m∑
i=1

xi = 1; xi ≥ 0; i = 1, 2, . . . ,m.

and

P2 : max
y

µ2(x∗T B̂y) and min
y
ν2(x∗T B̂y)

s.t.

n∑
j=1

yj = 1; yi ≥ 0; i = 1, 2, . . . , n.

Let (x∗, y∗) are the optimal solution to P1 and P2 respectively. From the above two problems, we see that
the constraints are separable in the decision variables, x and y. Hence the two problems yield the following
single objective mathematical programming problem

P3 : max
x,y
{µ1(xT Ây∗) + µ2(x∗T B̂y)}+ min

x,y
{ν1(xT Ây∗) + ν2(x∗T B̂y)}

s.t.

m∑
i=1

xi = 1 and

n∑
j=1

yj = 1; xi ≥ 0; yi ≥ 0.

Theorem 1 If all the membership, non membership functions of the IF goals are linear, the NES with respect
to the degree of attainment of the IF goal aggregated by a minimum component is equal to the optimal solution
of the non-linear programming problem

P4 : max
x,y,p1,p2,q1,q2,λ1,λ2,β1,β2

{λ1 + λ2 + p2 + q2 − β1 − β2 − p1 − q1} (25)

subject to Ây + c
(1)
1 em ≤ p1em; −Ây + c

(2)
1 em ≥ p2em (26)

B̂x+ c
(1)
2 en ≤ q1en; −B̂x+ c

(2)
2 en ≥ q2en (27)

xT Ây + c
(1)
1 ≥ λ1; −xT Ây + c

(2)
1 ≤ β1 (28)

xT B̂y + c
(1)
2 ≥ λ2; −xT B̂y + c

(2)
2 ≤ β2 (29)

λ1 + β1 ≤ 1; λ2 + β2 ≤ 1; λ1 ≥ β1; λ2 ≥ β2 (30)

x1 + x2 + x3 = 1; y1 + y2 + y3 = 1 (31)

xi, yi, λi, βi, pi, qi ≥ 0,

where em = (1, 1, . . . , 1)T ; en = (1, 1, . . . , 1)T .

Theorem 2 If all the membership and non membership functions are linear, as introduced in Sections 4.4
and 4.5 and (x∗, y∗) is a NES for Γ = 〈{I, II}, A,B〉, then (x∗, y∗) is a NES for Γ with respect to the degree
of attainment of the IF goal.

Corollary: Let the conditions a ≤ min
i,j

αij , a ≥ max
i,j

αij and b ≤ min
i,j

γij , b ≥ max
i,j

γij hold, then, (x∗, y∗) is

a NES for Γ = 〈{I, II}, A,B〉 if and only if (x∗, y∗) is a NES with respect to the degree of attainment of the
IF goal.

Thus, once an optimal solution (x∗, y∗, p∗1, p
∗
2, q
∗
1 , q
∗
2 , λ
∗
1, λ
∗
2, β
∗
1 , β
∗
2) of the non-linear programming problem

( as in Theorem 1) has been obtained, (x∗, y∗) gives an equilibrium solution of the bi-matrix game. The
degree of attainment of IF goals G1 and G2 can then be determined by evaluating x∗TAy∗ and x∗TBy∗, then
employing the membership and non-membership function µ1, ν1 and µ2, ν2.

5 Multi Objective IF Games

For a single objective bi-matrix games, the NES is already defined in Section 3 in this paper. Here we have
developed the computational procedure for NES with respect to degree of attainment of the IF goal in multi
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objective bi-matrix games. Let us consider the multi objective bi-matrix games (Ak, Bl); k = 1, 2, . . . , n1 and
l = 1, 2, . . . , n2. Let player I’s membership, non membership functions of the IF goal of the kth pay-off matrix
be µk1(xT Âky); νk1 (xT Âky); k = 1, 2, . . . , n1 and that of player II’s membership, non membership functions of
the IF goal of the lth pay-off matrix be µl2(xT B̂ly); νl2(xT B̂ly); l = 1, 2, . . . , n2, where

Âk =
1

ak − ak
Ak; ĉk1 =

−ak

ak − ak
; k = 1, 2, . . . , n1

B̂k =
1

b
l − bl

Bl; ĉl1 =
−bl

b
k − bk

; l = 1, 2, . . . , n2.

Definition 13 (IF goal ) A IF goal Ĝk1 with respect to the kth pay-off matrix for player I is defined as a
IFS on D1 characterized by the membership and nonmembership functions

µĜk
1

: Dk
1 → [0, 1] and νĜk

1
: Dk

1 → [0, 1]

or simply, µk1 : Dk
1 → [0, 1] and νk1 : Dk

1 → [0, 1]

such that 0 ≤ µĜk
1
(x) +νĜk

1
(x) ≤ 1. Similarly, a IF goal Ĝl2 with respect to the lth pay-off matrix for player II

is IFS on the set D2 characterized by the membership function µĜl
2

: Dl
2 → [0, 1] and nonmembership function

νĜl
2

: Dl
2 → [0, 1] such that 0 ≤ µĜl

2
(x) + νĜl

2
(x) ≤ 1.

For a bi matrix game, if the player I chooses the mixed strategy x and the player II chooses the mixed strategy
y, the kth pay-off for the player I is represented by P k1 = xTAky and that the lth pay-off for the player II is
represented by P l2 = xTBly.

5.1 Aggregation Rule

Let us consider the NES with respect to the degree of attainment of the IF goal aggregated by a minimum
component, which is used in multiple criteria decision making, Bellman and Zadeh [4]. A membership, non-
membership function value for a IF goal can be interpreted as the degree of attainment [14] of the IF goal for
a strategy of a payoff. According to Atanassov’s property [2] of IFS, the intersection of IF objective(s) and
constraints is defined as (23). Basically, in IF multiple criteria decision making the aggregation corresponds to
the union of all the IFS intersection, and the solution is determined by maximizing the membership function
and minimizing the non-membership function of aggregated function of the intersection. Thus the player I
and the player II IF goals aggregated by minimum component are respectively as

µ1(x, y) = min
k
µk1(xT Âky); ν1(x, y) = max

k
νk1 (xT Âky)

µ2(x, y) = min
l
µl2(xT B̂ly); ν2(x, y) = max

l
νl1(xT B̂ly).

A pair of strategies (x∗, y∗) is said to NES with respect to the degree of attainment o f the fuzzy goal aggregated
by the minimum component for multi objective games (Âk, B̂l); k = 1, 2, . . . , n1 and l = 1, 2, . . . , n2, if for any
other mixed strategies x and y,

min
k
µk1(x∗T Âky∗) ≥ min

k
µk1(xT Âky∗); max

k
νk1 (x∗T Âky∗) ≤ max

k
νk1 (xT Âky∗)

min
l
µl2(x∗T B̂ky∗) ≥ min

l
µl2(xT B̂y∗); max

l
νl2(x∗T B̂ky∗) ≤ max

l
νl2(xT B̂ky∗).

Thus the NES is equal to optimal solution of the following mathematical problem

P5 : max
x

min
k
µk1(xT Âky∗) and min

x
max
k

νk1 (xT Âky∗)

s.t.

m∑
i=1

xi = 1; xi ≥ 0; i = 1, 2, . . . ,m.

P6 : max
y

min
l
µl2(x∗T B̂ly) and min

y
max
l
νl2(x∗T B̂ly)

s.t.

n∑
j=1

yj = 1; yi ≥ 0; i = 1, 2, . . . , n.
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Therefore, the NES is equal to the optimal solution of the following mathematical programming problem

P7 : max
x,y
{min

k
µk1(xT Ây∗) + min

l
µl2(x∗T B̂y)−min

k
νk1 (xT Ây∗)−min

l
νl2(x∗T B̂y)}

s. t.
∑
i

xi = 1;
∑
j

yj = 1

xi, yj ≥ 0,

where x∗ and y∗ are the optimal solutions. The process of solving IFO model can be divided into two steps,
which include aggregation of IF objective(s) and constraints, aggregated by Atanassov’s property [1] of IFS
AND defuzzification of the aggregated function so that the IFO model is changed into crisp one. Let us
consider the solution of the game with respect to the degree of attainment of the IF goal aggregated by
minimum component [2]. Such rule is often used in decision making [16].

Theorem 3 If all the membership functions of the IF goals are linear, the NES with respect to the degree of
attainment of the IF goal aggregated by a minimum component is equal to the optimal solution of the non-linear
programming problem :

P8 : max
x,y,p1,p2,q1,q2,λ1,λ2,β1,β2

{λ1 + λ2 + p2 + q2 − β1 − β2 − p1 − q1} (32)

subject to

Âky + c
(1)k
1 em ≤ p1e

m; −Âky + c
(2)k
1 em ≥ p2em (33)

B̂lx+ c
(1)l
2 en ≤ q1e

n; −B̂lx+ c
(2)l
2 en ≥ q2en (34)

xT Âky + c
(1)k
1 ≥ λ1; −xT Âky + c

(2)k
1 ≤ β1 (35)

xT B̂ly + c
(1)l
2 ≥ λ2; −xT B̂ly + c

(2)l
2 ≤ β2 (36)

λ1 + β1 ≤ 1; λ2 + β2 ≤ 1; λ1 ≥ β1; λ2 ≥ β2 (37)∑
i

xi = 1;
∑
j

yj = 1 (38)

xi, yi, λi, βi, pi, qi ≥ 0,∀i

where em = (1, 1, . . . , 1)T ; en = (1, 1, . . . , 1)T , k = 1, 2, . . . , n1 and l = 1, 2, . . . , n2.

Proof : The Kuhn-Tucker conditions to the problem is satisfied. Let S be the set of all feasible solutions of
the above non-linear programming problem P8, then S 6= φ, the null set. From the first constraints (33), we
have,

Âky + c
(1)k
1 em ≤ p1em; −Âky + c

(2)k
1 em ≥ p2em

⇒ xT Âky + c
(1)k
1 xT em ≤ p1xT em; −xT Âky + c

(2)k
1 xT em ≥ p2xT em

⇒ min
k

[xT Âky + c
(1)k
1 ] ≤ p1; max

k
[−xT Âky + c

(2)k
1 ] ≥ p2, as xT em = 1.

Similarly, from constraints (34) we can write,

min
l

[xT B̂ly + c
(1)l
2 ] ≤ q1; max

l
[−xT B̂ly + c

(2)l
2 ] ≥ q2.

From constraints (35) and (36), we can write,

min
k

[xT Âky + c
(1)k
1 ] ≥ λ1; max

k
[−xT Âky + c

(2)k
1 ] ≤ β1

min
l

[xT B̂ly + c
(1)l
2 ] ≥ λ2; max

l
[−xT B̂ly + c

(2)l
2 ] ≤ β2.
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Now, for arbitrary α = (x, y, p1, p2, q1, q2, λ1, λ2, β1, β2) ∈ S, we have,

λ1 + λ2 + p2 + q2 − β1 − β2 − p1 − q1
≤ min

k
[xT Âky + c

(1)k
1 ] + min

l
[xT B̂ly + c

(1)l
2 ] + max

k
[−xT Âky + c

(2)k
1 ]

+ max
l

[−xT B̂ly + c
(2)l
2 ]− β1 − β2 − p1 − q1

≤ min
k

[xT Âky + c
(1)k
1 ] + min

l
[xT B̂ly + c

(1)l
2 ] + max

k
[−xT Âky + c

(2)k
1 ]

+ max
l

[−xT B̂ly + c
(2)l
2 ]−max

k
[−xT Âky + c

(2)k
1 ]

−max
l

[−xT B̂ly + c
(2)l
2 ]−min

k
[xT Âky + c

(1)k
1 ]−min

l
[xT B̂ly − c(1)l2 ]

≤ 0,

which shows that the optimal value of the objective function is non positive. Thus, the solution (x∗, y∗),

p∗1 = min
k

[x∗T Âky∗ + c
(1)
1 ]; p∗2 = max

k
[−x∗T Âky∗ + c

(2)
1 ];

q∗1 = min
l

[x∗T B̂ly∗ + c
(1)
2 ]; q∗2 = max

l
[−x∗T B̂ly∗ + c

(2)
2 ];

λ∗1 = min
k

[x∗T Âky∗ + c
(2)
1 ]; β∗1 = max

k
[−x∗T Âky∗ + c

(2)
1 ];

λ∗2 = min
l

[x∗T B̂ly∗ + c
(2)
2 ]; β∗2 = max

l
[−x∗T B̂ly∗ + c

(2)
2 ];

of the quadratic programming problem are feasible and optimal. Therefore

α∗ = (x∗, y∗, p∗1, p
∗
2, q
∗
1 , q
∗
2 , λ
∗
1, λ
∗
2, β
∗
1 , β
∗
2) ∈ S.

The optimal value of the objective function of the non-linear programming problem P8 is 0. Conversely,
let α∗ ∈ S be the optimal solution to the non-linear programming problem P8. Since the optimal value of
the problem P8 is zero, we get,

λ∗1 + λ∗2 + p∗2 + q∗2 − β∗1 − β∗2 − p∗1 − q∗1 = 0. (39)

From (38) and (39), we have,

min
k

[xT Âky∗ + c
(1)k
1 ] ≤ p∗1x

T em = p∗1; max
k

[−xT Âky∗ + c
(2)k
1 ] ≥ p∗2 (40)

min
l

[xT B̂ly∗ + c
(1)l
2 ] ≤ q∗1 ; max

l
[−xT B̂ly∗ + c

(2)l
2 ] ≥ q∗2 (41)

and similarly, from (40) and (41), we have,

min
k

[x∗T Âky∗ + c
(2)k
1 ] ≥ λ∗1; max

k
[−x∗T Âky∗ + c

(2)k
1 ] ≤ β∗1 (42)

min
l

[x∗T B̂ly∗ + c
(2)l
2 ] ≥ λ∗2; max

l
[−x∗T B̂ly∗ + c

(2)l
2 ] ≤ β∗2 . (43)

Using (39),(42) and (43), we write,

p∗1 + q∗1 − p∗2 − q∗2 = λ∗1 + λ∗2 − β∗1 − β∗2
≤ min

k
[x∗T Âky∗ + c

(1)k
1 ] + min

l
[x∗T B̂ly∗ + c

(2)l
2 ]

−max
k

[x∗T Âky∗ + c
(2)k
1 ]−min

l
[−x∗T B̂ly∗ + c

(2)l
2 ]

⇒ min
l

[x∗T B̂ly∗ + c
(1)l
2 ]−min

l
[−x∗T B̂ly∗ + c

(2)l
2 ]

≥ −min
k

[x∗T Âky∗ + c
(1)k
1 ] + max

k
[−x∗T Âky∗ + c

(2)k
1 ] + p∗1 + q∗1 − p∗2 − q∗2 .

If we consider x = x∗, y = y∗ as a particular case in equations (40) and (41), we get,

min
k

[x∗T Âky∗ + c
(1)k
1 ] ≤ p∗1; max

k
[−x∗T Âky∗ + c

(2)k
1 ] ≥ p∗2

min
l

[x∗T B̂ly∗ + c
(1)l
2 ] ≤ q∗1 ; max

l
[−x∗T B̂ly∗ + c

(2)l
2 ] ≥ q∗2 .
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Therefore,

q∗1 − q∗2 ≥ −min
k

[x∗T Âky∗ + c
(1)k
1 ] + max

k
[−x∗T Âky∗ + c

(2)k
1 ] + p∗1 + q∗1 − p∗2 − q∗2

⇒ p∗1 − p∗2 ≤ min
k

[x∗T Âky∗ + c
(1)k
1 ]−max

k
[−x∗T Âky∗ + c

(2)k
1 ]

⇒ p∗1 ≤ min
k

[x∗T Âky∗ + c
(1)k
1 ]; p∗2 ≥ max

k
[−x∗T Âky∗ + c

(2)k
1 ]. (44)

Similarly, q∗1 ≤ min
l

[x∗T B̂ly∗ + c
(1)l
2 ]; q∗2 ≥ max

l
[−x∗T B̂ly∗ + c

(2)l
2 ]. (45)

Hence from (40), (41), (44) and (45), we write,

p∗1 = min
k

[x∗T Âky∗ + c
(1)
1 ]; p∗2 = max

k
[−x∗T Âky∗ + c

(2)
1 ];

q∗1 = min
l

[x∗T B̂ly∗ + c
(1)
2 ]; q∗2 = max

l
[−x∗T B̂ly∗ + c

(2)
2 ].

Finally, using (40) and (41) and above equations, we can write

min
k

[xT Âky∗ + c
(1)k
1 ] ≤ min

k
[x∗T Âky∗ + c

(1)k
1 ];

min
l

[xT B̂ly∗ + c
(1)l
2 ] ≤ min

l
[x∗T B̂ly∗ + c

(1)l
2 ].

Therefore, we conclude that the pair (x∗, y∗) is the NES with respect to the degree of attainment of the
IF goal aggregated by the minimum component for a bi-matrix game. �

Solution Procedure: The process of solving IFO model can be divided into two steps, which include
aggregation of IF objective(s) and constraints, aggregated by Atanassov’s property [1] of IFS and defuzzifica-
tion of the aggregated function so that the IFO model is changed into crisp one. Let us consider the solution
of the game with respect to the degree of attainment of the IF goal aggregated by minimum component.
Basically, in IF decision making the aggregation corresponds to the union of all the IFS intersection, and the
solution is determined by maximizing the membership function and minimizing the non-membership function
of aggregated function of the intersection.

6 Illustrative Example

Let us consider the player I and player II to have three strategies and three objectives which are defined in
the following pair of matrices as

A1 =

 2 4 5
5 8 9
6 2 7

 ;A2 =

 8 0 1
3 2 4
6 8 1

 ;A3 =

 8 7 5
3 6 6
0 4 1


B1 =

 7 9 0
5 8 9
3 2 1

 ;B2 =

 5 0 1
9 2 4
2 8 4

 ;B3 =

 1 8 5
0 6 2
7 4 1

 .

The tolerances are arbitrary fixed for each matrices for each membership and non-membership functions of
the players. Let the IF goals for the first objective of the player I be represented by the following linear
membership and non-membership functions,

µ1
1(xTA1y) =


1; xTA1y ≥ 9

xTA1y−2
7 ; 2 < xTA1y < 9
0; xTA1y ≤ 2

ν11(xTA1y) =


1; xTA1y ≤ 2

xTA1y−9
−7 ; 2 < xTA1y < 9

0; xTA1y ≥ 9
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Similarly, let the IF goals for the first objective of the player II be represented by the following linear mem-
bership and non-membership functions,

µ1
2(xTB1y) =


1; xTB1y ≥ 9

xTB1y−0
9 ; 0 < xTB1y < 9
0; xTB1y ≤ 0

ν12(xTB1y) =


1; xTB1y ≤ 0

xTB1y−9
−9 ; 0 < xTB1y < 9

0; xTB1y ≥ 9

Similarly for others. The solutions are obtained using LINGO software with formulating the problem by the
help of P8 giving NES. The results for some combinations is shown in the following table:

NES x1 x2 x3 y1 y2 y3 V

(A1, B1) 0.8234 0.1176 0.0590 0.8181 0.0000 0.1819 〈3.11, 5.52〉
(A2, B2) 0.0000 0.1000 0.9000 0.0000 0.3925 0.6075 〈3.69, 5.33〉
(A3, B3) 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 〈6, 6〉

7 Conclusion

In this paper, we have presented a model for studying multi-objective bi-matrix games with IF goals. In this
approach, the degree of acceptance and the degree of rejection of objective and constraints are introduced
together, which both cannot be simply considered as a complement each other and the sum of their value is
less than or equal to 1. Since the strategy spaces of player I and player II could be polyhedral sets, we may also
conceptualize constrained IF bi-matrix game on the lines of crisp constrained bi-matrix games. On the basis,
we have defined the solution in terms of degree of attainment of IF goal in IFS environment, and find it by
solving an mathematical programming problem. A numerical example has illustrated the proposed methods.
This theory can be applied in decision making theory such as economics, operation research, management,
war science, etc.
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