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Abstract

Type-2 (T2) fuzzy variable is an extension of an ordinary fuzzy variable. In fuzzy possibility theory,
T2 fuzzy variable is defined as a measurable map from the universe to the set of real numbers, and the
possibility of a T2 fuzzy variable takes on a real number is a regular fuzzy variable (RFV). T2 fuzziness,
which is usually used to handle linguistic uncertainties, can be described as T2 fuzzy variable. In this paper,
we discuss some new results about T2 fuzzy arithmetic, which have applications in fuzzy optimization and
decision making problems.
c©2011 World Academic Press, UK. All rights reserved.
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1 Introduction

The concept of a T2 fuzzy set as an extension of an ordinary fuzzy set was introduced by Zadeh [23]. But in
the 1970’s, there were only a few researchers to study T2 fuzzy sets. For instance, Mizumoto and Tanaka [14]
discussed what kinds of algebraic structures the grades of T2 fuzzy sets form under join, meet and negation,
and showed that normal convex fuzzy grades form a distributive lattace under the join and meet; Nieminen
[16] studied on the algebraic structure of T2 fuzzy sets; Dubois and Prade [2] investigated the operations in a
fuzzy-valued logic; Yager [22] applied the T2 fuzzy set to decision making. A T2 fuzzy set is characterized by
a fuzzy membership function. A T2 fuzzy set represents the uncertainty in terms of secondary membership
function and footprint of uncertainty [12]. Now, T2 fuzzy sets have been applied successfully to T2 fuzzy logic
systems [5, 6], pattern recognition [13, 25, 26], and etc. [3, 4, 8, 9].

Liu and Liu [11] presented the fuzzy possibility theory which is a generalization of the usual possibility
theory [7, 15, 17, 20, 21, 24]. The paper introduced some fundamental concepts in the proposed theory, such
as fuzzy possibility measure defined as a set function from the ample field to a collection of RFV values, fuzzy
possibility space (FPS), T2 fuzzy variable defined as a measurable map from the universe to the set of real
numbers and the possibility of a T2 fuzzy variable takes on a real number is an RFV, T2 possibility distribution
function, secondary possibility distribution function. To characterize the properties of T2 fuzzy variables in
some aspects, Chen and Wang [1] presented a scalar representative value operator for T2 fuzzy variable. They
also discussed some properties of the representative value operator. For discrete T2 fuzzy variable and T2
triangular fuzzy variable, they obtained the computational formulas of the representative value. To defuzzify
type-2 fuzzy variables, Qin et al. [18, 19] gave the mean reduction methods and the critical value reduction
methods for the type-2 fuzzy variable. The reference [11] also provided the theoretical foundation for the
arithmetic of T2 fuzzy variables. In this paper, for three kinds of common T2 fuzzy variables, we give some
new results of T2 fuzzy arithmetic.

The paper is organized as follows. We first recall several required fundamental concepts in Section 2.
Section 3 gives the arithmetic results of some T2 triangular fuzzy variables. The arithmetic results of some
T2 trapezoid fuzzy variables are described in Section 4. In Section 5, we conclude the arithmetic results of
some T2 normal fuzzy variables. Finally, Section 6 gives the conclusions.
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2 Preliminaries

Let Γ be the universe of discourse. An ample field A on Γ is a class of subsets of Γ that is closed under
arbitrary unions, intersections and complement in Γ. Let ξ be a fuzzy variable which was defined on the
possibility space (Γ,A,Pos) [21] with possibility distribution function µ : < → [0, 1].

An m-ary regular fuzzy vector ξ = (ξ1, ξ2, . . . , ξm) is defined as a vector from Γ to the set [0, 1]m, i.e., for
any γ ∈ Γ, ξ(γ) = (ξ1(γ), ξ2(γ), . . . , ξm(γ)) ∈ [0, 1]m. As m=1, ξ is called an RFV. For example, ξ = (r1, r2, r3)
with 0 ≤ r1 < r2 < r3 ≤ 1 is a triangular RFV. A fuzzy variable which only takes on value 0 with possibility 1
is an RFV, denoted by 0̃. A fuzzy variable which only takes on value 1 with possibility 1 is an RFV, denoted
by 1̃.

In this paper, we denote by R([0, 1]) as the collection of all RFVs on [0, 1].

Definition 1 [10] Let ξi, 1 ≤ i ≤ m be mi-ary regular fuzzy vectors defined on a possibility space (Γ,A,Pos),
respectively. They are said to be mutually independent if

Pos{γ ∈ Γ | ξ1(γ) = t1, . . . , ξm(γ) = tm} = min1≤i≤m Pos{γ ∈ Γ | ξi(γ) = ti} (1)

for any ti = (t
(i)
1 , . . . , t

(i)
mi) ∈ [0, 1]mi and i = 1, · · · ,m.

Moreover, a family of regular fuzzy vectors {ξi, i ∈ I} is said to be mutually independent if for each integer
m, and i1 < i2 < · · · < im, the regular fuzzy vectors ξik , k = 1, 2, . . . ,m are mutually independent.

Definition 2 [11] Let A be an ample field on the universe Γ, and P̃os : A 7→ R([0, 1]) a set function on A
such that {P̃os(A) | A 3 A atom} is a family of mutually independent RFVs. We call P̃os a fuzzy possibility
measure if it satisfies the following conditions:

Pos1) P̃os(∅) = 0̃;

Pos2) For any subclass {Ai | i ∈ I} of A (finite, countable or uncountable),

P̃os

(⋃
i∈I

Ai

)
= sup

i∈I
P̃os(Ai).

Moreover, if µ
P̃os(Γ)

(1) = 1, then we call P̃os a regular fuzzy possibility measure.

The triplet (Γ,A, P̃os) is referred to as a fuzzy possibility space (FPS).
If the universe Γ is a finite set, then the ample field A on Γ is an algebra containing a finite number of

subsets of Γ. Therefore, the axiom Pos2) in Definition 2 can be replaced by

P̃os

(
n⋃
i=1

Ai

)
= max

1≤i≤n
P̃os(Ai)

for any finite subclass {Ai, i = 1, . . . , n} of A.
If A is the power set of the universe Γ, then the atoms of A are all single point sets {γ}, γ ∈ Γ. Therefore,

in order to define a fuzzy possibility measure on A, it suffices to give the value of P̃os at each single point set.

Definition 3 [11] Let (Γ,A, P̃os) be an FPS. A map ξ = (ξ1, ξ2, . . . , ξm) : Γ 7→ <m is called an m-ary T2
fuzzy vector if for any x = (x1, x2, . . . , xm) ∈ <m, the set {γ ∈ Γ | ξ(γ) ≤ x} is an element of A, i.e.,

{γ ∈ Γ | ξ(γ) ≤ x} = {γ ∈ Γ | ξ1(γ) ≤ x1, . . . , ξm(γ) ≤ xm} ∈ A. (2)

As m = 1, the map ξ : Γ 7→ < is called a T2 fuzzy variable.

Definition 4 [11] Let ξi, i = 1, 2, . . . ,m be T2 fuzzy variables defined on an FPS (Γ,A, P̃os). They are said
to be mutually independent if

P̃os ({γ ∈ Γ | ξ1(γ) ∈ B1, · · · , ξm(γ) ∈ Bm}) = min
1≤i≤m

P̃os ({γ ∈ Γ | ξi(γ) ∈ Bi}) (3)

for any Bi ⊂ <, i = 1, 2, · · · ,m, where P̃os({γ ∈ Γ | ξi(γ) ∈ Bi}), i = 1, 2, · · · ,m are supposed to be mutually
independent RFVs.

Moreover, a family of T2 fuzzy variables {ξi | i ∈ I} is said to be mutually independent if for each integer
m ≥ 2, and i1 < i2 < · · · < im, the T2 fuzzy variables ξik , k = 1, 2, · · · ,m are mutually independent.
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Definition 5 [11] Let ξ = (ξ1, ξ2, . . . , ξm) be a T2 fuzzy vector defined on an FPS (Γ,A, P̃os). The secondary
possibility distribution function of ξ, denoted by µ̃ξ(x), is a map <m 7→ R([0, 1]) such that

µ̃ξ(x) = P̃os {γ ∈ Γ | ξ(γ) = x} , x ∈ <m, (4)

while the T2 possibility distribution function of ξ, denoted by µξ(x, u), is a map <m × Jx 7→ [0, 1] such that

µξ(x, u) = Pos
{
µ̃ξ(x) = u

}
, (x, u) ∈ <m × Jx (5)

where Pos is the possibility measure induced by the distribution of µ̃ξ(x), and Jx ⊂ [0, 1] is the support of
µ̃ξ(x), i.e., Jx = {u ∈ [0, 1] | µξ(x, u) > 0}.

Liu and Liu [11] dealt with the arithmetic of T2 fuzzy variables as following.

Theorem 1 [11] If ξi, i = 1, . . . , n are T2 fuzzy variables on an FPS (Γ,A, P̃os), and f is a real-valued
function from <n to <, then the function η = f(ξ1, ξ2, . . . , ξn) defined by

η(γ) = f(ξ1(γ), ξ2(γ), . . . , ξn(γ)), γ ∈ Γ (6)

is also a T2 fuzzy variable on the FPS, and its secondary possibility distribution function can be written as

µ̃η(y) = sup
f(x1,x2,...,xn)=y

µ̃ξ(x1, x2, . . . , xn), y ∈ < (7)

where (x1, x2, . . . , xn) ∈ <n, and µ̃ξ(x1, x2, . . . , xn) is the secondary possibility distribution function of ξ =
(ξ1, ξ2, . . . , ξn).

Definition 6 [11] The support of a T2 fuzzy vector ξ is defined as

supp ξ = {(x, u) ∈ <m × [0, 1] | µξ(x, u) > 0}

where µξ(x, u) is the T2 possibility distribution function of ξ.

A T2 fuzzy variable ξ is called triangular [18] if its secondary possibility distribution µ̃ξ(x) is(
x−r1
r2−r1 − θl min{ x−r1r2−r1 ,

r2−x
r2−r1 },

x−r1
r2−r1 ,

x−r1
r2−r1 + θr min{ x−r1r2−r1 ,

r2−x
r2−r1 }

)
for x ∈ [r1, r2], and (

r3−x
r3−r2 − θl min{ r3−xr3−r2 ,

x−r2
r3−r2 },

r3−x
r3−r2 ,

r3−x
r3−r2 + θr min{ r3−xr3−r2 ,

x−r2
r3−r2 }

)
for x ∈ [r2, r3], where θl, θr ∈ [0, 1] are two parameters characterizing the degree of uncertainty that ξ takes
the value x. For simplicity, we denote the T2 triangular fuzzy variable ξ with the above distribution by
(r̃1, r̃2, r̃3; θl, θr).

A T2 fuzzy variable ξ is called trapezoid [18] if its secondary possibility distribution µ̃ξ(x) is 1̃ for x ∈
[r2, r3], (

x−r1
r2−r1 − θl min{ x−r1r2−r1 ,

r2−x
r2−r1 },

x−r1
r2−r1 ,

x−r1
r2−r1 + θr min{ x−r1r2−r1 ,

r2−x
r2−r1 }

)
for x ∈ [r1, r2], and (

r4−x
r4−r3 − θl min{ r4−xr4−r3 ,

x−r3
r4−r3 },

r4−x
r4−r3 ,

r4−x
r4−r3 + θr min{ r4−xr4−r3 ,

x−r3
r4−r3 }

)
for x ∈ [r3, r4], where θl, θr ∈ [0, 1] are two parameters characterizing the degree of uncertainty that ξ takes
the value x. For simplicity, we denote the T2 trapezoid fuzzy variable ξ with the above distribution by
(r̃1, r̃2, r̃3, r̃4; θl, θr).

A T2 fuzzy variable ξ is called normal if its secondary possibility distribution µ̃ξ(x) is(
exp(− (x−µ)2

2σ2 )− θl min{1− exp(− (x−µ)2

2σ2 ), exp(− (x−µ)2

2σ2 )}, exp(− (x−µ)2

2σ2 ),

exp(− (x−µ)2

2σ2 ) + θr min{1− exp(− (x−µ)2

2σ2 ), exp(− (x−µ)2

2σ2 )}
)

for any x ∈ <, where µ ∈ <, σ > 0, and θl, θr ∈ [0, 1] are two parameters characterizing the degree of
uncertainty that ξ takes the value x. For simplicity, the T2 normal fuzzy variable ξ with the above distribution
is denoted by ñ(µ, σ2; θl, θr).



230 Y. Chen and L. Zhang: Some New Results about Arithmetic of Type-2 Fuzzy Variables

3 The Linear Combination of T2 Triangular Fuzzy Variables

Theorem 2 Let ξ = (r̃1, r̃2, r̃3; θl, θr) be a T2 triangular fuzzy variable. Then for any real number a 6= 0, we
have

aξ =

{
(ar̃1, ar̃2, ar̃3; θl, θr), if a > 0
(ar̃3, ar̃2, ar̃1; θl, θr), if a < 0.

Proof: According to the definition of T2 triangular fuzzy variable, we have µ̃aξ(x) = µ̃ξ(
x
a ). If a > 0, and

x
a ∈ [r1, r2], i.e., x ∈ [ar1, ar2], then

µ̃aξ(x) = µ̃ξ(
x
a ) =

(
x
a−r1
r2−r1 − θl min{

x
a−r1
r2−r1 ,

r2− x
a

r2−r1 },
x
a−r1
r2−r1 ,

x
a−r1
r2−r1 + θr min{

x
a−r1
r2−r1 ,

r2− x
a

r2−r1 }
)

=
(

x−ar1
ar2−ar1 − θl min{ x−ar1

ar2−ar1 ,
ar2−x
ar2−ar1 },

x−ar1
ar2−ar1 ,

x−ar1
ar2−ar1 + θr min{ x−ar1

ar2−ar1 ,
ar2−x
ar2−ar1 }

)
.

If a > 0, and x
a ∈ [r2, r3], i.e., x ∈ [ar2, ar3], then

µ̃aξ(x) = µ̃ξ(
x
a ) =

(
r3− x

a

r3−r2 − θl min{ r3−
x
a

r3−r2 ,
x
a−r2
r3−r2 },

r3− x
a

r3−r2 ,
r3− x

a

r3−r2 + θr min{ r3−
x
a

r3−r2 ,
x
a−r2
r3−r2 }

)
=
(

ar3−x
ar3−ar2 − θl min{ ar3−x

ar3−ar2 ,
x−ar2
ar3−ar2 },

ar3−x
ar3−ar2 ,

ar3−x
ar3−ar2 + θr min{ ar3−x

ar3−ar2 ,
x−ar2
ar3−ar2 }

)
.

Therefore, for any real number a > 0, we have

aξ = (ar̃1, ar̃2, ar̃3; θl, θr).

If a < 0, and x
a ∈ [r1, r2], i.e., x ∈ [ar2, ar1], then

µ̃aξ(x) = µ̃ξ(
x
a ) =

(
x−ar1
ar2−ar1 − θl min{ x−ar1

ar2−ar1 ,
ar2−x
ar2−ar1 },

x−ar1
ar2−ar1 ,

x−ar1
ar2−ar1 + θr min{ x−ar1

ar2−ar1 ,
ar2−x
ar2−ar1 }

)
=
(

ar1−x
ar1−ar2 − θl min{ ar1−x

ar1−ar2 ,
x−ar2
ar1−ar2 },

ar1−x
ar1−ar2 ,

ar1−x
ar1−ar2 + θr min{ ar1−x

ar1−ar2 ,
x−ar2
ar1−ar2 }

)
.

If a < 0, and x
a ∈ [r2, r3], i.e., x ∈ [ar3, ar2], then

µ̃aξ(x) = µ̃ξ(
x
a ) =

(
ar3−x
ar3−ar2 − θl min{ ar3−x

ar3−ar2 ,
x−ar2
ar3−ar2 },

ar3−x
ar3−ar2 ,

ar3−x
ar3−ar2 + θr min{ ar3−x

ar3−ar2 ,
x−ar2
ar3−ar2 }

)
=
(

x−ar3
ar2−ar3 − θl min{ x−ar3

ar2−ar3 ,
ar2−x
ar2−ar3 },

x−ar3
ar2−ar3 ,

x−ar3
ar2−ar3 + θr min{ x−ar3

ar2−ar3 ,
ar2−x
ar2−ar3 }

)
.

Therefore, for any real number a < 0, we know that

aξ = (ar̃3, ar̃2, ar̃1; θl, θr).

The proof is complete.

Theorem 3 Let ξ1 = (r̃1, r̃2, r̃3; θl, θr) and ξ2 = (l̃1, l̃2, l̃3; θl, θr) be two mutually independent T2 triangular
fuzzy variables, and ξ = ξ1 + ξ2. The secondary possibility distribution function of ξ1 is µ̃ξ1(x), x ∈ <,
{µ̃ξ1(x), x ∈ [r1, r3]} is supposed to be a family of mutually independent RFVs. The secondary possibility
distribution function of ξ2 is µ̃ξ2(x), x ∈ <, {µ̃ξ2(x), x ∈ [l1, l3]} is supposed to be a family of mutually
independent RFVs. Then

ξ = (r̃1 + l1, r̃2 + l2, r̃3 + l3; θl, θr).

Proof: Since ξi, i = 1, 2 are mutually independent T2 fuzzy variables, according to Theorem 1 and Definition
4, the secondary possibility distribution function of ξ is

µ̃ξ(x) = sup
x1+x2=x

µ̃ξ1(x1) ∧ µ̃ξ2(x2), x ∈ < (8)

where µ̃ξi(xi) is the secondary possibility distribution function of ξi.
By the definitions of µ̃ξi(t), i = 1, 2 and the Extension Principal of Zadeh, we have

µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1)
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in the following four cases (i)− (iv):

(i) r1 ≤ x1 ≤ r2, l1 ≤ x2 ≤ l2, and
x1 − r1

r2 − r1
≤ x2 − l1

l2 − l1
,

(ii) r1 ≤ x1 ≤ r2, l2 ≤ x2 ≤ l3, and
x1 − r1

r2 − r1
≤ l3 − x2

l3 − l2
,

(iii) r2 ≤ t1 ≤ r3, l1 ≤ t2 ≤ l2, and
r3 − x1

r3 − r2
≤ x2 − l1

l2 − l1
,

(iv) r2 ≤ x1 ≤ r3, l2 ≤ x2 ≤ l3, and
r3 − x1

r3 − r2
≤ l3 − x2

l3 − l2
.

So, for any x1, x2 such that x1 + x2 = x, we have the following results: in case (i), if

x1 − r1

r2 − r1
=
x2 − l1
l2 − l1

, (9)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2);

in case (ii), if
x1 − r1

r2 − r1
=
l3 − x2

l3 − l2
, (10)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2);

in case (iii), if
r3 − x1

r3 − r2
=
x2 − l1
l2 − l1

, (11)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2);

in case (iv), if
r3 − x1

r3 − r2
=
l3 − x2

l3 − l2
, (12)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2).

From (9), we have
x1 = xr2−l1r2+r1l2−xr1

r2+l2−r1−l1 , x1−r1
r2−r1 = x−r1−l1

r2+l2−r1−l1 .

From (11), we have
x1 = xr3+l1r2−r3l2−xr2

r3−r2−l2+l1
, r3−x1

r3−r2 = x−r3−l1
r2+l2−r3−l1 .

It is easy to know that x−r1−l1
r2+l2−r1−l1 >

x−r3−l1
r2+l2−r3−l1 and r1 + l1 ≤ x ≤ r2 + l2. That is to say

µ̃ξ(x) =
(

x−r1−l1
r2+l2−r1−l1 − θl min

{
x−r1−l1

r2+l2−r1−l1 ,
l2+r2−x

r2+l2−r1−l1

}
, x−r1−l1
r2+l2−r1−l1 ,

x−r1−l1
r2+l2−r1−l1 + θr min

{
x−r1−l1

r2+l2−r1−l1 ,
l2+r2−x

r2+l2−r1−l1

})
for any x ∈ [r1 + l1, r2 + l2]. In the same way, from (10) and (12), we have

µ̃ξ(x) =
(

r3+l3−x
r3+l3−r2−l2 − θl min

{
r3+l3−x

r3+l3−r2−l2 ,
x−l2−r2

r3+l3−r2−l2

}
, r3+l3−x
r3+l3−r2−l2 ,

r3+l3−x
r3+l3−r2−l2 + θr min

{
r3+l3−x

r3+l3−r2−l2 ,
x−l2−r2

r3+l3−r2−l2

})
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for any x ∈ [r2 + l2, r3 + l3].
If x ≤ r1 + l1 or x ≥ r3 + l3, then µ̃ξ(x) = 0̃. So

ξ = (r̃1 + l1, r̃2 + l2, r̃3 + l3; θl, θr).

The proof is complete.
Under some wild assumption, according to Theorems 2 and 3, we know that the linear combination of

a finite number of T2 triangular fuzzy variables, which have the same parameters θl and θr, is also a T2
triangular fuzzy variable. This result can be prescribed as the following theorem.

Theorem 4 Let ξ1 = (r̃1, r̃2, r̃3; θl, θr) and ξ2 = (l̃1, l̃2, l̃3; θl, θr) be two mutually independent T2 triangular
fuzzy variables, and ξ = aξ1 + bξ2 where a, b 6= 0 are two any real numbers. The secondary possibility
distribution function of ξ1 is µ̃ξ1(x), x ∈ <, {µ̃ξ1(x), x ∈ [r1, r3]} is supposed to be a family of mutually
independent RFVs. The secondary possibility distribution function of ξ2 is µ̃ξ2(x), x ∈ <, {µ̃ξ2(x), x ∈ [l1, l3]}
is supposed to be a family of mutually independent RFVs. Then

ξ =


( ˜ar1 + bl1, ˜ar2 + bl2, ˜ar3 + bl3; θl, θr), if a, b > 0

( ˜ar1 + bl3, ˜ar2 + bl2, ˜ar3 + bl1; θl, θr), if a > 0 and b < 0

( ˜ar3 + bl1, ˜ar2 + bl2, ˜ar1 + bl3; θl, θr), if a < 0 and b > 0

( ˜ar3 + bl3, ˜ar2 + bl2, ˜ar1 + bl1; θl, θr), if a, b < 0.

Example 1: Let ξ1 = (1̃, 2̃, 4̃; 0.6, 0.8) be a T2 triangular fuzzy variable. The support of ξ1 is showed in
Figure 1. The secondary possibility distribution function of ξ1 is µ̃ξ1(x), x ∈ <, {µ̃ξ1(x), x ∈ [1, 4]} is supposed

to be a family of mutually independent RFVs. Let ξ2 = (2̃, 3̃, 4̃; 0.6, 0.8) be a T2 triangular fuzzy variable.
The support of ξ2 is showed in Figure 2. The secondary possibility distribution function of ξ2 is µ̃ξ2(x), x ∈ <,
{µ̃ξ2(x), x ∈ [2, 4]} is supposed to be a family of mutually independent RFVs. Also, we suppose that triangular

fuzzy variables ξ1 and ξ2 are mutually independent. Then ξ = ξ1 + ξ2 = (3̃, 5̃, 8̃; 0.6, 0.8) is a T2 triangular
fuzzy variable. The support of ξ is showed in Figure 3.

Figure 1: The support of the T2 fuzzy variable ξ1 defined in Example 1

4 The Linear Combination of T2 Trapezoid Fuzzy Variables

Theorem 5 Let ζ = (r̃1, r̃2, r̃3, r̃4; θl, θr) be a T2 trapezoid fuzzy variable. Then for any real number a 6= 0,
we have

aζ =

{
(ar̃1, ar̃2, ar̃3, ar̃4; θl, θr), if a > 0
(ar̃4, ar̃3, ar̃2, ar̃1; θl, θr), if a < 0.
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Figure 2: The support of the T2 fuzzy variable ξ2 defined in Example 1

Figure 3: The support of the T2 fuzzy variable ξ defined in Example 1

Proof: According to the definition of T2 trapezoid fuzzy variable, we have µ̃aζ(x) = µ̃ζ(
x
a ). If a > 0, and

x
a ∈ [r1, r2], i.e., x ∈ [ar1, ar2], then

µ̃aζ(x) = µ̃ζ(
x
a ) =

(
x
a−r1
r2−r1 − θl min{

x
a−r1
r2−r1 ,

r2− x
a

r2−r1 },
x
a−r1
r2−r1 ,

x
a−r1
r2−r1 + θr min{

x
a−r1
r2−r1 ,

r2− x
a

r2−r1 }
)

=
(

x−ar1
ar2−ar1 − θl min{ x−ar1

ar2−ar1 ,
ar2−x
ar2−ar1 },

x−ar1
ar2−ar1 ,

x−ar1
ar2−ar1 + θr min{ x−ar1

ar2−ar1 ,
ar2−x
ar2−ar1 }

)
.

If a > 0, and x
a ∈ [r3, r4], i.e., x ∈ [ar3, ar4], then

µ̃aζ(x) = µ̃ζ(
x
a ) =

(
r4− x

a

r4−r3 − θl min{ r4−
x
a

r4−r3 ,
x
a−r3
r4−r3 },

r4− x
a

r4−r3 ,
r4− x

a

r4−r3 + θr min{ r4−
x
a

r4−r3 ,
x
a−r3
r4−r3 }

)
=
(

ar4−x
ar4−ar3 − θl min{ ar4−x

ar4−ar3 ,
x−ar3
ar4−ar3 },

ar4−x
ar4−ar3 ,

ar4−x
ar4−ar3 + θr min{ ar4−x

ar4−ar3 ,
x−ar3
ar4−ar3 }

)
.

If a > 0, and x
a ∈ [r2, r3], i.e., x ∈ [ar2, ar3], then

µ̃aζ(x) = 1̃.

Therefore, for any real number a > 0,

aζ = (ar̃1, ar̃2, ar̃3, ar̃4; θl, θr).



234 Y. Chen and L. Zhang: Some New Results about Arithmetic of Type-2 Fuzzy Variables

In the same way, for any real number a < 0, we have

aζ = (ar̃4, ar̃3, ar̃2, ar̃1; θl, θr).

The proof is complete.

Theorem 6 Let ζ1 = (r̃1, r̃2, r̃3, r̃4; θl, θr) and ζ2 = (l̃1, l̃2, l̃3, l̃4; θl, θr) be two mutually independent T2 trape-
zoid fuzzy variables, and ζ = ζ1 + ζ2. The secondary possibility distribution function of ζ1 is µ̃ζ1(x), x ∈ <,
{µ̃ζ1(x), x ∈ [r1, r2] ∪ [r3, r4]} is supposed to be a family of mutually independent RFVs. The secondary pos-
sibility distribution function of ζ2 is µ̃ζ2(x), x ∈ <, {µ̃ζ2(x), x ∈ [l1, l2] ∪ [l3, l4]} is supposed to be a family of
mutually independent RFVs. Then

ζ = (r̃1 + l1, r̃2 + l2, r̃3 + l3, r̃4 + l4; θl, θr).

Proof: Since ζi, i = 1, 2 are mutually independent T2 fuzzy variables, according to Theorem 1 and Definition
4, the secondary possibility distribution function of ζ is

µ̃ζ(x) = sup
x1+x2=x

µ̃ζ1(x1) ∧ µ̃ζ2(x2), x ∈ < (13)

where µ̃ζi(xi) is the secondary possibility distribution function of ζi.
By the definitions of µ̃ζi(t), i = 1, 2 and the Extension Principal of Zadeh, we all have

µ̃ζ1(x1) ∧ µ̃ζ2(x2) = µ̃ζ1(x1)

in the following five cases (i)− (v):

(i) r1 ≤ x1 ≤ r2, l1 ≤ x2 ≤ l2, and
x1 − r1

r2 − r1
≤ x2 − l1

l2 − l1
,

(ii) r1 ≤ x1 ≤ r2, l3 ≤ x2 ≤ l4, and
x1 − r1

r2 − r1
≤ l4 − x2

l4 − l3
,

(iii) r3 ≤ t1 ≤ r4, l1 ≤ t2 ≤ l2, and
r4 − x1

r4 − r3
≤ x2 − l1

l2 − l1
,

(iv) r3 ≤ x1 ≤ r4, l3 ≤ x2 ≤ l4, and
r4 − x1

r4 − r3
≤ l4 − x2

l4 − l3
,

(v) r1 ≤ x1 ≤ r4, l2 ≤ x2 ≤ l3.

So, for any x1, x2 such that x1 + x2 = x, we have the following results: in case (i), if

x1 − r1

r2 − r1
=
x2 − l1
l2 − l1

, (14)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2);

in case (ii), if
x1 − r1

r2 − r1
=
l4 − x2

l4 − l3
, (15)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2);
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in case (iii), if
r4 − x1

r4 − r3
=
x2 − l1
l2 − l1

, (16)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2);

in case (iv), if
r4 − x1

r4 − r3
=
l4 − x2

l4 − l3
, (17)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2);

in case (v), if
r2 ≤ x1 ≤ r3 and l2 ≤ x2 ≤ l3, (18)

we have
sup

x1+x2=x
µ̃ξ1(x1) ∧ µ̃ξ2(x2) = µ̃ξ1(x1) = µ̃ξ2(x2) = 1̃.

From (14), we have
x1 = xr2−l1r2+r1l2−xr1

r2+l2−r1−l1 , x1−r1
r2−r1 = x−r1−l1

r2+l2−r1−l1 .

From (16), we have
x1 = xr4+l1r3−r4l3−xr3

r3+l3−r1−l1 , r4−x1

r4−r3 = x−r4−l1
r3+l2−r4−l1 .

It is easy to know that x−r1−l1
r2+l2−r1−l1 >

x−r4−l1
r3+l2−r4−l1 and r1 + l1 ≤ x ≤ r2 + l2. That is to say

µ̃ζ(x) =
(

x−r1−l1
r2+l2−r1−l1 − θl min

{
x−r1−l1

r2+l2−r1−l1 ,
l2+r2−x

r2+l2−r1−l1

}
, x−r1−l1
r2+l2−r1−l1 ,

x−r1−l1
r2+l2−r1−l1 + θr min

{
x−r1−l1

r2+l2−r1−l1 ,
l2+r2−x

r2+l2−r1−l1

})
for any x ∈ [r1 + l1, r2 + l2]. In the same way, from (15) and (17), we have

µ̃ζ(x) =
(

r4+l4−x
r4+l4−r3−l3 − θl min

{
r4+l4−x

r4+l4−r3−l3 ,
x−l3−r3

r4+l4−r3−l3

}
, r4+l4−x
r4+l4−r3−l3 ,

r4+l4−x
r4+l4−r3−l3 + θr min

{
r4+l4−x

r4+l4−r3−l3 ,
x−l3−r3

r4+l4−r3−l3

})
for any x ∈ [r3 + l3, r4 + l4].

From (18), if r2 ≤ x1 ≤ r3 and l2 ≤ x2 ≤ l3, i.e., r2 + l2 ≤ x ≤ r3 + l3, we know that µ̃ζ(x) = 1̃. If

x ≤ r1 + l1 or x ≥ r4 + l4, then µ̃ζ(x) = 0̃. So

ζ = (r̃1 + l1, r̃2 + l2, r̃3 + l3, r̃4 + l4; θl, θr).

The proof is complete.
According to Theorems 5 and 6, we have the following result.

Theorem 7 Let ζ1 = (r̃1, r̃2, r̃3, r̃4; θl, θr) and ζ2 = (l̃1, l̃2, l̃3, l̃4; θl, θr) be two mutually independent T2 trape-
zoid fuzzy variables, and ζ = aζ1 + bζ2 where a, b 6= 0 are two any real numbers. The secondary possi-
bility distribution function of ζ1 is µ̃ζ1(x), x ∈ <, {µ̃ζ1(x), x ∈ [r1, r2] ∪ [r3, r4]} is supposed to be a fam-
ily of mutually independent RFVs. The secondary possibility distribution function of ζ2 is µ̃ζ2(x), x ∈ <,
{µ̃ζ2(x), x ∈ [l1, l2] ∪ [l3, l4]} is supposed to be a family of mutually independent RFVs. Then

ζ =


( ˜ar1 + bl1, ˜ar2 + bl2, ˜ar3 + bl3, ˜ar4 + bl4; θl, θr), if a, b > 0

( ˜ar1 + bl4, ˜ar2 + bl3, ˜ar3 + bl2, ˜ar4 + bl1; θl, θr), if a > 0 and b < 0

( ˜ar4 + bl1, ˜ar3 + bl2, ˜ar2 + bl3, ˜ar1 + bl4; θl, θr), if a < 0 and b > 0

( ˜ar4 + bl4, ˜ar3 + bl3, ˜ar2 + bl2, ˜ar1 + bl1; θl, θr), if a, b < 0.
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Example 2: Let ζ1 = (1̃, 2̃, 3̃, 5̃; 0.6, 0.8) be a T2 trapezoid fuzzy variable. The support of ζ1 is showed in
Figure 4. The secondary possibility distribution function of ζ1 is µ̃ζ1(x), x ∈ <, {µ̃ζ1(x), x ∈ [1, 2] ∪ [3, 5]}
is supposed to be a family of mutually independent RFVs. Let ζ2 = (2̃, 3̃, 4̃, 5̃; 0.6, 0.8) be a T2 trapezoid
fuzzy variable. The support of ζ2 is showed in Figure 5. The secondary possibility distribution function of
ζ2 is µ̃ζ2(x), x ∈ <, {µ̃ζ2(x), x ∈ [2, 3] ∪ [4, 5]} is supposed to be a family of mutually independent RFVs.
Also, we suppose that trapezoid fuzzy variables ζ1 and ζ2 are mutually independent. Then ζ = ζ1 + ζ2 =
(3̃, 5̃, 7̃, 1̃0; 0.6, 0.8) is a T2 trapezoid fuzzy variable. The support of ζ is showed in Figure 6.

Figure 4: The support of the T2 fuzzy variable ζ1 defined in Example 2

Figure 5: The support of the T2 fuzzy variable ζ2 defined in Example 2

5 The Linear Combination of T2 Normal Fuzzy Variables

Theorem 8 Let η1 = ñ(µ1, σ
2
1 ; θl, θr) and η2 = ñ(µ2, σ

2
2 ; θl, θr) be two mutually independent T2 normal fuzzy

variables, and η = η1 + η2. The secondary possibility distribution function of η1 is µ̃η1(x), x ∈ <, {µ̃η1(x), x ∈
<} is supposed to be a family of mutually independent RFVs. The secondary possibility distribution function
of η2 is µ̃η2(x), x ∈ <, {µ̃ξ2(x), x ∈ <} is supposed to be a family of mutually independent RFVs. Then

η = ñ(µ1 + µ2, (σ1 + σ2)2; θl, θr).
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Figure 6: The support of the T2 fuzzy variable ζ defined in Example 2

Proof: Since ηi, i = 1, 2 are mutually independent T2 fuzzy variables, according to Theorem 1 and Definition
4, the secondary possibility distribution function of η is

µ̃η(x) = sup
x1+x2=x

µ̃η1(x1) ∧ µ̃η2(x2), x ∈ < (19)

where µ̃ηi(xi) is the secondary possibility distribution function of ηi.
By the definitions of µ̃ηi(t), i = 1, 2 and the Extension Principal of Zadeh, we have

µ̃η1(x1) ∧ µ̃η2(x2) = µ̃η1(x1)

whenever exp(− (x1−µ1)2

2σ2
1

) ≤ exp(− (x2−µ2)2

2σ2
2

).

So, for any x1, x2 such that x1 + x2 = x, if

exp(− (x1 − µ1)2

2σ2
1

) = exp(− (x2 − µ2)2

2σ2
2

), (20)

i.e.,
x1 − µ1

σ1
=
x2 − µ2

σ2
or

x1 − µ1

σ1
= −x2 − µ2

σ2
, (21)

we have
µ̃η(x) = sup

x1+x2=x
µ̃η1(x1) ∧ µ̃η2(x2) = µ̃η1(x1) = µ̃η2(x2). (22)

From (21), we have

x1 = µ1σ2+σ1(x−µ2)
σ1+σ2

, x1−µ1

σ1
= x−µ1−µ2

σ1+σ2
,

or
x1 = µ1σ2+σ1(µ2−x)

σ2−σ1
, x1−µ1

σ1
= µ1+µ2−x

σ2−σ1
.

It is easy to know that (x−µ1−µ2)2

(σ1+σ2)2 < (µ1+µ2−x)2

(σ2−σ1)2 . That is to say exp(− (x−µ1−µ2)2

2(σ1+σ2)2 ) > exp(− (µ1+µ2−x)2

2(σ2−σ1)2 ).

Then, for any x ∈ <, we have

µ̃η(x) =
(

exp(− (x−µ1−µ2)2

2(σ1+σ2)2 )− θl min{1− exp(− (x−µ1−µ2)2

2(σ1+σ2)2 ), exp(− (x−µ1−µ2)2

2(σ1+σ2)2 )}, exp(− (x−µ1−µ2)2

2(σ1+σ2)2 ),

exp(− (x−µ1−µ2)2

2(σ1+σ2)2 ) + θr min{1− exp(− (x−µ1−µ2)2

2(σ1+σ2)2 ), exp(− (x−µ1−µ2)2

2(σ1+σ2)2 )}
)
.

So
η = ñ(µ1 + µ2, (σ1 + σ2)2; θl, θr).

The proof is complete.
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Theorem 9 Let η = ñ(µ, σ2; θl, θr) be a T2 normal fuzzy variable. Then for any real number a 6= 0, we have

aη = ñ(aµ, (aσ)2; θl, θr) =

{
ñ(aµ, (aσ)2; θl, θr), if a > 0
ñ(aµ, (−aσ)2; θl, θr), if a < 0.

Proof: According to the definition of T2 normal fuzzy variable, we have µ̃aη(x) = µ̃η(xa ). Then

µ̃aη(x) = µ̃η(xa )

=
(

exp(− ( x
a−µ)2

2σ2 )− θl min{1− exp(− ( x
a−µ)2

2σ2 ), exp(− ( x
a−µ)2

2σ2 )}, exp(− ( x
a−µ)2

2σ2 ),

exp(− ( x
a−µ)2

2σ2 ) + θr min{1− exp(− ( x
a−µ)2

2σ2 ), exp(− ( x
a−µ)2

2σ2 )}
)

=
(

exp(− (x−aµ)2

2(aσ)2 )− θl min{1− exp(− (x−aµ)2

2(aσ)2 ), exp(− (x−aµ)2

2(aσ)2 )}, exp(− (x−aµ)2

2(aσ)2 ),

exp(− (x−aµ)2

2(aσ)2 ) + θr min{1− exp(− (x−aµ)2

2(aσ)2 ), exp(− (x−aµ)2

2(aσ)2 )}
)
.

Therefore, for any real number a 6= 0, we know that

aη = ñ(aµ, (aσ)2; θl, θr).

It is easy to know that the second equal sign in the result of the theorem holds, too.
The proof is complete.
According to Theorems 8 and 9, we have the following theorem.

Theorem 10 Let η1 = ñ(µ1, σ
2
1 ; θl, θr) and η2 = ñ(µ2, σ

2
2 ; θl, θr) be two mutually independent T2 normal fuzzy

variables, and η = aη1 + bη2 where a, b 6= 0 are two any real numbers. The secondary possibility distribution
function of η1 is µ̃η1(x), x ∈ <, {µ̃η1(x), x ∈ <} is supposed to be a family of mutually independent RFVs.
The secondary possibility distribution function of η2 is µ̃η2(x), x ∈ <, {µ̃ξ2(x), x ∈ <} is supposed to be a
family of mutually independent RFVs. Then

η =


(aµ1 + bµ2, (aσ1 + bσ2)2; θl, θr), if a, b > 0
(aµ1 + bµ2, (aσ1 − bσ2)2; θl, θr), if a > 0 and b < 0
(aµ1 + bµ2, (−aσ1 + bσ2)2; θl, θr), if a < 0 and b > 0
(aµ1 + bµ2, (aσ1 + bσ2)2; θl, θr), if a, b < 0.

Figure 7: The support of the T2 fuzzy variable η1 defined in Example 3

Example 3: Let η1 = ñ(0, 42; 0.5, 0.6) be a T2 normal fuzzy variable. The support of η1 is showed in
Figure 7. The secondary possibility distribution function of η1 is µ̃η1(x), x ∈ <, {µ̃η1(x), x ∈ <} is supposed
to be a family of mutually independent RFVs. Let η2 = ñ(1, 22; 0.5, 0.6) be a T2 normal fuzzy variable. The
support of η2 is showed in Figure 8. The secondary possibility distribution function of η2 is µ̃η2(x), x ∈ <,
{µ̃η2(x), x ∈ <} is supposed to be a family of mutually independent RFVs. Also, we suppose that normal
fuzzy variables η1 and η2 are mutually independent. Then η = 3η1 − η2 = ñ(−1, 142; 0.5, 0.6) is a T2 normal
fuzzy variable. The support of η is showed in Figure 9.
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Figure 8: The support of the T2 fuzzy variable η2 defined in Example 3

Figure 9: The support of the T2 fuzzy variable η defined in Example 3

6 Conclusions

Based on the theoretical foundation of T2 fuzzy arithmetic, for three kinds of common T2 fuzzy variables, we
have given some new results about T2 fuzzy arithmetic. Under some wild assumption, we have concluded that
the linear combination of a finite number of T2 triangular fuzzy variables, which have the same parameters
θl and θr, is also a T2 triangular fuzzy variable. Also we have proved that the linear combination of a finite
number of T2 trapezoid fuzzy variables, which have the same parameters θl and θr, is also a T2 trapezoid
fuzzy variable. Moreover, we have given that the linear combination of a finite number of T2 normal fuzzy
variables, which have the same parameters θl and θr, is also a T2 normal fuzzy variable.
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