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Abstract 

 
This paper presents a model for locating hierarchical service centres with a nested nature. Customers’ demands for 

different services are assumed to be in four levels. We utilize fuzzy theory to deal with the uncertain nature of cost and 
travelling time. For this purpose, travel times and costs are denoted as triangular fuzzy numbers. The model is 
formulated as a special version of fuzzy goal programming in which the objectives are satisfaction grades of the 
original objectives as minimization of average travel time, maximization of demand coverage and minimization of 
total costs. Two methods are proposed to obtain the satisfaction grades of travel time and cost objectives. Satisfaction 
grade of demand coverage objective is measured by comparing the really established facilities with the appropriate 
number of facilities in terms of before-defined distance measure for each level of facilities. This prevents demand 
undercover or over cover. Cost function involves establishment cost of facilities including fixed and variable costs 
which both of them are dependent on the hierarchy level. To solve the problem, Tabu Search and Simulated Annealing, 
two well-known meta-heuristics are employed. A set of experiments are performed to show the efficiency of the 
algorithms. 
© 2011 World Academic Press, UK. All rights reserved. 

Keywords: location problem, hierarchical service centre, multi-objective optimization, fuzzy goal programming, 
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1 Introduction 
 

In recent years, location planning issues in service sector have attracted some researchers. Meanwhile, the planning of 
outlets for emergency services such as medical systems, police and fire departments has a distinguished position due 
to its higher impact on public safety. Service systems could be classified into two main categories according to their 
service providing style: mobile or service-to-customer in contrast to immobile or customer-to-service. This paper 
considers those services which are provided by immobile facilities (server, outlet and service centre is also possible). 
Obvious examples are medical systems and police offices. An important aspect of this type of services is its facilities’ 
hierarchical structure. The literature of facility location problem is extensively involved by various location models 
for single-level systems (i.e. a single facility type) [26]. 

In hierarchical service systems, facilities at different levels provide different types of services. However, there is 
often a linkage between the different levels, which makes the problem not separable. They can be classified according 
to their structure as nested and non-nested systems [24]. In a nested system, the high-level facilities provide low-level 
services too, while in non-nested systems, each level offers its own special service. A hierarchical system is labelled 
as coherent if all customers of a particular low-level facility are the customers of a particular high-level facility as 
well. In a referral system, the users can go to a higher-level facility only when referred by a low-level facility. A non-
referral system lacks such restriction [21]. 

The wide applications of hierarchical systems and their vital importance to human life have motivated us to 
present a multi-objective model for finding the optimal locations for the facilities of a service sector organization with 
hierarchical structure. The problem of locating service centres involves multiple objectives usually in conflict. Along 
with the cost minimization which is a common objective used in many location studies, distance or travelling time 
minimization is the other important objective that reflects the accessibility of service systems and affects customers’ 
mind in patronizing a service centre. In the case of vital services, facilities must be located in such a way that the 
customers in demand points have access to the service within a reasonable distance or time. Furthermore, the 
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adequacy of available service capacity could be mentioned as an objective, i.e., the capacity should not be under or 
over a necessary range. 

The objectives considered in the model are minimization of average travelling times for facilities of each level, 
minimization of total costs related to facilities establishment and maximization of adequacy of demand coverage. So, 
the number of objectives is dependent on the number of hierarchy levels. The modelling approach is very close to the 
concept of Goal Programming (GP). In fact, it maximizes satisfaction grade of the decision maker about objective 
function value instead of minimizing deviation of each objective from its goal. 

Certainly, some aspects of the problem are uncertain. For example, time to reach the facilities is uncertain due to 
some factors such as varying vehicles to get location, path traffic variation in different periods and so on. Similarly 
the establishment cost of facilities is uncertain due to estimation errors and oscillation of prices. Fuzzy numbers and 
linguistic values are utilized to deal with uncertainties. The model also allows the decision maker (DM) to express 
his/her preference to the partially achievement of the goals because it is not possible to construct a network of 
facilities in which all of our goals are fully satisfied, i.e., some of the goals may not be achieved or partially achieved. 
A modified version of fuzzy goal programming approach is engaged to incorporate the decision makers’ imprecise 
aspiration levels for the goals. 

Since the developed multi-objective service centre location model is highly non-linear, it cannot be solved using 
ordinary optimization methods and we have to utilize approximation algorithms. For this purpose, we use Simulated 
Annealing and Tabu Search, two well-know local search meta-heuristic algorithms. They are tested and compared on 
a large set of randomly generated instances. 

The rest of the paper is as follows; a brief survey on the related literature is provided in Section 2. A theoretical 
background is given in Section 3. Section 4 explains the developed fuzzy multi-objective model. The solution 
algorithms are described in Section 5. Computational results of experiments are given in Section 6 and finally Section 
7 concludes the paper and gives some issues for future research. 

 
2 Literature Survey 

 
All classic models in the location science such as p-median [15] and Maximal Covering Location Problem [9] are 
single-objective. In spite of a rich literature existing on location theory, comparatively small emphasis was put on 
analyzing multi-objective models. However, in real-world location decisions, a variety of objectives could be 
considered. Especially public service systems must meet a variety of objectives in location and allocation decisions. 
The need for the multi-objective framework to plan public facilities has been discussed by some authors [3]. 

A number of multi-objective formulations and objectives to be considered in location problems are described by 
Current et al. [10]. ReVelle [25] extended maximal covering location problem in the case of two-objective. Similarly 
Heller et al. [16] discussed the use of a multiple objective p-median model for locating emergency medical service 
facilities. 

Meanwhile works dedicated to multi-objective modelling of hierarchical facility location problems are scarce 
([13, 6]). 

Multi-objective location models can be solved using mathematical approaches such as GP originally proposed by 
Charnes et al. [7]. GP as a powerful multi-objective decision-making approach is analyzed by some researchers in the 
location science ([20, 27]). It is widely considered by authors in location planning for emergency medical services 
(EMS) and fire stations. By applying location covering techniques within a goal programming framework, Charnes 
and Storbeck [8] developed a method for the sitting of multilevel EMS systems. Badri et al. [3] presented a multiple 
criteria modelling approach, via integer goal programming to the fire-station location problem. Alsalloum and Rand 
[1] considered the problem of identifying the optimal locations of a pre-specified number of emergency medical 
service stations using goal programming. Kanoun et al. [17] proposed a GP model to select a site for a fire and 
emergency service station for a case study in Tunisia. 

All the above models have been formulated in a deterministic manner. In many problems however, various kinds 
of uncertainty and vagueness often do exist which make the models more complex. Fuzzy set theory first introduced 
by Zadeh [30] has been increasingly used to capture and process imprecise and uncertain information. Narasimhan 
[22] was the first in using fuzzy sets theory in facility location problems, albeit for decision-making about selecting 
gas stations not optimizing the location of a set of facilities. Recently many researchers have introduced fuzzy set 
theory approaches into different versions of facility location problem. Applying fuzzy set theory into GP produces 
Fuzzy Goal Programming (FGP) as an approach which can remove the major drawback of GP in determining 
precisely the goal value of each objective function. FGP first developed by Narasimhan [23] is also considered by 
some authors in the context of location planning. For example, Bhattacharya et al. [4] considered new facilities to be 
located under multiple fuzzy criteria, and developed a fuzzy goal programming approach to deal with the problems. 
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Bhattacharya et al. [5] formulated a fuzzy goal programming model for locating a single facility within a given 
convex region with the simultaneous consideration of two objectives: (i) minimize the sum of all transportation costs, 
and (ii) minimize the maximum distances from the facilities to the demand points.  

This paper considers a special version of FGP that applies satisfaction grades instead of objective values in the 
context of location optimization of hierarchical public service centres.  

There are some related works to our model but they all study a single level structure. Araz et al. [2] considered 
emergency service vehicles location problem and developed multi-objective maximal covering location model. The 
proposed model which uses fuzzy goal programming, allocates a fixed number of emergency service vehicles to 
previously defined locations so that three important service level objectives (maximization of the population covered 
by one vehicle, maximization of the population with backup coverage and increasing the service level by minimizing 
the total travel distance from locations at a distance bigger than a prespecified distance standard for all zones) can be 
achieved. 

Tzeng and Chen [28] and Yang et al. [29] developed two similar models for sitting fire stations through a special 
version of fuzzy goal programming with five objectives. Aggregation was achieved through max-min operator. 
Genetic algorithm was utilized to solve the models. 

To the best of our knowledge, this is the first work on presenting a fuzzy multi-objective programming model for 
locating hierarchical facilities. 

 

3 Relevant Theory 
 
3.1  Fuzzy Sets 

 
In this paper, fuzzy sets theory is utilized to model uncertain travel times, cost of facilities establishment and the 
decision maker’s preference to the partially achievement of goals. 

Unlike a conventional crisp set which enforces either membership or non-membership of an object in a set, a 
fuzzy set allows grades of membership in the set. A fuzzy set Ã is defined by a membership function ( )

A
x   which 

assigns to each object x in the universe of discourse X, a value representing its grade of membership in this fuzzy set 
[30]: 

( ) : [0,1]
A

x X  .      (1) 

A variety of shapes such as triangular, trapezoidal, bell curves and s-curves can be used as the membership 
function [19]. Conventionally, the choice of the shape is subjective and allows the decision maker to express his/her 

preferences. A triangular fuzzy number (TFN) is denoted by triplet ( , , )A a b c  and its membership function is: 

( )

0 .

A

t a
a t b

b a
c t

b t ct
c b

otherwise



   
    





       (2) 

A typical triangular fuzzy number is shown in Figure 1. 

 

Figure 1: Triangular fuzzy number (TFN) 
 
Since the customer doesn’t have an accurate estimate of travelling times to the facilities, it is assumed that 

travelling times are given as linguistic terms. The linguistic approach to decision-making was chosen to formulate 
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some uncertain aspects because it has been shown to be an effective tool for modelling qualitative information in real 
world decision making situations. 

The linguistic terms used for travelling time variable are very soon, soon, fair, late and very late. They are 
defined in the universe of U=[0, tmax], in which the variable represents the time in minutes and tmax is the maximum 
travel time on the longest path of the given area in the worst travel period. 

Transformation of the fuzzy linguistic terms into triangular fuzzy numbers will be according to Table 1. 

Table 1: The relationship between linguistic terms and fuzzy numbers 

Fuzzy linguistic terms Fuzzy numbers 
Very Soon (VS) (0,0, tmax/4) 

Soon (S) (0, tmax/4, tmax/2) 
Fair (F) (tmax/4, tmax/2, 3*tmax/4) 
Late (L) (tmax/2, 3*tmax/4, tmax) 

Very Late (VL) (3*tmax/4, tmax, tmax) 
 
Similarly it is impossible to give a very accurate measure for establishment costs and the estimates usually are of 

approximate nature. Thus we transform the approximate measures to fuzzy numbers. The term “approximately c” can 
be converted into TFN with the form (c1, c2, c3), as the following; 

c2=c                                           (3) 
c1= c.(1-(1-r).(1+s))                           (4) 
c3= c.(1+(1-r).(1-s))                           (5) 

where r∈[0,1] shows the confidence degree of DM about his/her approximation and s is the difference of right and 
left hand part of the membership function, 

s= PL-PR                         (6) 
where PL and PR (PL + PR =1) are respectively DM’s opinion about percentage of being less than c or greater than c. 

For an interval approximation such as “between c1 and c2”, it is better to convert to a trapezoidal fuzzy number. 
The conversion procedure is same as the above procedure. 

 
3.2  Multi-objective Binary Programming 

 
In a typical location model, we often deal with a series of binary decisions on locating or not locating a facility in a 
potential site. So, the multi-objective binary programming could be an appropriate tool for formulating our problem. 
The generalized representation of a multi-objective binary programming problem is as the following [11]: 

. .

Min

s t  
1 2( ( ), ( ),..., ( ))

( ) 0 1, 2,..., ,

{0,1}

T
P

q

Z f X f X f X

g X q Q

X


 



     (7) 

where fp(X), p=1,2,...,P are conflicting objective functions and gq(X), q=1,2,...,Q are constraints. 
 

4 The Model 
 

The model aims to answer the managerial question "How many and where should we establish hierarchical facilities 
to best provide our services?" The following assumptions are considered. 

- The problem space is discrete so coordinates play the main role 
- Euclidean distance is applied 
- Customer patronizing behaviour is based on travelling time 
- Facilities have a hierarchical structure with different functions 
- Number of service types is equal to the number of facility levels 
- Upper level facilities can offer lower level services too 

The model employs the following notations: 
i, I: index and set of demand points 
j, J: index and set of potential facility locations 
s, S: index and set of service types 
k, K: index and set of facility levels 
l, L: index and set of demand levels 
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(x,y): coordinates of a demand point or facility 

ikv : variable cost of establishing a facility of level k in site j  

kf
 : fixed costs of opening level k facility 

l
sN : number of facilities required to cover level l demand for service type s 

ijd : distance of demand point i to the facility in site j 

ijT : travel time of demand point i to the facility in site j 
s
iL : demand level of demand point i for service s, l=1, 2, 3 or 4 

Decision variables are denoted by { }, ,jkX x j J k K     which takes binary values. If a facility of level k is 

set up at point j=(x,y), it is given by xjk=1, otherwise, xjk=0. 
 

4.1  Objective Functions 
 

As mentioned before, the objectives are minimizing average travel time for each hierarchy level, minimizing cost and 
maximizing adequacy of demand cover. They are detailed in the following. 
 
Minimizing the average travel time from a demand point to a facility 

According to customer’ behaviour in public services, travelling time from its demand point to a facility is 
accounted for as his/her decision criteria in choosing the facility. The travelling time is necessarily dependent upon 
the distance to be travelled, the road conditions experienced during the journey and time period of the day. An 
individual time objective is built for each level of facilities since each level has a different accessibility time limit. 

Because of different demand levels for the service provided at each level of facilities, we apply the weighted 
mean approach to optimize the objective. So the objective for level k of facilities’ hierarchy is defined as 

Min 
, 1

( )
( )

jk

k
i ij

j x
i

k k k
i

i

L Min T
f X T

L




 





 ,       k=1,2,…,|K|.    (8) 

As mentioned before, travelling times are assumed to be linguistic terms which could be transformed to TFN 
numbers. From TFN properties, the above term is also a TFN. 
 
Minimizing the total cost 

Whenever a facility is opened, the firm is faced with two main costs: building/acquisition/renting costs and the 
corresponding refurbishment costs with furniture and equipment, such as computers, desks, counters, air-conditioning, 
and security system equipments. 

First category of costs for a level k facility is denoted by ikv . It involves land cost and structure. It is area-

dependant due to variety of land costs in different areas. Second category of costs is denoted by kf
  which is area-

independent and pre-defined according to standard design plans of the firm for each hierarchy level. Accordingly, the 
cost objective of the model could be written as: 

Min ( ) ( ).c jk k jk
j k

f X TC v f x    .     (9) 

Since both categories of costs are TFN, from TFN properties, the above term is also a TFN.  
 
Maximizing the adequacy of demand coverage 

To serve appropriately a demand point with demand level l to service type s, there should be a pre-defined 
number of relevant facilities in its proximity. This quantity is denoted by l

sN . Note that, opening an excessive number 

of such facilities doesn’t necessarily improve the quality because this leads to overlapping facilities’ functions, 
demand cannibalization and cost matters. So, it must be forced to be exactly the required number of facilities, i.e., we 
try to have 

Min 
1

1

( ) | ( ) |
s
i

jk

S K
L

DC s k ij
s i j k s

x

f X N d
 



   .    (10) 

The second term in (10) reflects the overall satisfaction of customers in demand point i from distance viewpoint 
when they request service type s, 



Journal of Uncertain Systems, Vol.5, No.3, pp.202-226, 2011                                                                                                           

 

207

1

( )

jk

K

k ij
j k s

x

u d



         (11) 

where ( )k ijd  is the achievement level of the distance minimization objective (not explicitly modelled here). In a 

minimization objective, the satisfaction of decision maker about its value is full if it is less than an optimistic value f+, 
and is null if it is higher than a pessimistic value f -. This requirement implies the fuzzy nature which can be treated by 
introducing the following linear membership function as the achievement level: 

1

( ( )) ( ) / ( )

0
ff X S f f f f   


   



  

.

if f f

if f f f

if f f



 





 



    (12) 

Such a linear membership function is illustrated in Figure 2. 
 

 
Figure 2: Achievement level of an objective 

Optimistic and pessimistic values for distance of facilities to demand points are given for different service 
hierarchies. 

Beginning index of second sigma in (11) reflects the hierarchy’s nested structure. The result of (11) is between 
zero and total number of established facilities (M) which is unknown. It must be analyzed in relation with l

sN . This 

comparison could be applied in a deterministic manner as (10). To do so in a fuzzy manner, we have 

( ) / ( )

1
( )

( ) / ( )

0

l
s

l
s

u a N a

u
c u c N



  

 

 


  

l
s

l
s

l
s

if u N

if u N

if u N

otherwise






    (13) 

(1 )l
sa N        (14) 

(1 )l
sc N        (15) 

where α is a coefficient in [0,1] and its smaller values reflect DM’s aversion to the demand undercover and β is a 
coefficient in [0, ( ) / ]l l

s sM N N  and its smaller values reflect DM’s aversion to the demand over-cover. Zero value 

for both α and β shows DM’s willingness to the availability of exactly l
sN  facilities around the demand point to cover 

its demand for service type s. 

If we extend the above process to the entire area, we have 
1

s
i

S L
ss i

N
   for the number of facilities required to 

cover all of service types for all of demand points and 
1 , 1

( )
jk

S K

k ijs i j k s x
d

       for the satisfaction grade of DM 

over the available facilities around all of demand points. So, 

1 , 1
( ),

jk

S K

k ijs i j k s x
v d

  
          (16) 

1
,

s
i

S L
ss i

N N


         (17) 
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( ) / ( )

1
( )

( ) / ( )

0

v a N a

u
c v c N



 

   


  

,

if v N

if u N

if u N

otherwise





     (18) 

 
(1 ),a N        (19) 

(1 )c N        (20) 

where α is in [0,1] and β is in [0, ( . . ) / ]l l
s sS I M N N . 

 
4.2  Constraints 
 

According to DM’s view point, the first constraint may be a limitation on the total number of established facilities. 
Assume that the number of level k facilities must be at most Mk. 

jk k
j

x M , k=1,2,…,|K|.     (21) 

The second constraint considers obstacles in a given area. A facility of level k should not be built up within any 
obstacles such as waterways, forbidden areas and reserved areas 

0,jkx j    , k=1,2,…,|K|     (22) 

where the symbol   represents a set of obstacle coordinates. 
The third set of constraints forces the model to be located a facility in some pre-defined areas. Thus, 

1,jkx j    , k=1,2,…,|K|     (23) 

where the symbol  represents the area of before-defined locations. 
There is another set of constraints through which the solution is forced to establish only one facility in each 

potential site, i.e., 
1, .jk

k

x j J            (24) 

The forth constraints set implies that the distance between any two facilities a and b of level k should be a 
reasonable distance, denoted by k

abd  i.e. it should not be so short, as to cause overlapping of facilities functions 

resulting mendacious competition. Simply we use an inequality to express this constraint as 
2 2 1/2(( ) ( ) ) k

a b a b abx x y y d        (25) 

where (xa,yb) and (xb,yb) are the coordinates of the two facilities with level k located at areas a and b, respectively. 
 

4.3  Fuzzy Multi-objective Model in a Single Unified Goal 
 

To facilitate solving the model, its multi objectives must be integrated into a unified goal. For this purpose, all 
objective functions should have a unified structure and the same value range. Here we aim to convert the objective 
functions to their satisfaction grades. Note that, the third function, maximizing the adequacy of demand coverage is in 
the form of satisfaction grades. 

For a fuzzy objective ( F ) such as average travel time from demand points to facilities and total cost which their 

values are fuzzy numbers, a question arises how much its goal ( f ) has been achieved. For example, we must 

compare fuzzy average travel time with its achievement level. Two approaches are investigated [12]: 
- Possibility measure: 

The possibility measure ( )
f

F 
  evaluates the possibility of a fuzzy event F , occurring within the fuzzy set f . 

It is used to measure the satisfaction grade of a fuzzy objective value ( )Sg F : 

( ) ( ) sup min{ ( ), ( )}
Ff f

Sg F F t t     
       (26) 

where ( )
F

t   and ( )
f

t   are the membership functions of fuzzy sets F and f  respectively. 

An example of a possibility measure of fuzzy set F with respect to fuzzy set f  is given in Figure 3. 



Journal of Uncertain Systems, Vol.5, No.3, pp.202-226, 2011                                                                                                           

 

209

 
Figure 3: Satisfaction grade of fuzzy objective value using the possibility measure 

 
- Area of intersection: 

Area of intersection measures the portion of F that falls within the f  (Figure 4). Thus, the satisfaction grade of 

a fuzzy objective value is defined as: 

( ) ( ) / ( ).Sg F area F f area F          (27) 

 

 
Figure 4: Satisfaction grade of fuzzy objective value using the area of intersection 

 
The possibility measure reflects an optimistic attitude in comparison to the area of intersection because the 

former considers the highest point of intersection of the two fuzzy sets regardless of their overall dimensions, while 
the later considers the proportion of the fuzzy objective value that falls within the fuzzy achievement level. 

If we optimize satisfaction grades of objective functions instead of their values, the resulted fuzzy multi-
objective optimization model will be the maximization of an aggregated measure of satisfaction grades for conflicting 

objectives with respect to some constraints. Assuming ( ( )) ( )p p pf X Sg F   , the multi-objective binary programming 

problem (7) is transformed to 

       

. .

Min

s t  
1 1 2 2( ( ( )), ( ( )),..., ( ( )))

( ) 0 1, 2,..., ,

{0,1}

p P

q

Z h f X f X f X

g X q Q

X

  

 



    (28) 

where h is an aggregation operator such as: 
1. Simple or weighted average of the satisfaction grades: 

1

1
(.) ( ( ( )))

p

i i
i

Z h f X
p




      or  1

1

. ( ( ))
(.)

p

i i i
i

p

i
i

w f X
Z h

w






 



.   (29) 

2. Geometric mean of the satisfaction grades: 

1

(.) ( ( )) .i

p
w

i i
i

Z h f X


       (30) 

3. Minimum of the satisfaction grades: 

1,2,...,
(.) min { ( ( ))}.i ii p

Z h f X


                     (31) 
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The above aggregation operators enable DM to express his/her preferences. Average aggregation operator allows 
compensation for a bad value of one objective, namely a higher satisfaction grade of one objective can compensate, to 
a certain extent, for a lower satisfaction grade of another objective. On the contrary, minimum operator is non-
compensatory, which means that the solution with a bad performance with respect to one objective will not be highly 
evaluated no matter how good is its performance with respect to another objectives. In the case of geometric mean, 
zero value for an objective leads to zero value for overall objective without regarding other objectives. 

By applying the methods explained on the model objectives in Section 4.1 and with consideration of above 
mentioned constraints and notations, fuzzy multi-objective binary programming problem for optimization of 
hierarchical service centre locations can be presented as (32). 

1 1

2 2 1/2

( ( ( )),..., ( ( )), ( ( )), ( ( )))

. . , 1, 2,...,| |

0, , 1,2,...,| |
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   







 

   

   

     

  



   (32) 

It must be noted that model (32) is a special case of fuzzy goal programming without applying deviations’ 
minimization and auxiliary variables λ. Here the satisfaction grades of the objectives are maximized. 

 

5 Problem Solving 
 

Although we can solve very small instances of (32) through the exact optimization methods but they are not 
applicable for large instances. Therefore we have to utilize approximation methods. Meta-heuristic algorithms such as 
Genetic Algorithms, Tabu search and Simulated Annealing have been introduced to solve these problems [28]. 

An important group of meta-heuristic algorithms is the local search procedures. To apply a local search to a 
problem instance (S, f) defined by a search space S and a profit function  f, one first needs a neighbourhood function. 

Definition Let S be the set of the solutions of a given instance, a neighbourhood over S is any function N:S→2S. A 
solution s is a local maximum with respect to N if  f(s’) ≤ f(s) for all ' ( )s N s . 

We define a hybrid neighbourhood function such that it can either locate a new facility at an empty site (Add 
neighbourhood), or remove an existing facility from a site (Drop neighbourhood), or move a facility from a site to 
another site (Interchange neighbourhood). 

The choice of neighbourhoods is probabilistic and is made by generating a random number. However, some 
controls are applied to avoid from blocking in the neighbour generation. For example when there is only one 
established facility in the current solution, the probability of selecting Drop neighbourhood function will be zero. 

Simulated annealing and Tabu Search as the most representative local search methods are utilized to solve the 
problem. 

 
5.1  Simulated Annealing 
 
Simulated annealing (SA), introduced by Kirkpatrick et al. [18], finds its inspiration from the physical process of 
cooling a material to low-energy states. It repeats an iterative repairing procedure which looks for better solutions 
while offering the possibility of accepting worse solutions in a controlled manner. This allows SA to escape from 
local optima. More precisely, at each iteration, a neighbour ' ( )s N s  of the current solution s is generated randomly 

and a decision is then taken to decide whether s’ will replace s. If s’ is better than s, i.e., ∆=f(s’)-f(s)≥0 for 
maximization, we move from s to s’. Otherwise, we move to s’ with the probability of 

/Te . This probability depends 
on two factors: 1) the degree of the degradation ∆ (smaller the degradation, greater the acceptance probability), and 2) 
a control parameter T called temperature (higher temperatures lead to higher acceptance probabilities and vice versa). 
The temperature is controlled by a cooling schedule specifying how the temperature should be progressively reduced. 
Typically, SA stops when a fixed number of non-improving iterations is realized or when a limit of iterations is 
reached. Figure 5 demonstrates pseudo-code of utilized algorithm. 

The routine InitSol(.) gives an initial solution (s0) in which the location of facilities is randomly generated with 
consideration of defined constraints. The best and current solutions of the algorithm are denoted respectively by s* 
and s. 
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The SA Algorithm 
Input: Instance G=(I, J, SerNum, travelling times, Costs,…) 
Output: the best solution found (s*), Objective function value 
Begin 
    s0=InitSol(G) 
    s*=s := s0 

    MaxIteration=10.|I|.SerNum;   IterCount = (|I|. SerNum)/3 
    MaxUI= MaxIteration/5;   MaxUC= IterCount/5 
    Compute an initial temperature T0 
    T:= T0 
    While I<>MaxIteration OR Unimproved trials’ number not equals to MaxUI DO 
         i:=0 
           While i <> IterCount OR Unchanged iterations’ number not equals to MaxUC DO 
               i:=i+1 
               Choose randomly one of the neighborhood structures (1-Add, 2-Drop, 3-Interchange) 
               Randomly choose si є Nt(s) 
             Δ:= f(s) − f(si) 
             If Δ < 0 
                s:= si 

             Else 
                With probability e− Δ / T; s:= si  
             If f(s) > f(s*) 
                s*:= s 
         Loop 
         T:= TDR.T 
         I:=I+i 
    Loop 
End 

Figure 5: Pseudo code of SA algorithm 
 
After defining the initial temperature, a predefined number of iterations (IterCount) is executed in an inner loop 

in which the current solution is replaced with the generated neighbour according to SA mechanism. The algorithm is 
continued from outer loop with updating temperature. To efficiently guide the algorithm to escape from local optima, 
a stop mechanism is inserted into inner loop that terminates the loop if a predefined number of successive iterations 
(MaxUC) stay unchanged during the loop. 

T is the temperature at the current iteration and is controlled by the cooling schedule function as given by TIT= 
TDR.TIT-1, in which IT is the current trial index and (0,1)TDR is the temperature decreasing rate. 

Stop-Condition of the algorithm is assumed to be a pre-defined number of iterations defined with respect to 
instance size and other difficulty parameters. Because of computational considerations, another stop condition is 
applied on the algorithm. If the number of failed inner loops (the loops with no improvement in the current solution) 
exceeds a predefined number (MaxUI), the algorithm terminates. 

 
5.2  Tabu Search 

 
Tabu Search attributed to Glover [14] is an advanced meta-heuristic algorithm with enhanced performance by using 
memory structures. Once a potential solution has been determined, the solution or its attributes is marked as tabu so 
that the solution or other solutions with same attributes are prohibited to visit for tl (tabu list length) next iterations. 
However, to mitigate the problem of losing the tabu solutions of excellent quality, aspiration criteria are introduced 
that is to allow selection of solutions which are better than the best-known solution. Figure 6 demonstrates the 
pseudo-code of utilized Tabu Search algorithm. 

We define the neighbourhood function of Tabu Search as same as Simulated Annealing. The difference is in the 
neighbour selection such that TS selects the best possible neighbour. Due to computational challenges regarding CPU 
time, it is assumed that K neighbours are randomly selected from all possible neighbours and then the best non-tabu 
solution in the set is accepted as the new solution. The aspiration criterion is also applied. 
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To introduce a solution into tabu list, we need to define a solution’s identification. We identify a new neighbour 
as <p, k> where p is a node index and k is a hierarchy level. In the case of Add neighbourhood function, p is the node 
selected to establish a facility and k is its hierarchy level. In the case of Drop function, p is the node selected to drop 
its established facility and k is its hierarchy level. In the case of Move function, p is the node selected to move its 
established facility to an empty node and k is its hierarchy level. 

Once a neighbour solution is accepted, the ordered pair <p, k> is inserted into tabu list for tl next iterations to 
prevent from choosing p with k for any neighbourhood generation. Tabu list length is defined randomly from 
{1,2,...,20}.  

The TS Algorithm 
Input: Instance G=(I, J ,travelling times, Costs,…) 
Output: the best solution found (s*), Objective function value 
Begin 
    s0:=InitSol(G) 
    s*:=s := s0  

    MaxIteration=10.|I|.SerNum;   SelNghbrCnt = (|I|. SerNum)/3 
    MaxUI= MaxIteration/5 
    I:=0 
    While I<>MaxIteration OR Unimproved trials’ number not equals to MaxUI DO 
        For j =1 to SelNghbrCnt 
              Choose randomly one of the neighbourhood structures (1-Add, 2-Drop, 3-Interchange) 
              Randomly choose sj є Nt(s) 
            sj SelNghbrSet 
        Next for 
        SrtNghbrSet:=SortDes(SelNghbrSet, f(.) ) 
        k:=1 
        SelectLable: 
        s’:=SrtNghbrSet (k) 
        If s’ IsNot Tabu OR (s’ Is Tabu AND f(s’)>f(s*) ) 
            s:= s’ 
        Else 
            k:=k+1 
            GOTO SelectLable 
        Endif 
        I:=I+1 
        Introduce the attribute of s in the Tabu list for tl iterations 
        If f(s) > f(s*) 
             s*:= s 
    Loop 
End 

Figure 6: Pseudo code of TS algorithm 

 
The routine InitSol(.) gives an initial solution (s0) same as the one of SA. After determining the size of candidate 

neighbours set, the algorithm is started from its main loop in which the best solution of the candidate neighbours set is 
selected as the new solution according to the TS mechanism described above. 

The algorithm is continued until some conditions will be met. Stop-Condition of the algorithm is same as 
Simulated Annealing. 

 
6 Computational Results 

 
To show the algorithms’ efficiency in problem solving, we have conducted some computational experiments on a set 
of randomly generated problems. The benchmark problems were generated as the following: 
1) Each instance problem is represented by a combination of the number of nodes (n) and the number facilities’ 

hierarchy level (s). The number of nodes was set equal to the number of a rectangular cellular board’s cells 
which its side’s length is between 5 and 10 in steps of 1. All the nodes are connected with each other. The 
number of facilities’ level was also varied between 1 and 3. Accordingly, 63 different instances were generated. 
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2) Number of demand points (d) was set to [n/5] where [x] denotes the least integer number greater than or equal to 
x. They were located randomly in the nodes. 

3) Demand level of each demand point was randomly selected from the set {1,2,3,4}. 
4) Travelling time between two nodes was randomly generated from the uniform distribution [1,5]. 
5) Fixed cost of establishing a facility in a node was set to 5+5*k, k=1,…,s dependent on facility’ level. 
6) Variable cost of each facility was set to RAND[1,10]+d.(1+0.5*k), k=1,…,s. 
7) Number of restricted cells to establish a facility and also number of pre-assigned cells to a facility were set to 

[(s-k+1)*0.01*d], k=1,…,s. They were randomly selected from the nodes. 
8) The satisfaction scales for distance and travel time for each hierarchy level were defined as Table 2. Using  

Table 2, the optimistic and pessimistic values of the time objectives could be derived. Satisfaction of a customer 
about its distance to a facility could also be derived to be involved in the third objective function, maximizing 
the adequacy of demand coverage. 

 
Table 2: Best range for distance and travel times 

Service 
Hierarchy Level 

Distance Time 
appropriate maximum appropriate maximum 

A 1 1.5 1.5 2.25 
B 2 3 2 3 
C 3 4.5 2.5 3.75 

 
9) The minimum distance of two facilities denoted by k

abd  was assumed to be 1, 2 and 3 respectively for hierarchy 

levels 1, 2 and 3. 
10) Travel times between nodes were given as an n*n matrix of linguistic terms. 
11) The best value for incurred total cost was set to MCost=40*d+RAND[0,500], while the maximum budget was 

set to 1.2*MCost.  
12) The number of facilities required to cover different demand levels of a demand point was defined as Table 3. 

 
Table 3: Number of facilities needed to cover demand levels 

 
 

13) The fuzzification parameters in (19) and (20) was set to 0.5   . 

The algorithms were coded in VB and the computational experiments were carried out on a PC with 1.8 GHz 
Intel Dual CPU and 2 GB of RAM. The following values were set for the algorithm’s parameters. 

- Maximum number of iterations, MaxIteration=10.n.s, 
- Maximum number of internal iterations for SA, IterCount= (n. s)/3, 
- Number of candidate neighbours for TS, SelNghbrCnt = (n. s)/3, 
- Maximum number of successive unimproved trials, MaxUI= MaxIteration/5, 
- Maximum number of successive unchanged iterations (SA), MaxUC= IterCount/5, 
- Initial temperature for SA, T0=1, 
- Temperature decreasing rate for SA, TDR=0.8. 

It was assumed that the number of facilities to be established is not limited, i.e., constraint (21) was not applied. 
For each instance (n, s), six different configurations were constructed based on combination of comparison 

operators and aggregation operators. The two approaches for determining satisfaction grades of objective functions 
are possibility measure and area of intersection and the three aggregation operators are Arithmetic Mean, Geometric 
Mean and Minimum. 

The proposed algorithms were run five times for each configuration and the results are reported. Table 4 gives 
the computational results including the average and the best objective function value, the number of objective 
function evaluations and the average CPU time in seconds. 
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Table 4: Computational results on randomly generated instances. 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

(5,5) 25 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9986 0.9986 0.9 413 0.9983 0.9986 0.5 222 

G Mean 0.9958 0.9958 1.0 473 0.9958 0.9958 0.4 171 

Min 0.9958 0.9958 1.0 448 0.9941 0.9958 0.4 181 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9708 0.9708 1.0 434 0.9689 0.9708 0.5 224 

G Mean 0.9128 0.9128 1.0 468 0.9113 0.9128 0.4 189 

Min 0.9167 0.9167 0.9 412 0.9167 0.9167 0.4 164 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9997 0.9998 6.0 1589 0.9995 0.9996 1.9 501 

G Mean 0.9988 0.9993 7.1 1902 0.9979 0.9992 1.9 502 

Min 0.9988 0.9993 5.9 1559 0.9970 0.9981 1.9 502 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9770 0.9772 5.9 1547 0.9766 0.9772 1.9 502 

G Mean 0.9088 0.9093 6.3 1698 0.8868 0.9092 1.9 502 

Min 0.9167 0.9167 4.7 1264 0.9084 0.9167 1.9 501 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 15.2 2892 0.9995 0.9997 4.0 752 

G Mean 0.9996 0.9999 17.4 3317 0.9966 0.9999 4.0 752 

Min 0.9991 0.9999 17.8 3399 0.9985 0.9999 4.0 751 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9709 0.9770 13.4 2528 0.9538 0.9621 4.1 752 

G Mean 0.8131 0.8611 18.7 3637 0.7602 0.8524 4.0 753 

Min 0.8988 0.9167 11.2 2162 0.9132 0.9167 4.0 754 

(5,6) 30 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9986 0.9988 2.2 756 0.9957 0.9988 0.6 218 

G Mean 0.9958 0.9965 2.2 787 0.9945 0.9965 0.5 185 

Min 0.9951 0.9965 1.9 677 0.9938 0.9965 0.6 225 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9322 0.9322 2.2 761 0.9315 0.9322 0.7 251 

G Mean 0.7967 0.7972 2.1 733 0.7930 0.7972 0.5 181 

Min 0.8000 0.8000 1.6 570 0.8000 0.8000 0.5 182 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9998 1.0000 14.6 3056 0.9994 1.0000 2.9 602 

G Mean 0.9996 0.9999 14.6 3051 0.9987 0.9994 2.8 602 

Min 0.9989 0.9994 9.9 2078 0.9968 0.9985 2.8 596 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9362 0.9363 10.9 2235 0.9327 0.9357 2.9 601 

G Mean 0.7560 0.7563 11.6 2378 0.7402 0.7552 2.9 601 

Min 0.8000 0.8000 7.2 1505 0.8000 0.8000 2.8 580 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 26.5 3961 0.9997 1.0000 6.1 903 

G Mean 1.0000 1.0000 37.6 5664 0.9823 0.9999 6.0 902 

Min 0.9995 1.0000 36.5 5412 0.9982 0.9984 6.0 903 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9485 0.9489 40.9 5892 0.9368 0.9464 6.2 903 

G Mean 0.7416 0.7562 37.9 5457 0.6686 0.7379 6.2 902 

Min 0.8000 0.8000 21.1 3115 0.8000 0.8000 6.2 902 
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(5,7) 35 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9982 0.9982 3.2 838 0.9981 0.9982 1.3 352 

G Mean 0.9951 0.9973 4.2 1120 0.9946 0.9946 1.2 325 

Min 0.9946 0.9946 4.7 1218 0.9937 0.9946 1.3 334 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9086 0.9086 3.4 879 0.9084 0.9086 1.3 351 

G Mean 0.7280 0.7291 4.3 1129 0.7269 0.7272 1.3 338 

Min 0.7311 0.7311 2.9 759 0.7311 0.7311 1.1 290 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 21.6 3535 0.9997 1.0000 4.3 701 

G Mean 0.9998 0.9999 24.0 4026 0.9984 0.9999 4.3 702 

Min 0.9996 0.9999 25.5 4192 0.9976 0.9999 4.4 702 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9045 0.9045 19.3 3050 0.8963 0.9041 4.6 702 

G Mean 0.6480 0.6483 24.2 3874 0.6476 0.6483 4.3 702 

Min 0.7311 0.7311 13.3 2125 0.7311 0.7311 4.3 701 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 61.7 7044 0.9997 0.9999 9.5 1055

G Mean 0.9999 0.9999 59.4 6857 0.9981 0.9999 9.1 1053

Min 0.9998 1.0000 73.6 8458 0.9961 1.0000 9.1 1054

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9069 0.9195 58.8 6453 0.8791 0.8912 9.4 1052

G Mean 0.6071 0.6233 69.4 7754 0.5161 0.5710 9.4 1053

Min 0.7311 0.7311 39.5 4277 0.7311 0.7311 9.4 1053

(5,8) 40 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9988 0.9988 5.3 1352 0.9983 0.9988 1.6 401 

G Mean 0.9948 0.9963 5.7 1437 0.9941 0.9963 1.5 381 

Min 0.9956 0.9963 6.8 1619 0.9948 0.9963 1.5 382 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8796 0.8801 5.4 1351 0.8787 0.8801 1.6 401 

G Mean 0.6417 0.6417 4.6 1188 0.6408 0.6417 1.5 391 

Min 0.6441 0.6441 4.1 1027 0.6441 0.6441 1.2 309 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9997 0.9998 30.5 4338 0.9983 0.9996 5.7 803 

G Mean 0.9992 0.9993 33.6 4831 0.9962 0.9989 5.6 802 

Min 0.9990 0.9993 33.3 4766 0.9867 0.9989 5.6 803 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8569 0.8608 36.7 5206 0.8401 0.8537 5.7 802 

G Mean 0.5140 0.5149 34.6 4975 0.4851 0.5068 5.6 802 

Min 0.6441 0.6441 21.8 3103 0.6441 0.6441 5.6 801 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 131.6 12649 0.9771 0.9994 13.3 1205

G Mean 0.9973 0.9998 115.9 11312 0.9796 0.9994 12.6 1202

Min 0.9967 1.0000 116.2 11578 0.9581 0.9974 12.4 1204

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7982 0.8234 85.2 8074 0.7401 0.7755 13.4 1202

G Mean 0.3210 0.3427 101.9 10046 0.2490 0.2998 12.8 1205

Min 0.6372 0.6441 93.4 9289 0.6195 0.6441 12.6 1203
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(5,9) 45 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9981 0.9981 7.6 1554 0.9984 0.9991 2.2 442 

G Mean 0.9944 0.9944 7.4 1617 0.9939 0.9944 2.2 433 

Min 0.9944 0.9944 6.1 1316 0.9939 0.9944 2.1 410 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8636 0.8643 6.6 1396 0.8634 0.8634 2.3 449 

G Mean 0.5927 0.5940 6.5 1366 0.5924 0.5924 2.3 426 

Min 0.5957 0.5957 5.8 1198 0.5957 0.5957 1.8 322 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 52.9 6165 0.9997 1.0000 7.9 902 

G Mean 0.9999 0.9999 44.3 5216 0.9992 0.9999 7.7 903 

Min 0.9992 0.9999 45.9 5395 0.9993 0.9999 7.8 903 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8358 0.8358 62.2 7265 0.8293 0.8354 7.8 903 

G Mean 0.4451 0.4452 45.0 5236 0.4438 0.4452 7.9 904 

Min 0.5957 0.5957 32.5 3649 0.5957 0.5957 8.1 903 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 164.9 12950 0.9995 1.0000 18.3 1353

G Mean 0.9999 0.9999 158.3 12450 0.9978 0.9998 17.7 1356

Min 0.9998 0.9999 179.8 14215 0.9951 0.9983 17.9 1354

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8407 0.8424 120.3 9451 0.8128 0.8321 18.7 1353

G Mean 0.3860 0.3869 118.0 9366 0.3578 0.3747 18.4 1354

Min 0.5957 0.5957 89.2 6979 0.5957 0.5957 18.2 1354

(5,10) 50 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9985 0.9985 13.3 2243 0.9976 0.9985 3.0 502 

G Mean 0.9955 0.9955 12.3 2073 0.9956 0.9977 2.9 502 

Min 0.9959 0.9977 11.1 1887 0.9959 0.9977 2.9 501 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8433 0.8433 12.2 2089 0.8429 0.8433 2.9 502 

G Mean 0.5321 0.5321 11.7 2011 0.5319 0.5321 2.8 502 

Min 0.5345 0.5345 9.8 1660 0.5345 0.5345 3.0 499 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 69.1 6800 0.9993 0.9998 10.4 1003

G Mean 0.9996 0.9999 93.4 9268 0.9989 0.9999 10.3 1002

Min 0.9998 0.9999 73.8 7290 0.9981 0.9994 10.3 1003

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8030 0.8031 81.1 8052 0.7974 0.8023 10.5 1005

G Mean 0.3623 0.3624 81.0 8064 0.3591 0.3622 10.4 1004

Min 0.5345 0.5345 46.4 4508 0.5345 0.5345 10.3 1003

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 244.6 16079 0.9988 1.0000 34.8 1506

G Mean 0.9999 1.0000 246.8 16664 0.9862 0.9989 34.2 1503

Min 0.9999 1.0000 197.4 13336 0.9925 0.9987 33.9 1506

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7984 0.8017 263.0 17610 0.7479 0.7877 35.9 1504

G Mean 0.2871 0.2892 317.5 21429 0.2365 0.2599 35.3 1506

Min 0.5345 0.5345 144.9 8802 0.5345 0.5345 34.3 1502
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(6,6) 36 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9986 0.9990 4.2 1008 0.9978 0.9980 1.6 359 

G Mean 0.9953 0.9971 4.2 1034 0.9953 0.9971 1.3 321 

Min 0.9959 0.9971 4.7 1147 0.9937 0.9971 1.4 326 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8988 0.8990 4.1 984 0.8980 0.8980 1.6 361 

G Mean 0.6975 0.6979 4.5 1125 0.6963 0.6979 1.5 347 

Min 0.7000 0.7000 3.3 811 0.7000 0.7000 1.2 285 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 21.2 3020 0.9998 1.0000 5.2 723 

G Mean 0.9999 0.9999 24.7 3538 0.9994 0.9999 5.1 721 

Min 0.9999 0.9999 36.1 5066 0.9995 0.9999 5.1 722 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8892 0.8893 24.6 3440 0.8891 0.8891 5.2 722 

G Mean 0.5999 0.6000 20.9 2944 0.5994 0.6000 5.2 722 

Min 0.7000 0.7000 15.6 2203 0.7000 0.7000 5.2 722 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 69.1 7127 0.9999 1.0000 11.3 1083

G Mean 0.9999 0.9999 77.7 7916 0.9986 0.9998 10.8 1084

Min 0.9999 1.0000 52.1 5364 0.9982 0.9997 10.7 1084

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.9036 0.9037 86.3 7253 0.8858 0.8942 11.1 1083

G Mean 0.5766 0.5769 72.8 6069 0.5608 0.5765 11.1 1082

Min 0.7000 0.7000 41.8 4128 0.7000 0.7000 11.2 1083

(6,7) 42 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9368 0.9393 12.8 1488 0.9299 0.9414 2.0 421 

G Mean 0.8297 0.8342 11.7 1493 0.8333 0.8469 1.9 421 

Min 0.8473 0.8748 14.4 1610 0.8659 0.8969 1.9 421 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7849 0.7939 17.9 1795 0.7295 0.7938 1.9 421 

G Mean 0.4601 0.4763 21.2 1849 0.4475 0.4632 1.8 420 

Min 0.6190 0.6190 16.5 1306 0.6190 0.6190 1.9 416 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9985 0.9997 88.0 6305 0.9443 0.9833 6.9 841 

G Mean 0.9971 0.9990 79.0 6393 0.9449 0.9792 6.6 841 

Min 0.9811 0.9986 104.2 6126 0.8622 0.9728 6.7 842 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8292 0.8411 57.8 6533 0.6995 0.7755 7.3 843 

G Mean 0.4343 0.4633 51.3 6819 0.3324 0.4111 6.7 844 

Min 0.6190 0.6190 28.8 3830 0.6065 0.6190 6.5 844 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9976 0.9995 116.0 10311 0.9717 0.9907 16.5 1264

G Mean 0.9784 0.9928 134.4 11970 0.9044 0.9918 15.8 1262

Min 0.9862 0.9930 110.6 9856 0.9039 0.9540 16.4 1263

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8020 0.8257 141.9 12119 0.6947 0.7345 18.0 1265

G Mean 0.3058 0.3331 148.9 13093 0.1748 0.2070 17.5 1265

Min 0.6190 0.6190 86.2 7711 0.6041 0.6190 16.4 1263
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(6,8) 48 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9987 0.9991 8.8 1483 0.9987 0.9991 2.9 481 

G Mean 0.9951 0.9973 9.0 1509 0.9957 0.9973 3.1 482 

Min 0.9968 0.9973 8.2 1425 0.9957 0.9973 3.0 482 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8499 0.8503 8.6 1453 0.8496 0.8503 3.0 481 

G Mean 0.5518 0.5521 10.5 1757 0.5512 0.5521 2.9 481 

Min 0.5536 0.5536 8.5 1436 0.5536 0.5536 2.8 450 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 0.9999 51.8 4845 0.9998 0.9999 10.6 962 

G Mean 0.9997 0.9999 63.0 5896 0.9994 0.9999 10.6 963 

Min 0.9994 0.9996 55.8 5244 0.9995 0.9999 10.6 962 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8134 0.8134 83.3 7697 0.8129 0.8132 10.5 964 

G Mean 0.3874 0.3875 57.2 5376 0.3872 0.3873 10.4 964 

Min 0.5536 0.5536 43.3 3969 0.5536 0.5536 10.6 963 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 208.0 11843 0.9997 1.0000 23.7 1443

G Mean 1.0000 1.0000 248.9 13888 0.9994 0.9998 23.7 1446

Min 1.0000 1.0000 235.8 14927 0.9996 0.9999 23.6 1445

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8151 0.8152 215.3 13518 0.7946 0.8125 34.0 1445

G Mean 0.3187 0.3187 238.7 14852 0.2954 0.3183 23.7 1447

Min 0.5536 0.5536 127.5 7523 0.5536 0.5536 23.9 1445

(6,9) 54 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9984 0.9985 14.6 2037 0.9985 0.9985 3.9 542 

G Mean 0.9956 0.9956 17.1 2399 0.9960 0.9978 4.0 541 

Min 0.9960 0.9978 17.1 2359 0.9953 0.9978 3.9 542 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8320 0.8326 17.4 2342 0.8319 0.8319 3.8 541 

G Mean 0.4980 0.4989 17.0 2327 0.4978 0.4989 3.8 541 

Min 0.5000 0.5000 13.5 1819 0.5000 0.5000 3.8 519 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 99.1 7942 0.9998 1.0000 13.8 1083

G Mean 0.9996 0.9999 94.5 7691 0.9997 0.9999 13.7 1084

Min 0.9994 0.9999 109.4 8754 0.9996 0.9999 13.8 1084

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7843 0.7844 104.4 8397 0.7829 0.7843 13.6 1084

G Mean 0.3187 0.3188 104.7 8514 0.3179 0.3187 13.6 1084

Min 0.5000 0.5000 66.1 5238 0.5000 0.5000 13.8 1083

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 278.4 15339 0.9996 0.9997 31.1 1623

G Mean 0.9999 1.0000 314.4 17409 0.9989 0.9998 31.9 1625

Min 1.0000 1.0000 302.2 16599 0.9982 0.9995 30.5 1625

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7789 0.7790 326.6 18213 0.7535 0.7641 31.1 1622

G Mean 0.2414 0.2415 261.1 14617 0.2266 0.2403 31.0 1627

Min 0.5000 0.5000 185.3 10053 0.5000 0.5000 31.2 1626
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(6,10) 60 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9985 0.9988 23.9 3010 0.9983 0.9987 5.1 601 

G Mean 0.9962 0.9964 23.1 2932 0.9944 0.9944 4.9 602 

Min 0.9962 0.9964 22.7 2854 0.9951 0.9964 5.0 601 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8172 0.8172 20.7 2639 0.8169 0.8172 5.1 602 

G Mean 0.4539 0.4539 24.3 3143 0.4535 0.4539 4.8 602 

Min 0.4556 0.4556 17.9 2251 0.4556 0.4556 4.8 571 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 195.4 14068 0.9999 1.0000 18.2 1204

G Mean 0.9999 0.9999 164.6 9433 0.9990 0.9999 17.8 1203

Min 0.9997 0.9999 120.4 8248 0.9993 0.9999 17.7 1203

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7600 0.7600 131.6 9597 0.7582 0.7598 18.0 1203

G Mean 0.2663 0.2663 162.0 11786 0.2658 0.2662 17.6 1203

Min 0.4556 0.4556 93.4 6522 0.4556 0.4556 17.8 1205

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 464.1 22018 0.9993 1.0000 40.7 1806

G Mean 1.0000 1.0000 419.4 19755 0.9995 0.9997 39.5 1805

Min 1.0000 1.0000 569.5 26736 0.9943 0.9996 39.7 1807

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7477 0.7479 501.9 22346 0.7229 0.7396 41.1 1807

G Mean 0.1863 0.1864 552.0 24045 0.1736 0.1838 40.9 1804

Min 0.4556 0.4556 277.5 12911 0.4556 0.4556 41.0 1801

(7,7) 49 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9986 0.9992 14.5 2303 0.9984 0.9984 3.2 491 

G Mean 0.9962 0.9976 13.3 2089 0.9953 0.9953 3.4 491 

Min 0.9953 0.9953 11.0 1789 0.9941 0.9953 3.2 493 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8498 0.8504 12.6 1998 0.8495 0.8496 3.2 492 

G Mean 0.5513 0.5523 13.7 2222 0.5508 0.5510 3.2 492 

Min 0.5536 0.5536 9.7 1576 0.5536 0.5536 3.1 471 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 76.5 7574 0.9999 1.0000 10.6 983 

G Mean 0.9995 0.9999 52.2 5132 0.9997 0.9999 10.3 984 

Min 0.9999 0.9999 81.5 7959 0.9998 0.9999 10.4 983 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8134 0.8134 85.3 8169 0.8133 0.8134 10.5 983 

G Mean 0.3875 0.3875 86.1 8325 0.3871 0.3875 10.6 984 

Min 0.5536 0.5536 47.9 4265 0.5536 0.5536 10.9 984 

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 261.4 16632 0.9999 1.0000 24.6 1475

G Mean 1.0000 1.0000 243.3 15520 0.9995 0.9999 23.9 1473

Min 0.9999 1.0000 232.7 14831 0.9995 0.9999 24.2 1473

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8152 0.8152 164.9 10518 0.8091 0.8149 24.5 1475

G Mean 0.3186 0.3187 256.3 16295 0.3072 0.3186 24.8 1473

Min 0.5536 0.5536 131.6 8129 0.5536 0.5536 25.1 1474
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(7,8) 56 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9985 0.9986 21.5 2945 0.9985 0.9986 4.2 562 

G Mean 0.9958 0.9958 20.1 2762 0.9958 0.9958 4.2 562 

Min 0.9958 0.9958 16.5 2260 0.9948 0.9958 4.4 562 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8267 0.8267 18.5 2586 0.8266 0.8267 4.3 562 

G Mean 0.4822 0.4822 18.5 2604 0.4822 0.4822 4.2 561 

Min 0.4843 0.4843 15.7 2127 0.4843 0.4843 4.1 541 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 111.5 7814 0.9997 0.9999 15.1 1122

G Mean 0.9999 0.9999 129.2 10059 0.9988 0.9995 15.1 1124

Min 0.9998 0.9999 92.8 7238 0.9997 0.9999 15.2 1124

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7758 0.7758 129.4 10082 0.7669 0.7751 15.2 1122

G Mean 0.2997 0.2998 122.3 9505 0.2920 0.2997 15.1 1123

Min 0.4843 0.4843 75.9 5835 0.4843 0.4843 15.0 1122

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 553.3 28267 0.9755 0.9894 36.4 1688

G Mean 0.9988 0.9997 325.6 16661 0.9501 0.9954 34.6 1686

Min 0.9947 0.9997 558.3 28639 0.9035 0.9612 34.6 1684

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7344 0.7484 388.3 19578 0.5969 0.6440 38.3 1688

G Mean 0.1759 0.1862 445.4 22470 0.1195 0.1329 35.8 1685

Min 0.4843 0.4843 262.1 11729 0.4843 0.4843 35.2 1687

(7,9) 63 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9988 0.9993 23.0 2839 0.9969 0.9985 5.5 631 

G Mean 0.9965 0.9978 28.1 3490 0.9894 0.9956 5.3 632 

Min 0.9965 0.9978 30.1 3717 0.9927 0.9978 5.3 632 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.8114 0.8127 34.8 4376 0.7654 0.7988 5.6 632 

G Mean 0.4393 0.4414 31.9 4017 0.4279 0.4412 5.2 633 

Min 0.4424 0.4424 20.4 2488 0.4424 0.4424 5.3 631 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9514 0.9538 289.3 19023 0.8868 0.9293 22.4 1267

G Mean 0.7975 0.8234 248.5 16290 0.7287 0.7666 26.4 1264

Min 0.8191 0.8323 176.2 11196 0.7152 0.7664 32.1 1263

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.6465 0.6490 233.1 15013 0.5034 0.5046 22.8 1262

G Mean 0.1492 0.1538 233.3 15489 0.1210 0.1311 19.8 1266

Min 0.4424 0.4424 117.6 7611 0.4424 0.4424 19.8 1265

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9994 0.9999 876.0 26841 0.9145 0.9382 48.4 1896

G Mean 0.9968 0.9993 529.8 23631 0.7593 0.8187 45.4 1897

Min 0.9738 0.9981 618.1 27455 0.7191 0.8614 44.9 1897

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.6989 0.7100 640.3 28103 0.5384 0.5427 51.6 1901

G Mean 0.1359 0.1424 523.1 21772 0.0538 0.0625 46.8 1895

Min 0.4424 0.4424 364.1 16131 0.4217 0.4424 45.4 1896
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(7,10) 70 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9987 0.9989 40.1 4096 0.9986 0.9989 7.4 701 

G Mean 0.9965 0.9965 45.1 4636 0.9957 0.9965 7.1 702 

Min 0.9965 0.9965 35.6 3652 0.9959 0.9965 7.2 701 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7977 0.7977 37.1 3901 0.7817 0.7977 7.4 702 

G Mean 0.3951 0.3951 36.0 3785 0.3947 0.3951 7.1 701 

Min 0.3964 0.3964 31.9 3187 0.3964 0.3964 7.4 701 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9999 1.0000 332.4 18146 0.9752 0.9892 28.2 1406

G Mean 0.9996 0.9999 267.2 14849 0.9339 0.9693 26.9 1404

Min 0.9854 0.9994 222.3 12202 0.8830 0.9377 27.0 1405

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7186 0.7263 329.8 18576 0.5796 0.6583 29.7 1413

G Mean 0.1899 0.1965 348.7 19568 0.1429 0.1535 27.3 1405

Min 0.3964 0.3964 168.8 9236 0.3964 0.3964 26.7 1407

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 952.2 29611 0.9925 0.9995 65.2 2112

G Mean 1.0000 1.0000 914.9 34350 0.9914 0.9998 60.9 2106

Min 0.9999 1.0000 808.4 30217 0.9411 0.9829 60.1 2107

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7024 0.7054 885.4 32777 0.5353 0.6008 67.0 2116

G Mean 0.1234 0.1251 1058.1 39406 0.0896 0.0977 62.6 2107

Min 0.3964 0.3964 482.8 17795 0.3964 0.3964 59.9 2105

(8,8) 64 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9467 0.9500 41.8 5244 0.9325 0.9402 10.1 642 

G Mean 0.8461 0.8597 37.6 4696 0.8205 0.8346 10.6 642 

Min 0.8805 0.9014 39.3 4766 0.8179 0.8597 10.1 643 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7254 0.7278 32.7 4246 0.6530 0.6957 9.6 642 

G Mean 0.3294 0.3336 35.5 4599 0.2367 0.3005 10.4 642 

Min 0.4300 0.4300 23.6 2932 0.4245 0.4300 9.7 642 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9995 0.9998 220.8 15120 0.9789 0.9865 23.3 1284

G Mean 0.9994 0.9999 194.4 13395 0.9454 0.9830 23.5 1282

Min 0.9979 0.9999 186.8 12745 0.9396 0.9682 23.6 1284

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7297 0.7336 193.6 13336 0.5399 0.6687 23.9 1281

G Mean 0.2236 0.2262 227.9 15777 0.1654 0.1819 21.5 1284

Min 0.4300 0.4300 113.0 7734 0.4300 0.4300 21.3 1284

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9986 0.9994 798.3 34584 0.9372 0.9421 50.5 1927

G Mean 0.9958 0.9984 586.5 26026 0.7894 0.8518 77.4 1928

Min 0.9624 0.9899 649.9 28336 0.6687 0.7939 50.9 1928

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.6693 0.6847 641.6 28256 0.5254 0.5409 52.1 1925

G Mean 0.1088 0.1134 673.6 29810 0.0486 0.0558 50.1 1927

Min 0.4300 0.4300 384.9 17101 0.3960 0.4300 48.2 1926
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(8,9) 72 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9744 0.9777 48.9 4669 0.9658 0.9727 7.8 723 

G Mean 0.9251 0.9356 51.7 4869 0.9102 0.9269 7.7 722 

Min 0.9298 0.9345 59.8 5538 0.8837 0.9044 8.1 723 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7408 0.7429 61.9 5993 0.7110 0.7343 7.6 723 

G Mean 0.3254 0.3280 57.8 5532 0.3118 0.3180 7.5 722 

Min 0.3864 0.3864 37.7 3524 0.3864 0.3864 7.9 722 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9965 1.0000 285.6 14779 0.9405 0.9784 31.3 1443

G Mean 0.9950 0.9977 328.9 17026 0.9284 0.9689 29.3 1444

Min 0.9758 0.9915 478.9 24670 0.8878 0.9263 30.0 1445

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.6917 0.7005 333.3 17527 0.5176 0.6372 32.8 1441

G Mean 0.1753 0.1799 531.5 25956 0.1393 0.1503 30.1 1445

Min 0.3864 0.3864 186.0 9662 0.3864 0.3864 29.2 1443

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 1203.8 41538 0.9786 0.9814 71.4 2168

G Mean 0.9992 0.9999 1047.4 36267 0.9242 0.9667 67.7 2166

Min 0.9940 0.9999 971.7 33520 0.8698 0.9217 68.4 2170

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.6715 0.6817 1032.2 35832 0.4972 0.4994 75.8 2168

G Mean 0.0959 0.1073 1064.0 37023 0.0619 0.0723 71.2 2171

Min 0.3864 0.3864 564.6 19540 0.3864 0.3864 70.2 2167

(8,10) 80 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9989 0.9989 48.9 4327 0.9953 0.9989 10.3 802 

G Mean 0.9969 0.9983 53.7 4746 0.9960 0.9966 9.6 803 

Min 0.9969 0.9983 51.6 4520 0.9955 0.9966 9.7 802 

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7824 0.7824 47.2 4201 0.7410 0.7824 10.5 802 

G Mean 0.3495 0.3495 52.1 4683 0.3425 0.3495 10.5 803 

Min 0.3507 0.3507 49.3 4157 0.3507 0.3507 9.7 802 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 1.0000 1.0000 420.4 19835 0.9131 0.9841 41.2 1603

G Mean 0.9999 0.9999 469.1 21864 0.9639 0.9988 37.0 1606

Min 0.9999 0.9999 689.1 21208 0.8810 0.9352 37.5 1607

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.7004 0.7008 462.7 21725 0.4612 0.4774 42.6 1604

G Mean 0.1581 0.1594 560.7 26348 0.1196 0.1308 37.0 1607

Min 0.3507 0.3507 313.1 12343 0.3507 0.3507 38.8 1606

3 

P
os

si
bi

lit
y 

M
ea

su
re

 Mean 0.9988 0.9998 1247.0 38178 0.9741 0.9844 91.8 2411

G Mean 0.9940 0.9998 1788.6 54861 0.7782 0.9417 89.5 2411

Min 0.9940 0.9982 1503.5 45981 0.8174 0.9194 95.3 2404

A
re

a 
of

 
In

te
rs

ec
tio

n Mean 0.6341 0.6397 1724.2 53052 0.4719 0.4727 99.5 2411

G Mean 0.0685 0.0724 1548.8 47612 0.0339 0.0533 93.4 2410

Min 0.3507 0.3507 801.2 24331 0.2530 0.3507 100.3 2406
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(9,9) 81 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 
Mean 0.9991 0.9991 62.7 4801  0.9986 0.9986 11.1 813 

G Mean 0.9972 0.9974 97.7 7499 0.9959 0.9959 10.7 813 

Min 0.9969 0.9974 67.0 5193 0.9962 0.9974 10.8 813 

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.7826 0.7826 70.6 5605 0.7823 0.7826 10.7 814 

G Mean 0.3497 0.3498 61.7 4911 0.3473 0.3493 11.1 813 

Min 0.3507 0.3507 56.2 4233 0.3507 0.3507 11.1 812 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 

Mean 1.0000 1.0000 452.6 18336 0.9977 0.9999 42.6 1627

G Mean 1.0000 1.0000 559.5 23065 0.9992 0.9996 40.8 1625

Min 0.9998 0.9998 460.2 18988 0.9950 0.9992 40.6 1624

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.7014 0.7015 490.2 20225 0.6702 0.6985 44.3 1632

G Mean 0.1597 0.1597 614.3 23964 0.1529 0.1594 42.1 1625

Min 0.3507 0.3507 312.1 12381 0.3507 0.3507 42.5 1625

3 

P
os

si
bi

lit
y 

M
ea

su
re

 

Mean 1.0000 1.0000 2006.1 55561 0.9967 0.9999 101.6 2440

G Mean 1.0000 1.0000 1877.0 52048 0.9846 0.9990 95.4 2436

Min 0.9999 1.0000 1717.7 47597 0.9487 0.9998 98.2 2437

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.6701 0.6718 2228.5 62182 0.5397 0.6271 105.9 2455

G Mean 0.0867 0.0878 1826.9 50990 0.0615 0.0694 96.7 2443

Min 0.3507 0.3507 896.5 24476  0.3507 0.3507 98.1 2436

(9,10) 90 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 

Mean 0.9991 0.9992 114.9 8014  0.9084 0.9992 15.0 903 

G Mean 0.9976 0.9976 120.6 8328 0.9781 0.9976 13.3 903 

Min 0.9957 0.9976 138.0 9438 0.9048 0.9429 13.9 902 

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.7688 0.7705 176.4 11835 0.6198 0.7522 15.1 901 

G Mean 0.3108 0.3135 178.1 8610 0.2761 0.2910 13.7 905 

Min 0.3143 0.3143 83.3 5577 0.3143 0.3143 13.9 902 

2 

P
os

si
bi

lit
y 

M
ea

su
re

 

Mean 1.0000 1.0000 566.5 18744 0.9992 1.0000 54.0 1806

G Mean 0.9999 1.0000 568.8 21285 0.9991 0.9998 51.5 1807

Min 0.9999 1.0000 681.3 25137 0.9988 1.0000 50.9 1804

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.6809 0.6810 792.3 28277 0.6720 0.6793 54.9 1809

G Mean 0.1288 0.1288 605.5 21260 0.1282 0.1288 51.7 1806

Min 0.3143 0.3143 417.5 15081 0.3143 0.3143 55.2 1805

3 

P
os

si
bi

lit
y 

M
ea

su
re

 

Mean 1.0000 1.0000 1931.5 47362 0.9977 1.0000 122.6 2707

G Mean 1.0000 1.0000 1954.6 48324 0.9997 0.9999 121.4 2706

Min 1.0000 1.0000 2253.6 55564 0.9925 0.9998 118.4 2713

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.6447 0.6448 2943.6 73412 0.5918 0.6233 133.2 2706

G Mean 0.0644 0.0644 2696.5 67042 0.0461 0.0634 131.5 2708

Min 0.3143 0.3143 1345.7 30583  0.3143 0.3143 148.3 2711
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Table 4: (continued) 

(x*y) n s 

C
om

p.
 

op
er

at
or

 

Aggregation 
Operator 

TS SA 

Average 
Obj. 

Best 
Obj. 

CPU 
Time

Iter. 
No. 

Average 
Obj. 

Best 
Obj. 

CPU 
Time 

Iter. 
No. 

(10,10) 100 

1 

P
os

si
bi

lit
y 

M
ea

su
re

 
Mean 0.9407 0.9415 194.5 11036  0.9260 0.9395 18.2 1003

G Mean 0.8257 0.8307 218.0 12422 0.8157 0.8246 18.2 1003

Min 0.8660 0.8776 197.4 10946 0.7933 0.8419 19.3 1004

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.6734 0.6748 175.3 10345 0.5270 0.6668 21.6 1003

G Mean 0.2118 0.2123 190.6 10967 0.1617 0.2045 19.1 1003

Min 0.2847 0.2847 127.9 6991 0.2847 0.2847 18.9 1001

2 

P
os

si
bi

lit
y 

M
ea

su
re

 

Mean 0.9998 1.0000 928.5 28129 0.9674 0.9901 77.2 2010

G Mean 0.9996 1.0000 900.6 27375 0.9672 0.9970 70.1 2006

Min 0.9979 0.9996 1380.5 41872 0.9053 0.9401 71.2 2008

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.6563 0.6580 1507.4 46250 0.4285 0.4406 81.3 2007

G Mean 0.1016 0.1033 1491.0 45818 0.0883 0.0957 72.5 2010

Min 0.2847 0.2847 624.2 18707 0.2847 0.2847 71.0 2005

3 

P
os

si
bi

lit
y 

M
ea

su
re

 

Mean 0.9922 0.9950 4504.2 88127 0.8170 0.8700 188.7 3034

G Mean 0.9644 0.9793 4610.2 90163 0.5418 0.8121 183.2 3010

Min 0.9086 0.9312 3445.5 60598 0.5985 0.7653 187.9 3015

A
re

a 
of

 
In

te
rs

ec
tio

n 

Mean 0.5743 0.5791 4119.3 81864 0.4224 0.4225 184.9 3009

G Mean 0.0362 0.0378 4961.7 98801 0.0061 0.0146 194.5 3011

Min 0.2847 0.2847 1952.8 38228  0.1615 0.2847 197.5 3010

 
From Table 3 we can see that in terms of solution quality, Tabu Search performs better than Simulated 

Annealing in 54% of instances and Simulated Annealing is better than Tabu Search in 2% of instances. This is while 
they are the same in other instances. Note that the best objective function value is boldfaced for the better algorithm. 
The two last columns for each algorithm show its efficiency in terms of iteration numbers and computational time in 
seconds. From this viewpoint, SA is better than TS in all instances. Therefore, it can be concluded that TS is a high 
quality while slow algorithm and SA is a fast while low quality algorithm in our considered problem. 

Although the values in each row cannot be compared with another row due to the difference in the nature of the 
aggregation operators, the values resulted from possibility measure are usually larger than those from area of 
intersection. This is because of pessimistic attitude of DM when choosing the area of intersection approach. 

To decide an aggregation operator, it is required to analyse its outcomes. To do so, the single objective values 
obtained through an operator is aggregated using the other ones. The results show that the use of geometric mean 
aggregation operator optimizes also the two other aggregation operators. 

 

7 Conclusion and Future Research 
 

Determination of optimal number and location of hierarchical facilities has been considered in this paper. Three types 
of objectives have been defined: minimizing the average travel times, minimizing the total costs and maximizing the 
adequacy of demand coverage. This choice is because that travel time has an important role in emergency service 
organizations such as hospitals and police offices and cost minimization is a common objective in location decisions. 
The adequacy of demand coverage is applied to formulate capacity constraints using a different language through 
which we limit over-cover and under-cover situations of demand points. A rich set of constraints have also been 
defined: two subsets consider obstacles in a given area, and the other concerns the distance between any two adjacent 
facilities in a level. 

Instead of accurate estimation of amount of customers’ demand, the demand points have been assumed to be of 
four levels. This is the case for emergency service systems. 
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Due to inevitable uncertainties in the problem (e.g. travel times and costs) fuzzy sets theory has been utilized to 
build a model to fit fairly real-world circumstances. 

For each objective function, a satisfaction grade has been defined by which DM could express his/her preference 
to the partially achievement of objectives. Satisfaction grade is obtainable through two approaches as possibility 
measure and area of intersection. Based on the satisfaction grades of objectives, we have converted fuzzy multi-
objective optimization model into a single unified goal through three different aggregation operators. 

Two efficient local search meta-heuristics (Simulated Annealing and Tabu Search) have been applied to solve 
the problem. Efficiency of the algorithms has been demonstrated through a rich set of experiments. Various 
configurations of the model have been considered in the experiments. 

The model provides some capabilities. It studies hierarchical structure of facilities that is rarely considered in the 
literature. The optimal number of facilities is generated by the model itself. The model utilizes satisfaction grades in 
the context of fuzzy multi objective programming. It applies satisfaction grades of objective function values instead 
of their mere values. 

Future work on the related problems mainly considers how to model and deal with consideration of waiting 
times at facilities. The facilities in each level may be of different sizes or different design attributes. 
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