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Abstract 

 
 This paper presents availability computation procedure of a semi-Markovian mechatronic system under the 

uncertainties that involve randomness as well as fuzziness. Conversion of semi-Markov to Markov model is stated first 
and hybrid approach is then used for fuzzy availability computation. Sometimes statistical data is available about 
failure and repair rates, but in cases where such data is scarce or not available, one has to rely on subjective 
information or judgment provided by the expert. As a result, the problem in which some data is probabilistic and some 
is of fuzzy nature is resolved in this paper using the hybrid approach. 
© 2011 World Academic Press, UK. All rights reserved. 
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1 Introduction and Literature Investigation 
 
Availability analysis is an important research topic in engineering and lots of investigations are ongoing worldwide in 
this area. In the real practical situations, the data required for availability analysis sometimes cannot be recorded or 
collected precisely due to human errors, machine errors, or some other unexpected situations. Availability calculation 
mainly necessitates failure and repair rate data. Lots of uncertainty is involved in the precise capturing of this data. 
Such data may sometimes be available and can be modeled statistically using probability theory. But sometimes it 
may be vague, ambiguous, imprecise, incomplete, fuzzy or in the form of linguistic terms and variables. In most of 
the cases, some of the data is readily available and some data is in the form of fuzziness. This paper attempts to 
demonstrate the availability calculation procedure when failure and repair rate data available with the analyst is of 
different nature, i.e., probabilistic and possibilistic (fuzzy).  

Verma et al. [7] presented two approaches to model fuzzy availability of a deteriorating system. This paper uses 
fuzzy numbers and interval of confidence to include uncertainties in the transition rates of the Markov model. First 
approach, assumes five linguistic variables with triangular membership functions allocated to all failure and repair 
rates. Second approach, assumes transitions from one state to another state using fuzzy variables. Verma et al. [8] 
proposed the semi-Markovian approach for availability modeling of a deteriorating system under fuzziness. The semi-
Markov model is converted to Markov model and fuzzy availability is found out assuming linguistic variables with 
failure and repair rates as triangular membership functions. Further, Verma et al. and Prabhu Gaonkar et al. also 
demonstrated procedure to compute fuzzy availability using vertex method [9] and fuzzy simulation [5]. 

This paper initially focuses on the uncertainty issues in availability computation. Fuzzy sets and triangular fuzzy 
number concept is briefly explained next. Four state semi-Markov model for mechatronic system and its conversion 
to Markov model from the literature is stated in Section 4 and availability expression is presented. Concept of hybrid 
approach is introduced in Section 5. Subsequent section discuss about fuzzy availability computation for two cases 
and discussion of results. The two cases of hybrid nature are: Case I: failure rates fuzzy and repair rates probabilistic 
and Case II: failure rates probabilistic and repair rates fuzzy. The paper ends with conclusion in Section 7. 
 
2 Addressing Uncertainty 
Some of the most well established uncertainty theories include various probability theories [1] (e.g., Kolmogoroff’s 
probability theory), evidence theory (Dempster, Shafer), possibility theory (Zadeh), fuzzy set theory (Zadeh), rough 
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set theory (Pawlak) and interval arithmetic. Additionally, combinations such as fuzzy-probability theory are widely 
investigated. The most important causes of uncertainty in engineering problems are lack of information and ambiguity. 

In availability computation, major hurdle is to handle and estimate model parameters that are uncertain in nature. 
In general, parameter uncertainty is: (i) due to randomness, i.e., due to variability phenomena or the fact that all the 
factors affecting the system can not be modeled. (ii) incompleteness or vagueness, i.e., information regarding the 
values of the model parameters are lacking. Probability theory deals with randomness, whereas possibility theory 
deals with the vagueness. To tackle randomness, the most commonly used approach is to collect the data and carry 
out statistical analysis. Probability theory accomplishes this work well. In case, statistical data is lacking or 
information about model parameters is incomplete, expert human judgment is the lone way to get the required 
information. These expert opinions have been used to build up probability distributions using Bayesian probability 
theory or Bayesian framework. Some researchers [2] have questioned some aspects of this theory. Subjective 
information of experts may have deficiencies like ambiguity, vagueness, imprecision, etc. Such types of uncertainties 
have been handled well by a fuzzy set theory. 
 
3 Fuzzy Set Theory and Triangular Fuzzy Number 
 
Zadeh advocated the concept of grades of membership or the concept of possibility values of membership [3, 4]. If X 
={x} represents a fundamental set and x are the elements of this fundamental set, to be assessed according to an 
uncertain postulation and assigned to a subset A of X, the set { , ( ) / }AA x x x Xµ= ∈  is referred to as the uncertain set 
or fuzzy set of X. ( )A xµ  is the membership function of the uncertain set A . The membership function ( )A xµ  for a 
fuzzy set A  can be defined as: ( ) : [0, 1]A x Xµ → . If the membership function of fuzzy number A is given by: 
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then A is referred to as triangular fuzzy number, denoted by ( , , )A L M R=  and is depicted in Figure 1. α - cut of this 
TFN is 

[ ( ), ( )]    [0, 1]A L M L R R Mα α α α= + − − − ∀ ∈ .                            (2) 
                                 

 
 
 
 
                                                            
 
 
 
 

 
 
 
 
4 Model Description and Availability Expression 
 
Markov Analysis is a powerful modeling and analysis technique with strong applications in the time-based reliability 
and availability analysis. It is a method of analyzing repairable systems with constant failure and repair rates. Systems 
are described by state transition diagrams and may be used to model systems that exhibit strong dependencies. The 
reliability behavior of a system is represented using a state-transition diagram, which consists of a set of discrete 
states that the system can be in, and defines the rate at which transitions between those states take place. Markov 

Figure 1:  Triangular fuzzy number (TFN) 
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states represent all possible conditions the system can exist in. The system can only ever be in one state at a time. A 
single state must be set up as the initial starting state. Transition rates represent the rate at which the Markov diagram 
moves from one state to another. For example, the transition rate from a working state to a failed state is represented 
by the failure rate whereas the transition from a failed state to working state is represented by the repair rate. As such, 
Markov models consist of comprehensive representations of possible chains of events, i.e., transitions, within systems, 
which in the case of reliability and availability analysis correspond to sequences of failures and repair. The underlying 
assumption here is, the probability that a system will undergo transition from one state to another state depends only 
on the current state of the system and not on any previous states the system has experienced. The transition 
probability is not dependent on the past state or history of the system. This is same as memoryless property of 
exponential distribution. Therefore exponential failure or repair times satisfy the Markovian property. Assumption of 
exponential distribution is valid for the failure events of many engineering problems, mainly those in which all 
components are in useful life period. The real problem arises when it comes to repair process, whether exponential 
distribution is valid. If repair times are not exponentially distributed the additional techniques are required to evaluate 
the time dependent values.  

One technique to tackle the problem of system with non-exponential distribution (non-Markovian or semi-
Markovian models or problems) is method, commonly known as ‘device of stages’ [8, 9, 5]. The method is based on 
the logic or conclusion that if repair time is not exponentially distributed, then the state, from which that particular 
transition is commencing, can be divided into a number of sub-states with each transition exponentially distributed. 
The essence of the problem is to deduce the number of sub-states, the way they are connected and their numerical 
parameters in order to represent the state being considered. This process of dividing a system into sub-states (referred 
as ‘stage’) is known as ‘method of stages’. When number of states is combined in series, it is known as ‘series 
method’ or when combined in parallel, it is known as ‘parallel method’. 

Most of the systems nowadays are mechatronic systems. Mechatronic system is the one that have mechanical 
and electronic components. A mechatronic system may fail due to two types of failures i.e. degradation failure (after 
it becomes critical) or shock which is a sudden failure. These two types of failure mechanisms are considered in 
development of a semi-Markov model in the literature [8, 9, 5]. Degradation failure is a failure mechanism that 
evolves over time and will typically develop to a critical failure over time. E.g. wear, vibration, cumulative damage, 
noise, leakage, contamination, mechanical defect, material deterioration and failure etc. Degradation is considered in 
two categories namely critical and non-critical. Critical failure is one that causes complete loss of the functional 
capability of the system. In non-critical degradation, system functions at a lower functional level. Shock is a sudden 
failure mechanism that is not dependent on time. E.g. sudden failures like electrical, instrument failure, control 
failures, no or faulty indicators and alarms, etc.  Shock mechanism is considered as critical failure as it causes 
immediate loss of function. 

For the system under description, it is assumed that all the repair times follow special erlangian distribution 
(non-Markovian) and all the failure times follow exponential distribution (failure rates constants). These two 
assumptions compose a semi-Markov model as stated in literature [8, 9, 5]. This model is shown in Figure 2. 

 

 
Figure 2: Semi-Markov model 

 
As mentioned in earlier paragraphs, the semi-Markov problem is conventionally solved using device of stages 

technique. Stages in series method have been considered in this paper to solve the model/problem.  
Let ‘η ’ and ‘ ρ ’ be the series stage device parameters. These parameters represent ‘number of stages’ and the 

‘repair rate’ respectively. The standard equations cited in the literature [8, 9, 5] for ‘η ’ and ‘ ρ ’ are as follows: 

        Number of stages: 
2

1
2

2 1

M
M M

η =
−

,     (3) 

State 0  : Fully operating state 
State 1  : Degradation non-critical state 
State 2  : Shock critical state 
State 3  : Degradation critical state 

DNCλ     : Degradation non-critical failure rate 
DCλ       : Degradation critical failure rate 
Sλ         : Shock failure rate 
Sµ         : Shock repair rate 
DCµ       : Degradation critical repair rate 
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                           Repair rate: 1
2

2 1

M
M M

ρ =
−

                              (4) 

where 1M  and 2M  are the first two moments of the distribution being modeled. We consider erlangian distribution 
for the repair times. The first moment ( 1M ) and the second moment ( 2M ) of erlangian distribution is as follows: 

 First moment:    1M µ= ,                                                                        (5) 
                         Second moment:    2 2

2M µ σ= +                                                            (6) 
where µ  is the ‘mean’ or the ‘average value’ and 2σ  is the ‘variance’. Variance is defined as the average value of 
the quantity ‘square of the (distance from mean)’. This average is taken over the whole distribution. The ‘standard 
deviation (σ )’ is defined as ‘square root of (the variance)’.  

For an illustration, we consider that repair time from state 2 to state 0 follow a special erlangian distribution with 
mean value ( µ ) = 21 hours and standard deviation  (σ ) = 12 hours. Substituting these values in equation (5) and (6), 
we obtain 1M = 12 and 2M = 585. Putting these values in equation (3) and (4), we obtain the number of stages ( ) 3η ≈  
and repair rate ( )Sρ  = 0.145833 repairs/hour ≈ 1280 repairs/ year. Similarly, considering suitable values of mean ( µ ) 
and standard deviation (σ ) as 20 and 13 hours respectively for the repair time from state 3 to state 0, we obtain 
number of stages ( ) 2η ≈ and repair rate ( )DCρ ≈ 1040 repairs/year. Using this derived information, semi-Markov 
model is converted into a Markov model. This model now has in total seven states. State two is broken into three 
states and state 3 into two states. All the transition rates (failure as well repair rates), at present are constants, that 
satisfies Markovian property as explained in the beginning of this section.  The Markov model thus obtained is shown 
in Figure 3. 

 
Figure 3: Converted Markov model 

 
Stochastic transitional matrix (T) of the Markov model depicted in Figure 3 is 
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The solution of the model can be obtained by solving following equations: 
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                    [ ]0 1 21 22 23 31 32 0P P P P P P P T⋅ = ,                                                            (8) 

                                   1i
for all i

P =∑                                                                                      (9) 

where Pi  is probability of being in state i (i = 0, 1, 21, 22, 23, 31, 32). 
State 0 and state 1 are operating states and remaining states are failed states. Availability of this Markov model is 

given by equations: 
                               0 1( )A t P P= + ,                                                                               (10) 
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5 Hybrid Approach 
 
The representation of variability by a probability distribution function rather than fuzzy numbers, even when faced 
with lack of information may lead to un-conservative estimation of the availability [2]. It is rather appropriate to 
consider model parameter uncertainty in terms of possibilities rather than probabilities when sufficient information 
does not exist. If a given model involves some parameters that are justifiably represented by probability density 
function (in particular, sufficient data exists to substantiate these probability density functions), while others are 
considered to be more adequately represented by fuzzy numbers, a method has been derived to combine these two 
modes of representation of uncertainty in the estimation of availability. As the name suggests, hybrid approach 
combines probabilistic and fuzzy variables. It is very much useful and most practical where some variables are 
represented by probability distribution functions and some by fuzzy variables. The steps in hybrid approach [2, 6, 10] 
are as follows:  
Step 1:  Let 1 2 nP , P ,...,P  are the ‘n’ model parameters, each being represented by a probability density functions. Get 
2n vertices for the ‘n’ probability density functions as per Rosenblueth’s Point Estimate Method (RPEM) [6] as shown 
in Figure 4. The end points will be: 1- 1+ n- n+P , P ,...,  P , P . 
Step 2:  Let  1 2 mF , F ,...,F  are ‘m’ model parameters each represented by a fuzzy number. Select a α value of the 
membership function as shown in Figure 5. The end points of the α cut of fuzzy variables are selected as: 

1- 1+ m- m+F , F ,...,  F , F .      

The various combinations of end points constitute different extreme scenarios of the fuzzy variables there by 
giving 2m combinations where ‘m’ is the number of fuzzy variables.  
Step 3: Calculate Availability (A) at each α  level by considering 2n vertices for probability density functions and 
each of the 2m combinations of fuzzy variables (2m reliability indices at each α  level): 

       ( )1 2 n 1 2 mA =  f  P ,P , ...,P , F , F ,...,F .                                 (13)  
Step 4: Repeat this procedure at all α  levels. 
Step 5: Build fuzzy availability by selecting the inferior and superior value of availability values at each α  level. 

 

 
 

Figure 4: Probability density function of Pn               Figure 5: Fuzzy number Fm 
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The result of combining probability density functions with the fuzzy numbers is a random fuzzy number. The 
hybrid approach takes advantage of the rich information provided by probability density functions, but retains the 
conservative character of fuzzy calculus to account for those parameters for which a representation by unique 
probability density functions is not justified by the available data [2, 6].    

 
6 Fuzzy Availability Computation, Results and Discussion 
 
As the intent of this paper is to compute availability with uncertainties that involve randomness as well as fuzziness, 
two cases are formulated in this section. Both the cases take care of the uncertainties of both types. Fuzzy availability 
is computed using the availability expression obtained in Section 4. Equations (10), (11) and (12) have been used to 
compute fuzzy-random availability. While computing fuzzy-random availability, arithmetic’s and Monte Carlo 
simulation is employed. 

Case I - Failure Rates Fuzzy and Repair Rates Probabilistic: 
In this case, failure rates are assumed as triangular fuzzy numbers and repair rates as uniformly distributed (UD). 

Hybrid approach methodology (explained earlier) is used in this case. As we have three failure rates, which are in 
TFN form, the various combinations of end points of the fuzzy numbers will give 23 = 8 combinations. As repair rates 
are uniformly distributed, they are obtained using Monte Carlo simulation. At each α  level, lower and upper 
availability is computed for all 8 combinations and the ones with least value and highest value amongst them are 
taken as lower and upper bounds of availability at that α  level. Final availability value is a fuzzy random number.  

Case II - Failure Rates Probabilistic and Repair Rates Fuzzy: 
Now, failure rates are uniformly distributed and repair rates are considered as triangular fuzzy numbers. Here 

also, availability computation is done using hybrid approach. Various combinations of end points of fuzzy repair rates 
are 22  = 4 and failure rates are determined using Monte Carlo simulation. Using similar procedure as explained in 
earlier case, lower and upper bound of availability is calculated at each α  level. 

The input data for both the cases is given in Table 1. Lower and upper bounds/values of availability at each α – 
cut/level are given in Table 2 and plotted in Figure 6. 

 
Table 1:  Input data 

 
 Case I Case II 

Failure 
Rates 

Nature TFN UD 

DNCλ  [13,14,15] [13,15] 

DCλ  [35,36,37] [35,37] 

Sλ  [45,46,47] [45,47] 

Repair 
Rates 

Nature UD TFN 
DCρ  [1020,1060] [1020,1040,1060] 

Sρ  [1270,1290] [1270,1280,1290] 
 

Table 2: Fuzzy availability output 
 

α  Case I Case II 
Lower Upper Lower Upper 

0 0.899825 0.905052 0.899827 0.90505 
0.1 0.900018 0.90486 0.899897 0.904983 
0.2 0.900211 0.904668 0.899969 0.904917 
0.3 0.900404 0.904476 0.900039 0.904849 
0.4 0.900597 0.904285 0.900111 0.904783 
0.5 0.90079 0.904093 0.900182 0.904715 
0.6 0.900983 0.903901 0.900252 0.904647 
0.7 0.901176 0.90371 0.900323 0.90458 
0.8 0.901369 0.903519 0.900393 0.904512 
0.9 0.901563 0.903328 0.900463 0.904445 
1 0.901756 0.903137 0.900534 0.904378 
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Figure 6: Fuzzy availability obtained in case I and II 

 
One may observe the shape of fuzzy random availability in Figure 6. Fuzzy distribution of availability in both 

the cases is of the shape of trapezoidal fuzzy number (TrFN). Trapezoidal fuzzy number is having plateau at α  = 1 
for some range of availability values. This is in spite of some data is in the form of TFN. It is because remaining data 
is random/ probabilistic. If these results are compared with the availability values obtained in literature [8, 9, 5], it is 
observed that availability values take the shape of TFN. This is for the reason that all the data considered in literature 
is of fuzzy nature (TFN). It is also quite logical that when some data is random and some is in the form of TFN, more 
availability range will have α  = 1, i.e., certainty zone. 
 
7 Conclusion 
 
This paper demonstrated a methodology of computing availability of a semi-Markovian mechatronic system when 
some data is random and some is of fuzzy type. Two combinations of nature of failure and repair rates have been 
considered. Recently evolved methodology such as hybrid approach is attempted to arrive at the availability value of 
the system. It is worth mentioning that using this distinct computation procedure, availability/reliability of any 
system/ model can be evaluated when data is random (probabilistic) and/or fuzzy (possibilistic).   
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