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Abstract 

 
 This paper proposes a new recurrent neural network (NN) adaptive control method for air-breathing hypersonic 

vehicles (AHVs) in the presence of dynamical parameter uncertainties and disturbances. The control law mainly 
consists of the optimal generalized predictive control (OGPC) algorithm, and an adaptive adjustment of B-spline 
recurrent functional link network (BRFLN). The BRFLN, a new NN presented here, is applied to approximating 
dynamical uncertainties and disturbances. Moreover, a guaranteed global convergence algorithm, the stochastic 
particle swarm optimizer (SPSO) is employed to learn the self-connection weights of the BRFLN, which can improve 
the adaptability of the BRFLN. It is proved that the closed-loop system error is uniformly ultimately bounded. Finally, 
simulation results show that the controller designed attains a satisfactory performance for the AHV attitude tracking. 
© 2011 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
Air-breathing hypersonic vehicles (AHVs) offer a promising and cost-effective technology for access to space and 
prompt global strike capabilities. Their guidance and control law design has become one of the greatest aeronautical 
research challenges. Generally, AHVs fly in the airspace from 20km to 100km above the earth. The resistance and 
energy consumption upon them are relatively low among this airspace, whereas there exist rarefied air, complicated 
temperature variation and disturbances such as gust, wind shear and possible turbulence. Furthermore, some key 
factors add plant parameter dynamical uncertainties to the AHVs’ control problems, e.g. the rapid change of mass 
distribution, the motor thrust misalignment and the lack of a broad flight dynamic database. 

To improve the control performance of AHVs under strong uncertainties and disturbances, some researchers 
proposed different robust or adaptive control methods. In [20], an adaptive sliding controller was designed for the 
longitudinal dynamics of an AHV and it possessed robustness with respect to parameter uncertainties. Fiorentini [4] 
adopted a robust nonlinear sequential loop-closure approach to design dynamic state-feedback controller under 
uncertainties. Kuipers [11] utilized the robust adaptive multiple model controller for the AHV trajectory control. 
However, uncertain parameter variations in these literatures were restricted within a given range, and hence these 
methods are inadequate to deal with the wide range of flight conditions due to the large dynamical parameter 
uncertainties. Moreover, these literatures do not consider the AHV attitude control system which is practically more 
sensitive to uncertainties and disturbances than the trajectory control system. Therefore, this paper will discuss the 
design of the AHV attitude control system in presence of dynamical disturbances and parameter uncertainties. 

In recent years, intelligent techniques using fuzzy logic (FL) or neural networks (NNs) have been combined with 
nonlinear control methods and have revealed a nice effect on flight control problems [16, 18]. Especially, NN 
adaptive control is used because of their adaptability and robustness to unmodeled system and their hardware 
implementation capability. Nevertheless, FL or feed-forward NN belongs to the static mapping method and may be a 
good analytic tool to the relation existing in long-term. To the approximation of temporal or short-term dynamic 
variation, recurrent/dynamic neural network (RNN) possesses a superior capability as compared to feed-forward NN 
[6, 12]. If designed properly, RNN will attain a better learning result in smaller dimensions and less computational 
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cost. In fact, the uncertainties/ disturbances during hypersonic flight are dynamically changeable functions and their 
variation may be random fluctuation, but few literatures in flight control field have considered large dynamical 
uncertainties. Hence a new simple RNN, B-spline recurrent functional-link network (BRFLN), is proposed and 
combined with optimal generalized predictive control (OGPC) method [1] to improve the attitude tracking 
performance of AHVs. The feedforward and feedback weights of BRFLN are online tuned by the derived adaptive 
law based on Lyapunov stability theorem. The self-connection weights of BRFLN are online learned by the stochastic 
PSO (SPSO) for simulating high-order nonlinear functions and strengthening the adaptability of the network. 
Moreover, we also design a robust controller to achieve desired control precision. 

The paper is organized as follows: in Section 2, the OGPC algorithm with uncertainty is derived. Section 3 
discusses the design procedure of BRFLN-based OGPC and the learning of BRFLN self-connection weights with 
SPSO. In Section 4, we analyse the stability of the close-loop control system. Finally, the presented method is applied 
to the attitude tracking control of the AHV and simulation results are given followed by the conclusion.  
 

2 The OGPC with Uncertainty 
 
The OGPC is a closed-form nonlinear predictive control law proposed by Chen et al. This method overcomes the 
main shortcoming of traditional predictive control algorithms. That is, the OGPC avoids the online computation, and 
hence it is an effective algorithm for fast time-varying systems [1, 8]. However, uncertainties/disturbances have not 
been considered in above literatures. So the OGPC with uncertainty will be derived in the following study. Let us 
consider a nonlinear system under uncertainties/disturbances described by 

1 2( ) ( ( )) ( ( )) ( ) ( ( ))
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where n m x R , u R  and my R  are the state vector, input and output, respectively. n2g D R  denotes the lumped 

disturbances which are dynamically changeable and they include unmodeled dynamics, parameter variation and 
external disturbances etc. It is assumed that ( ) nf x R , 1( ) n mg x R  and 2 ( ) n mg x R  are smooth functions in 

terms of x and the following assumptions [1] are imposed on the system (1):  
1) The output and reference signal are many times continuously differentiable with respect to t; 2) All states are 
available; 3) The system input and lumped disturbances have the relative degree  , and the zero dynamics are stable. 

An optimal tracking problem is specified as: a controller is designed such that the close-loop system is 
asymptotically stable and the output of system (1) optimally tracks a prescribed reference output, in terms of a given 
performance index as  

T

0

1
( ) ( )

2

T
J t t d     e e                                                                              (2) 

where T is the predictive period, e is the output tracking error, defined by ( ) ( ) ( )rt t t      e y y with ( )t y  

the predictive output during T and ( )r t y  the prescribed reference output. The control weighting term is not 

included in (2) following [1, 5]. 
Repeated differentiating up to +r times of the output y with respect to t, we obtain 
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where fL  denotes the Lie derivative,  is the system relative degree, r is the control order of u, and 11 21 22, , , ,p p p  

1, ,r rrp p are complex functions in terms of u , u , ,  1ru  and x. ( )t y  and ( )r t y  at the time   are 

approximately predicted by their Taylor-series expansions up to (+r)th order. That is  

( ) ( ) ( )t t  y Y ,      ( ) ( ) ( )r rt t  y Y                                                            (4) 
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with ( , , ) m mdiag     R . Thus, the predictive error in (2) can be written as 

( ) ( )( ( ) ( ))rt t t   e Y Y .                                                                           (5) 

Letting 
*=

0
J


 u uu

 and consulting the proof of Theorem 1 in [1], we can prove that the optimal nonlinear control 

law which minimizes the receding horizon performance index (2) is given by 
 1

1( ) ( ( )) ( ( ) ( )+ ( ) )rt t


   u G x F x KM y H x D  1
1( ( )) ( ) u G x H x D                                      (6) 

where ( ) ( )fLF x h x , 
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1( ) ( )g fL LH x h x   (The definitions of K  and M  come from [1]) 

and u  represents the control law of a nominal system. Accordingly, the robust OGPC law may be designed as 

0 0, ( ) , ( )ad r ad ad r ad    u u u u u G x v u G x v ,   1
0 1( ) ( ) ( )G x G x H x                                    (7) 

where adu  is the control adjustment in the presence of uncertainties/disturbances and adv  is the estimation of D . ru  

denotes a robust control (RC) item which is used for offsetting the error between D  and adv , i.e., r adv D v  . 

Obviously, the control law u  can be employed to counteract negative effects that lumped disturbances induce. 
Because D  is a dynamically changeable function, dynamic mapping methods can be fit for the approximation of D  
better than static ones. Thus, a new RNN, the BRFLN is presented to approach D  for reducing the computation load. 
 

3 The Design of BRFLN-based OGPC 
 

3.1  The Design of B-spline RFLN 

Functional link network (FLN) proposed by Pao [13], is a single-layer NN with functionally mapped inputs. It is 
capable of forming arbitrarily complex decision regions. The prime advantage of the FLN is its reduced 
computational complexity without any sacrifice on its performance [7, 17, 19, 22]. For example, the FLN-based 
nonlinear equalizers offer better performance than the MLP equalizer, the RBF equalizer and the polynomial 
perceptron network (PPN) equalizer [19, 22] in terms of the mean square error level, convergence rate, and 
computational complexity. In order to approximate dynamical uncertainties during hypersonic flight, we propose a 
new RNN, the BRFLN. This network not only possesses characteristics as those of the FLN, but also has a lower 
computational complexity than RNNs with hidden layers. Hence it is quite suitable for the control realization of 
AHVs.  

Since a feedforward NN combined with recurrent feedback and input time delays can effectively capture the 

optimal temporal profiles of a dynamical system, the FLN outputs are directly fed into the input layer to build the 

structure of BRFLN. In addition, we add the self-feedback links on the context nodes so as to simulate high-order 

systems [21]. The BRFLN does not have hidden layers, which greatly reduces the computation loads of the network 

and enables the BRFLN to be employed in the online training. The architecture can be shown as Fig. 1. 
 
 
 
   
 
 
 
 
 
 

 

 
Figure 1: Structure of the BRFLN 
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The BRFLN output is described by  
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Different from traditional FLN, the proposed network employs B-spline basis functions as mapped inputs. In many 
application fields, the spline approximation is attractive in terms of some properties such as continuity, local 
controllability, low approximation error and simple implementation. It can reach a higher accuracy than polynomials 
approximation. For instance, the central B-spline function is denoted by [15] 
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 The support set of B-spline functions is described by nSuppN   

 ( 1) 2, ( 1) 2n n    and 0iN   when x is outside of iSuppN . Generally, we are concerned mainly with splines of 

order 3n   as these are simple for implementation and most frequently used in practice, i.e. 
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3.2  Self-connection Weights Learned by SPSO 
 
There are two parts of parameters to be determined in the BRFLN. Firstly, the feedforward and feedback weights 
W need the online learning. The adaptive law of W  is derived based on Lyapunov stability theorem so as to 
guarantee the stability of the close-loop system. This content will be discussed in Section 4. Secondly, it is important 
to notice that the input layer consists of the functional expansion outputs and context nodes outputs. Each context 
node gives a summation at the instant k between its input ˆ py  and its previous output weighted by a self-connection 

weight p . The value range of p  is [0,1) . Then, the output of context nodes is denoted by 
T
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where ( +1)ι k  represents the output at the instant k+1 and we define that ( 1) 1.0ι k +  . 

The self-connection gives the nodes the capacity to memorize a certain past of the input data and simulate high-
order systems. The easier way to obtain p  is to fix it a priori, but how to get this proper value is actually a problem. 

Moreover, fixed p  will influence the adaptability and approximation precision of the BRFLN. In this research, we 

consider employing a swarm intelligent optimizer, Stochastic Particle Swarm Optimizer (SPSO) to learn p .  

Particle Swarm Optimizer (PSO) [9] is newly developed evolutionary technique and it is an algorithm to 
simulate the movement of flocks of birds. Like other population-based search algorithms, PSO is initialized with a 
swarm of random solutions (particles). Each particle flies in D-dimensional problem space with a velocity which is 
adjusted at each time step. The particle flies towards a position which depends on its own past best position and the 
best position of its neighbors. The quality of a particle position is evaluated by a problem-specific objective function 
(fitness). Due to the simple concept and quick convergence, PSO has gained much attention and wide applications in 
different fields nowadays. However, the performance of PSO greatly depends on its parameters and it suffers from the 
“curse of dimensionality”. Moreover, PSO may prematurely converge on suboptimal solutions which are not even 
local extrema. 

Stochastic PSO [2] is an improvement upon conventional PSO. It has strong exploration ability, fast 
convergence speed and is guaranteed to convergence at the global optimization solution with probability one. For the 
SPSO, the inertia weight w in the conventional PSO updating equations [9] is equal to zero. This operation will 
reduce its global search capability, but increase the local search power. In order to improve global capability, SPSO 
retains the best history position and generates a new position randomly in the searching space. The algorithm is 
described as  
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where ( )ιV t is the current flight velocity of the ith particle, ( )ιx t represents the current position of the ith particle, 1c  

and 2c  are two positive acceleration constants, r1 and r2 are two random constants satisfying the uniform distribution 

U(0,1), jP  is the best history position of the swarm, Pi is the personal best position of the ith particle and Pg  is the 

best position of the entire swarm. If Pj = Pg, then particle j’s position xj(t + 1) needs initializing randomly and other 
particles are manipulated according to the particle updating equation in (12). Thus, the global search capability can be 
enhanced.  

Due to the limited space of the paper, we do not expatiate on the theory of SPSO which is discussed in [2]. We 
emphasize how to realize the online learning of self-connection weight p  with the SPSO. In this study, 

1 , , )p m       is just a m-dimension particle of the swarm. The selection of the particle evaluation function 

borrows the thought of the OGPC, that is, the prediction output defined on finite horizon is carried out via Taylor 
series expansion. Consequently, we use the performance index (2) as the evaluation function and ( )t e  is described 

by 
( ) ( ) ( ( ) ( ))rt t t    e Y Y .                                                                        (13) 

As (3) and (13) show, we know that the predictive error ( )t e  is the function of x , u  and D . The uncertainties D  

will be replaced by ad rv v  during the controller design. Since adv  is related to ( 1, , )p p m    from (8), different 

particle 1 , , )p m       will own different value of ( )t e and different value of the evaluation function 

accordingly. The particle which possesses the minimum evaluation value is the best individual. Thus, there are 
following assumptions on the optimal weight matrix and output of the BRFLN.  
Assumption 1: On a compact region m e R , define the optimal weight matrix as 

* arg min sup ad

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 e

W e
W D v                                                                       (14) 
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where e  is the BRFLN input vector, *W satisfies * WW  and   denotes the Frobenius norm. 

Assumption 2: On a compact region m e R , define the optimal output of the BRFLN as 
* * * *ˆ( ( )) ,ad     v W X,Y, D                                                              (15) 

where *  is the optimal self-connection weight matrix,   is the approximation error of the BRFLN, and * 0   is an 

unknown bound. 
 
3.3  The Design of BRFLN-based OGPC 
 
Now we can give the structure of the proposed BRFLN-based OGPC method.  

 
Figure 2: Structure of BRFLN-based robust OGPC 

 
In this figure, adu  and ru  constitute the adjustment of the control law. Using (7) and (8), we have 
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0 ( ) ( )ad   u G x W    where W and   are in need of online learning. Additionally, the RC gain, i.e.  , has its 

adaptive law which may lead to a less conservative controller design. The derivation process of the adaptive laws will 
be discussed as Section 4. 
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 
 
 
 
     




    


R  and T(0 0 1)i
 B R . From (8) and  (15), we get 

   * T T
ad ad ad            *D v v v W W      .                                             (17) 

Then,  T  *W    can be expressed as 

   T T T T T T(                  
* *W W W W W W                                        (18) 

where *= W W W . Whence the Taylor series expansion for (18) can be written as 

 T T T T T 2( ) + '( ) + ( )             *W W W W W                                              (19) 

where T

T

z=
'( ) = / |d dz 

 
 

W
W

 
   and T 2( ) W    represents higher-order terms. Denoting T' '( )  W    

and substituting  (19) into  (17), we have 
T T 2' + ( ) +ad      D v W W       .                                                            (20) 
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Hence, the system error state equation can be described by  

 T T 2= ' + ( ) + r       E AE BH W W v       .                                                  (21) 

Now we consider the expression T T 2( ) r W   . The use of (19) yields 
T T 2 T T T T T

T T T T T T T *

( ) [ ( ) ( ) '( )
= ( ) ( ) ' '

  
  

            
           

 *

*
r W r W W W W

r W r W r W r W
          

         
 

with r  a vector to be mentioned in Theorem 1. Therefore, 
T T 2 T T T T *T T

1
( ) ( ) ( ) ( ' ) ( ')tr tr               *r W W W r W r W r              

T T * T

1
2 ' '       r W r W r                                                                  (22) 

where 
1
  represents the absolute value sum of matrix elements. Let T T T

1
( ' ' ) /os       r W r r r       

and  * *max 2,o  W . So the inequality (22) satisfies  

       T T 2 *( ) o os  r W r   .                                                                     (23) 

Then, define 
* 1os   ,  * * *max ,m o    , *

m                                                          (24) 

where   is the estimation error of the robust gain. The stability of the close-loop system with BRFLN-based OGPC 

method is discussed in Theorem 1. 
Theorem 1. Assume that the system (1) is controlled by (7) and (25). If the online adjustment parameters are tuned 

by (26), then the close-loop system error E  and estimation errors ( W , ) are uniformly ultimately bounded. 

T * * T( ),  tanh( / ) , ( ) ( )ad r t       v W v r r BH PE                                           (25) 

 T * T *( ' ) , tanh( / )W WK K           W = r W r r                                       (26) 

where  , WK ,   and K  are positive design constants, W  is a positive definite matrix and tanh( )x  denotes the 

hyperbolic tangent function.  
Proof. Let the Lyapunov function candidate be given by 

T T -1 21 1 1
( )+

2 2 2WV tr





    E PE W W                                                              (27) 

where 1( , , ) m m
mdiag   P P P R  and iP  is a positive definite matrix which satisfies  

T
i i i i i  P A A P Q , T 0i i Q Q                                                                    (28) 

with iA  the system state matrix and iQ  an arbitrary definite matrix. Moreover, P satisfies 

1 2 00 ( )t t t     I P I                                                                         (29) 

where 1  and 2  are positive constants. 

Differentiating (27) and substituting (21), (25) and (28) into V  yield 

T T T T T 2 T -1 11
( ) [ ' + ( ) ] ( )

2 r WV tr





                 E A P PA E E PBH W W v W W         

T T T T 2 T -1 * *11
= ' ( ) [ ( )] ( )

2 r Wtr


  


              
       E QE r W W v W W W         

T T T 2 T T T -1 T T T T1 1
= + ( ) + ' ( ' ') .

2 r Wtr





                
       E QE r W v r W W W W r W r                

Choosing a BRFLN online tuning law and the adaptive law for ( )t  as (26), we get 

T T T 2 * T * T * * T *1
( ) [ ( )] tanh( / ) tanh( / )

2
T

WV K tr K                     E QE r W W W W r r r r r    . 

From (15), (23) and (24), we obtain  
22 * * * T * *1

( ) ( ) tanh( / ) ( )
2 o o W m mV s K tr W K                      *Q E r r W W r r  
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2 * * * * T *1

( ) tanh( / )
2 m m          Q E r r r

2 * 2 21 1
( ) ( )

2 2W mK W K      W W                  (30) 

where ( )   denotes the matrix minimum eigenvalue. Next applying Lemma 1 in [14] yields 
* * * T *tanh( / )m m m        * *r r r  

where m  , m is the dimension of r  and 0.2785  . Therefore, (30) becomes 

2 * 2 21 1 1 1 1
( ) ( )+

2 2 2 2 2
2

m W mV K W K K            
2*Q E W . 

If we define * 22 02
m W mK W K      * ,  then (30) can be written as 

2 21 1 1 1
( )

2 2 2 2WV K K        
2

Q E W .                                                       (31) 

Thus, V  is negative when one of the following inequalities is satisfied. 

( ) , ,WK K       E Q W .                                                     (32) 

Set 1 min( ( ) ( ), ( ), )W WC K K     Q P   and 2 2C  . Then, (31) may be rewritten as 

T 2
2 1 2

1 1 1
( ) ( ) ( ) ( )

2 2 2
T

W W WV K tr K C C V C 


    


             Q P E PE W W   .                  (33) 

Integrating (33) over [t0, t], we have 

1 0( )2 2
0

1 1

( ) ( ( ) ) C t tC C
V t V t e

C C
     .                                                                 (34) 

Hence, the errors including E , W  and   turn out to be uniformly ultimately bounded. The control law that 

minimizes the performance index (2) is given by (7) and (25).   □ 
Remark 1: The main design work lies in the online learning of the BRFLN and adaptive adjustment of the robust 
gain. In fact, the control algorithm is not limited to the OGPC. In this paper, the OGPC is utilized mainly because it is 
a high efficient algorithm with good performance, which is crucial for the realization of attitudes control system. If 
some proper nonlinear control methods are combined with the BRFLN, we may apply it to the dynamic systems 
which don’t satisfy the assumptions of OGPC. Anyway, a nonlinear control algorithm should be selected according to 
the object characteristics.  

 

5 Controller Design for AHVS and Simulation Results 
 
The AHV simulation model comes from the hypersonic vehicle of winged-cone configuration [10, 23]. Six degree-of-
freedom and twelve states equations can be simplified to the affine nonlinear functions as 

1 2s s s s   






s

f g g D
y




         

1 2f f C f f

f

  
 

 f g M g D

y




                                           (35) 

where T[ , , ]    is the slow-loop state vector, the AHV attitude angle, and T[ , , ]p q r  is the fast-loop state 

vector which includes three angular velocities. 3
C f,δ C M g R  is the AHV control moment. C  denotes the control 

surface deflection. 3 3
1 1,s f

g g R  are invertible matrixes and 3,s f f f R , 2 2 3 3s f =g g I . The concrete expressions 

of above matrixes are specified in [23]. In general, they are functions of attitudes, angular velocities, aerodynamic 
coefficients, aerodynamic moment coefficients etc. T[ , , ]s D D D  D  and T[ , , ]f p q rD D DD  are the dynamical 

uncertainties and disturbances upon the slow and fast loop respectively.  
The application of (35) yields that the relative degree   is equal to 1, and the control order r is set zero. Then 

from  (6) and (7), the slow-loop and fast-loop control laws of the AHV are given by 
 1 -1 -1 -1

1 0 0 1 1 1( ( )) ( ( ) ( )) ( ) ( ) ( )r ad r s s s s sr s ad s rt


           s= u G x F x KM y G x v G x v g f K e y g g   ,      (36) 
-1 -1 -1
f1 1 1( )C f f f f fr f ad f r     M = u g f K e y g M g M                                       (37) 

where -1 T {3 / (2 ),3 / (2 ),3 / (2 )}rr r s s sdiag T T T sK    and {3 / (2 ),3 / (2 ),3 / (2 )}.f f f fdiag T T TK  The adaptive 

OGPC structure for attitude and angular velocity tracking is shown in Fig. 3. 
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Figure 3: The BRFLN-based OGPC control structure of the AHV 

 
Assume that the AHV is flying with the velocity of 2500m/s and flight height of 35km. 0 0.5   , 0 0.2   , 

0 0.0    and 0p   0q  0r  0rad/s are the initial attitudes and angular velocities. The control surface limiting is 

30   and pseudo-inverse control allocation is employed in the system. The slow-loop predictive time Ts is set 0.45s, 
and that of the fast-loop is 0.4s. Suppose that there are -25％～+30％ and -30％～+35％ triangle-function-waving 
uncertainty of the aerodynamic coefficients and aerodynamic moment coefficients respectively. Besides, the 
disturbance moment upon the AHV fast-loop system is defined by  

 T5
1 1 2 2 3 36.0 10 (cos( 8t)+0.1) cos(7t) , (sin( 5t)+0.2) , cos(9t) sin( 6t)fd r r r r r r           

where ir  is a random value within [0.5,1.5]. Then there exist dynamically changeable sD  and fD  in (35). Fig. 4 

displays the control effect of the OGPC in the presence of uncertainties and disturbances. The results show that the 
closed-loop system is not stable and aero control surfaces vibrate during most of the simulation time. Hence, the AHV 
in hypersonic flight is sensitive to the parameter uncertainty and external disturbance. The single OGPC law can not 
satisfy the precision and robustness requirements. 
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Figure 4: The attitudes tracking performance of the OGPC 

 
Next, the slow and fast loop BRFLN adaptive laws are applied to the AHV attitudes control. The original inputs 

of slow-loop BRFLN, [ , ,s c c     e  T]c  , are expanded into 7-dimensional patterns by the two-order B-

spline transformations of each of the three input signals. Fast-loop BRFLN has the same structure as that of the slow-
loop. Other parameters are designed as: 0.5s  , 10 100.1Ws   I , 0.5WsK  , 0.5s  , 0.01sK  ; 0.1f  , 

10 100.1Wf   I , 0.05WfK  , 0.01f  , 0.1fK  . The initial values of slow and fast loop BRFLN weights are 
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set zero, moreover 0 0s   and 0 0.005f  . ps  and pf  are learned online once 0.5s by SPSO whose parameters 

are: Population size =10, c1 =c2=1.8, Vmax=2.0, Iteration times=30. 
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(a) The comparison of attitudes tracking performance 

 
(b)  The adaptive parameters of BRFLN-based OGPC 

 
 
 
 
 
 
 
 
 
            
                                                    

 

 
 
 

 
(c) The approximation effect of the fast-loop uncertainties 

 
Figure 5: The attitudes tracking performance of BRFLN-based OGPC 
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The reference attitudes and the output tracking performance by the BRFLN-based OGPC law are shown as Fig.5. 
Additionally, the control results of OGPC with FLN adaptive control (FLNAC) method [3] and TLC with nonlinear 
disturbance observer (NDO) are also provided in the figure. The FLN is expanded into 10-dimensional patterns by the 
three-order Legendre transformations. 

As Fig. 5(a) shows, the BRFLN-based OGPC possesses stronger adaptability over TLC+NDO whose parameters 
designed are fixed. It reaches higher accuracy and better dynamic performance than the FLNAC with OGPC. Besides, 
the control input of the BRFLN+OGPC holds smaller deflection and milder vibration than those of the FLNAC and 
TLC+NDO. In Fig. 5(c), we also provide the approximation performance of the BRFLN-based OGPC. Data 1 denotes 
the outputs of the BRFLN and robust item, and data 2 represents the fast-loop uncertainties in the system. The nice 
approximation effect is attained by the method designed. 

 
6 Conclusion 
 
The BRFLN-based OGPC method applied to the AHV control is presented in this paper. There exist dynamically 
changeable uncertainties/disturbances during hypersonic flight. Hence, system robustness is critical for the stable and 
precise control of the AHV. RNN possesses superior capability as compared to static mapping methods for the 
approximation of dynamical variation functions, so a new BRFLN adaptive learning method is combined with the 
controller design. Furthermore, the self-connection weights of the BRFLN are learned online by the SPSO in order to 
simulate high-order uncertainty functions and strengthen the adaptability of the network. Simulation results for the 
attitudes control of the AHV show that the proposed method possesses higher precision and stronger adaptability over 
the methods compared.   
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