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Abstract

In many practical situations, it is desirable to reconstruct the probability distribution ρ(x) of a quantity
x from the noisy measurements of this quantity. This reconstruction often results in heavier tails, so to
get a more accurate reconstruction, it is reasonable to decrease these tails. An empirical comparison of
several possible tail-decreasing strategies has shown that the best possible strategy is to raise all the values
of the reconstructed density ρ̃(x) to a power a > 1, and then normalize the resulting distribution.

In this paper, we provide a theoretical explanation for this empirical fact.
c©2011 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Reconstructing probability distributions is a practically important problem. In many practical
situations, we need to find the probability density ρ(x) of a physical quantity x.

Reconstructing probability distributions: traditional statistical approach. Traditional statistical
approach assumes that we have a sample of values x1, . . . , xn distributed according to this distribution. Based
on this sample, we can then reconstruct the desired probability density function ρ(x); see, e.g., [4]

In practice, we must take measurement errors into account. In practice, the values xi come from
measurement, and measurement is never absolutely accurate: what we actually observe are values mi =
xi + ei 6= xi, where ei = mi − xi are measurement errors.

Thus, what we reconstruct by using the traditional statistical techniques is not the probability density for
the desired quantity x, but rather the probability density ρm(x) of the sum m = x+ e.

How measurement errors can be taken into account. Measurement errors are usually independent
from the desired quantity, so it is reasonable to assume that the corresponding random variables x and e
are independent. Under this assumption, the observed probability density ρm(x) is related to the probability
densities ρ(x) and ρe(x) by the known convolution relationship:

ρm(x) =

∫
ρ(y) · ρe(x− y) dy. (1)

By performing measurements in the absence of the signal (or for a well-calibrated signal), we can determine
the probability distribution ρe(x) of the measurement errors. Thus, we know ρm(x) and ρe(x) and so, in
principle, we can solve the equation (1) and reconstruct the desired probability distribution ρ(x); see, e.g., [2]
and references therein.
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Need for further improvement. Because of the noise (= measurement errors), the reconstructed distri-
bution ρ̃(x) is somewhat different from the actual distribution ρ(x). It is therefore desirable to decrease this
difference.

How to improve the reconstructed distribution: analysis of the problem. The difference between
the actual and the reconstructed distributions is especially large for the values x which occur rarely – and for
which, therefore, there are few data points.

In other words, the reconstructed values ρ̃(x) may be reasonably accurate when ρ(x) is large, but the
values ρ̃(x) may be corrupted when ρ(x) is small – i.e., at the tails of the original distribution.

When the actual values ρ(x) are close to 0, the only drastic difference is when the reconstructed values ρ̃(x)
are much larger. So, due to the measurement errors, the tails of the reconstructed distribution are heavier
than of the actual one.

Thus, to improve the reconstructed distribution ρ̃(x), it is desirable to decrease its tails.

How to decrease the tails: a general idea. A reasonable idea is to select an appropriate tail-decreasing
function f(x) and then replace each value ρ̃(x) with a new value f(ρ̃(x)) in such a way that when ρ̃(x) is
small, the new value f(ρ̃(x)) is even smaller.

This replacement may change the overall probability value from∫
ρ̃(x) dx = 1 (2)

to ∫
f(ρ̃(x)) dx 6= 1. (3)

So, to get a probability density function, we must normalize the values f(ρ̃(x)), i.e., take the new probability
density function

ρc(x) =
f(ρ̃(x))∫
f(ρ̃(y)) dy

. (4)

Empirical fact: power-law functions are the best for tail decrease. An empirical analysis described
in [2] showed that the most adequate reconstruction occurs when we use power-law functions f(x) = xa for
some a > 1.

What we do in this paper. In this paper, we provide a theoretical explanation for the above empirical
fact.

2 A New Theoretical Justification

The main idea behind our explanation. The numerical value of a physical quantity depends on the
choice of a measuring unit. For example, 1 inch is exactly the same distance as 2.54 cm. It is natural to
require that the results of the tail decrease procedure not change if we simply change the measuring unit. We
will show that this reasonable requirement uniquely determines the power law functions.

Towards formalizing the main idea. If we change the original measuring unit to a new one which is λ
times larger, then the quantity that is described by the value x in the old units will have a numerical value
x′ = x/λ in the new units.

The probability density ρ̃(x) means that the probability to find the value between x and x + dx is equal
to ρ̃(x) · dx. In terms of the new units x′ = x/λ, this same value ρ̃(x) · dx is the probability to find the
value x′ between x′ = x/λ and x′ + dx′, where dx′ = dx/λ. From x′ = x/λ, we conclude that x = x′ · λ and
dx = dx′ · λ. Thus, the probability to find a value between x′ and x′ + dx′ is equal to

ρ̃(x) · dx = ρ̃(λ · x′) · λ · dx′. (5)
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On the other hand, by definition of the probability density ρ̃ ′(x′), this same probability is equal to

ρ̃ ′(x) · dx′. (6)

By equating the expressions (5) and (6), we conclude that

ρ̃ ′(x′) = ρ̃(λ · x′) · λ. (7)

From the main idea to the justification of the power law. If we apply the tail decrease procedure
with a function f(x) to the probability density function ρ̃(x) described in the original units, we get a new
function

ρc(x) = c · f(ρ̃(x)) (8)

for an appropriate normalizing constant c. In terms of the new units x′, this new probability density function
has the form

ρ′c(x
′) = ρc(λ · x′) · λ = c · f(ρ̃(λ · x′)). (9)

On the other hand, if we directly apply the same tail decrease procedure to the expression (7) describing the
probability density in the new units, we get an expression

ρ′′c (x′) = c′ · f(ρ̃ ′(x′)) (10)

for an appropriate normalizing constant c′. Substituting the expression (7) for ρ′(x′) into this formula, we
conclude that

ρ′′c (x′) = c′ · f(ρ̃(λ · x′) · λ). (11)

Our requirement is that the result of tail decrease should not depend on whether we apply this procedure in
the original units or in the new units, i.e., that the resulting probability density functions ρ′c(x

′) and ρ′′c (x′)
must coincide. By equating the right-hand sides of the expressions (9) and (11), we get

c′ · f(ρ̃(λ · x′) · λ) = c · f(ρ̃(λ · x′)). (12)

This must be true for all values ρ̃, so we conclude that

c′ · f(ρ̃ · λ) = c · f(ρ̃). (13)

Dividing both sides of this equality by c′ and taking into account that the ratio r
def
= c/c′ may depend on λ,

we deduce that for every two numbers ρ̃ > 0 and λ, the following equality holds:

f(ρ̃ · λ) = r(λ) · f(ρ̃). (14)

It is known that every continuous function f(x) satisfying this property has the form f(x) = C · xa for some
a; see, e.g., [1], Section 3.1.1. (This result was first proven in [3].)

The coefficient C does not matter since we normalize the probability density function anyway, so we can
simply conclude that f(x) = xa.

Conclusion. The only tail decrease procedures for which the results do not depend on the choice of the
measuring units are the power-law procedures, with f(x) = xa.

Comment. For differentiable functions f(x), the result abut power functions is easy to prove. Indeed, if we
differentiate both sides of (14) by λ and take λ = 1, we get

ρ̃ · df
dρ̃

= a · f, (15)

where a
def
= r(1). By moving all the terms containing f into one side and all the terms containing ρ̃ to the

other side, we conclude that
df

f
= a · dρ̃

ρ̃
. (16)
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Integrating both sides, we get
ln(f) = a · ln(ρ̃) + c, (17)

hence

f = ea·ln(ρ̃)+c = ec ·
(
eln(ρ̃)

)a
= C · ρ̃a (18)

for C = ec.

3 Observation: Tail Decrease Procedure is Related to the Notion
of Entropy

When the measurements are precise, we get the exact values of the probabilities, i.e., we should take f(x) = x,
with a = 1. When the measurements are very accurate, we get the probabilities close to the actual ones, so
the tail decrease procedure f(x) = xa should minimally change the probability values – and thus, we should
have a = 1 + ε for some small ε.

For a small ε, we can expand the expression ρ1+ε in Taylor series in ε and keep only linear terms in this
expansion (thus ignoring quadratic and higher order terms). As a result, we get

ρ̃1+ε = ρ̃+ ε · ρ̃ · ln(ρ̃). (19)

Indeed,
ρ̃1+ε = ρ̃ · ρ̃ε = ρ̃ · (eln(ρ̃))ε = ρ̃ · eε·ln(ρ̃) ≈ ρ̃ · (1 + ε · ln(ρ̃)). (20)

Due to (19), the normalizing constant is equal to∫
f(ρ̃(y)) dy =

∫
ρ̃(y) dy + ε ·

∫
ρ̃(y) · ln(ρ̃(y)) dy. (21)

The first integral is the full probability, i.e., 1, the second integral differs only by the sign from the entropy

S(ρ̃) = −
∫
ρ̃(y) · ln(ρ̃(y)) dy (22)

of the probability distribution, thus, ∫
f(ρ̃(y)) dy = 1− ε · S(ρ̃), (23)

and the resulting normalized distribution (4) takes the form

ρc(x) =
(ρ̃(x))

1+ε

1− ε · S(ρ̃)
. (24)
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