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Abstract

In many areas of science and engineering, we have different sources of data. For example, in geophysics,
there are many sources of data for Earth models: first-arrival passive seismic data (from the actual
earthquakes), first-arrival controlled-source seismic data (from the seismic experiments), gravity data, etc.

Datasets coming from different sources can provide complimentary information. In general, some of the
datasets provide better accuracy and/or spatial resolution in some spatial areas and in some depths, while
other datasets provide a better accuracy and/or spatial resolution in other areas or depths. For example:
each gravity data points describes the result of measuring the gravity field at some spatial location; this
field is generated by the joint effects of many locations; as a result, gravity generally measures the average
density over a reasonably large spatial region. Thus, estimates based on gravity measurements have
(relatively) low spatial resolution. In contrast, seismic waves generally travel a narrow trajectory from a
seismic source (earthquake or explosion) to a recording senor. Thus, the spatial resolution corresponding
to this data is much higher than gravity.

At present, each of these datasets is often processed separately, resulting in several different models
reflecting different aspects of the studied phenomena. It is therefore desirable to combine data from
different datasets.

An ideal approach would be to use all the datasets to produce a single model. However, in many
research areas – including geophysics – there are no efficient algorithms for simultaneously processing all
the different datasets. While such joint inversion methods are being developed, as a first step, we propose
a practical solution: to fuse the models coming from different datasets.
c©2011 World Academic Press, UK. All rights reserved.
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1 Need to Combine Data from Different Sources

In many areas of science and engineering, we have different sources of data.
For example, in geophysics, there are many sources of data for Earth models:

• first-arrival passive seismic data (from the actual earthquakes); see, e.g., [5];

• first-arrival controlled-source seismic data (from the seismic experiments); see, e.g., [1, 4];

• gravity data; and

• surface waves; see, e.g., [6].

Datasets coming from different sources provide complimentary information. For example, different geo-
physical datasets contain different information on earth structure. In general:

• some of the datasets provide better accuracy and/or spatial resolution in some spatial areas and in some
depths, while

• other datasets provide a better accuracy and/or spatial resolution in other areas or depths.
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For example:

• each gravity data points describes the result of measuring the gravity field at some spatial location; this
field is generated by the joint effects of many locations; as a result, gravity measures the average density
over a reasonably large spatial region. Thus, in general, estimates based on gravity measurements have
(relatively) low spatial resolution.

• In contrast, each seismic wave follow a narrow trajectory from seismic source to a recording sensor, so
the spatial resolution corresponding to this data can be much higher than gravity.

Usually, there are several different datasets used to develop a model for a region of interest. At present, each
of these datasets is often processed separately, resulting in several different models reflecting different aspects
of the studied phenomena. This can lead to differing views and conclusions regarding the interpretation of
results. We therefore wish to combine data from different datasets by devlepoing an effecient approach.

Comment. In most applications to geosciences, the corresponding quantities change very slowly with time.
In these applications, we are interested in determining the values (such as density and/or velocity) at different
depth and at different spatial locations; we know that these values do not change from one measurement to
another. In such applications, since usually we cannot directly measure the value at a single spatial location,
we measure, in effect, the average over a spatial area. The smaller the size of this area, the higher the spatial
resolution.

In other applications areas, the values of the corresponding quantities change not only when we move from
one location to another, but they also change with time. In such application areas, due to natural inertia of
measuring instruments, the measured values do not correspond not only to the average over a spatial area,
but also to the average over a certain time interval. In such situations, in addition to spatial resolution, we
also have temporal resolution: the smaller the corresponding time interval, the higher the temporal resolution.
So, in general, we have spatio-temporal resolution.

In the following text, for simplicity, we will focus on spatial resolution, but all our discussions and formulas
are applicable to the more general situation of spatio-temporal resolution as well.

2 Joint Inversion: an Ideal Future Approach

The ideal approach would be to use all the datasets to produce a single model. At present, however, in many
research areas – including geophysics – there are no efficient algorithms for simultaneously processing all the
different datasets.

Designing such joint inversion techniques presents an important theoretical and practical challenge.

3 Data Fusion: Brief Reminder

Our Main Idea

While such joint inversion methods are being developed, as a first step, we propose a practical solution: to
fuse all the models coming from different datasets.

Comment. Some of our results have been announced in [7, 8, 11].

Simplest Case: Data Fusion

In many real-life situations, we have several measurements and/or expert estimates x̃(1), . . . , x̃(n) of the same
quantity x.

• These values may come from the actual (direct) measurements of the quantity x.

• Alternatively, these values may come from indirect measurements of x, i.e., from different models, in
which, based on the corresponding measurement results, the i-th model leads to an estimate x̃(i) for x.

In such situations, it is desirable to fuse these estimates into a single more accurate estimate for x; see,
e.g., [10].
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Data Fusion: Case of Probabilistic Uncertainty (Reminder)

Let us start with the case when each estimate x̃(i) is known with the (traditionally described) probabilistic
uncertainty, e.g., when

• each estimation error ∆x(i)
def
= x̃(i)−x is normally distributed with 0 mean and known standard deviation

σ(i), and

• estimation errors ∆x(i) corresponding to different models are independent.

Comment. In practice, the estimation errors are indeed often normally distributed. This empirical fact
can be justified by the Central Limit Theorem, according to which, under certain reasonable conditions,
the joint effect of many relatively small errors is (approximately) normally distributed; see, e.g., [12]. For
each model based on measurements of a certain type (e.g., gravity or seismic), not only the resulting error
of each measurement comes from many different error sources, but also each estimate comes from several
different measurements – thus further increasing the number of different error components contributing to the
estimation error.

In this case, the probability density for each estimation error ∆x(i) has the form

1√
2 · π · σ(i)

· exp

(
− (∆x(i))2

2 · (σ(i))2

)
=

1√
2 · π · σ(i)

· exp

(
− (x̃(i) − x)2

2 · (σ(i))2

)
,

and the probability density ρ(u) corresponding to all n estimates is (due to independence) the product of
these densities:

ρ(x) =

n∏
i=1

1√
2 · π · σ(i)

· exp

(
− (x̃(i) − x)2

2 · (σ(i))2

)
=

(
n∏

i=1

1√
2 · π · σ(i)

)
· exp

(
−

n∑
i=1

(x̃(i) − x)2

2 · (σ(i))2

)
.

As a single estimate x for the desired quantity, it is reasonable to select the value for which this probability
(density) ρ(x) is the largest (i.e., to use the Maximum Likelihood method). Since exp(z) is an increasing
function, maximizing a function A ·exp(−B(x)) is equivalent to minimizing B(x), so we arrive at the following
Least Squares approach: find x for which the sum

n∑
i=1

(x̃(i) − x)2

2 · (σ(i))2

is the smallest possible.
Differentiating this expression with respect to x and equating the derivative to 0, we conclude that

x =

n∑
i=1

x̃(i) · (σ(i))−2

n∑
i=1

(σ(i))−2
.

The accuracy of this fused estimate can be described by the standard deviation σ for which

σ−2 =

n∑
i=1

(σ(i))−2.

Data Fusion: Case of Interval Uncertainty

In some practical situations, the value x is known with interval uncertainty, i.e., we know the interval x(i) =
[x̃(i) −∆(i), x̃(i) + ∆(i)] containing the actual (unknown) value of x. This happens, e.g., when we only know
the upper bound ∆(i) on each estimation error ∆x(i): |∆x(i)| ≤ ∆(i). In this case, from the fact that the
estimate is x̃(i), we can conclude that |x− x̃(i)| ≤ ∆(i), i.e., that x̃(i) −∆(i) ≤ x ≤ x̃(i) + ∆(i).
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For interval uncertainty, it is easy to fuse several estimates. Based on each estimate x̃(i), we know that
the actual value x belongs to the interval x(i). Thus, we know that the (unknown) actual value x belongs to
the intersection

x
def
=

n⋂
i=1

x(i) = [max(x̃(i) −∆(i)),min(x̃(i) + ∆(i))]

of these intervals.

4 Proposed Solution – Model Fusion: Main Idea

Additional Problem: We Also Have Different Spatial Resolution

In many practical situations, estimates coming from different models have not only different accuracy, but
also different spatial resolution.

Example. For example, in the geosciences,

• seismic data leads to estimates of the density at different locations and depths which have higher spatial
resolution, while

• gravity data leads to estimates of the same densities which have lower spatial resolution.

Towards Precise Formulation of the Problem

Estimates with higher spatial (spatio-temporal) resolution mean that we estimate the values corresponding
to small spatial (spatio-temporal) cells. An estimate with a lower spatial resolution means that its results are
affected by several neighboring spatial cells, i.e., that we are estimating, in effect, a weighted average of the
values in several neighboring cells.

Comment. In this paper, we only consider the case when the corresponding weights are known exactly,
because this case is typical for geophysical applications. For example, for gravity measurements, we know
exactly Newton’s formulas that describe how the gravity is determined by the densities at different locations.
According to these formulas, the gravity force field ~g (~x) at a point of measurement ~x is equal to the weighted

combination of densities ρ
(
~x′
)

at different locations ~x′, with the weights determined by the distance between

~x and ~x′ and by the relative orientation of the line from ~x to ~x′:

~g (~x) = G ·
∫
ρ
(
~x′
)
·

~x′ − ~x∥∥∥~x′ − ~x∥∥∥3 ,
where ‖.‖ denotes the length of a vector.

Similarly, we know the equations that describe how the propagation of the seismic waves, of electromagnetic
waves, etc., depends on the parameters of the media.

In some other applications, we only have an approximate knowledge of the dependence of the measured
quantity on the quantities xi in which we are interested. In such applications, one must take into account
that the corresponding weights are also only known with uncertainty.

What is Given

In precise terms:

• we have resolution estimates x̃1, . . . , x̃n of the values x1, . . . , xn within several small spatial cells; these
estimates correspond to models with a higher spatial resolution
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• we also have estimates X̃j for the weighted averages

Xj =

n∑
i=1

wj,i · xi;

these estimates correspond to models with a lower spatial resolution.

Comment. In this paper, we assume that we know the values of the weights wj,i. This assumption makes
perfect sense for geophysical problems, because in these problems, these weights are indeed known. For
example:

• We know how exactly the gravity at a given point depends on the densities at different spatial locations.

• We know how exactly the travel time of a seismic signal depends on the density distribution.

In some applications, however, the corresponding weights are only approximately known. In such situations,
when fusing the models, we must also take into account the uncertainty with which we know these weights. For
these applications, it is desirable to extend our techniques – to accommodate such more complex situations.

What Our Objective is

We are interested in the values xi. So, based on the estimates x̃i and x̃, we must provide more accurate
estimates for xi.

Example. In the geophysical example, we are interested in the values of the densities xi.

What We Do in This Paper

In this paper, we describe how to fuse estimates with different accuracy and spatial resolution:

• In the case of probabilistic uncertainty, we use the Least Squares Method to derive explicit formulas for
combining the estimates x̃i and X̃j .

• In the case of interval uncertainty, we provide an efficient algorithm for estimating the ranges of xi.

5 Model Fusion: Case of Probabilistic Uncertainty

5.1 General Case

Main Idea

Our solution to the model fusion problem is to take into account several different types of approximate
equalities:

• Each estimate x̃i from a model with a high spatial resolution is approximately equal to the actual value
xi in the corresponding (smaller size) cell i, with the known accuracy σh,i:

x̃i ≈ xi.

• Each estimate X̃j from (one of the) models with a lower spatial resolution is approximately equal to
the weighted average of values of all the smaller cells xi(1,j), . . . , xi(kj ,j) within the corresponding larger
size cell, with a known accuracy σl,j :

X̃j ≈
∑
i

wj,i · xi,

for known weights wj,i ≥ 0 for which
n∑

i=1

wj,i = 1. In the simple case when these weights are equal, we

get

X̃j ≈
xi(1,j) + . . .+ xi(kj ,j)

kj
.
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• We usually have a prior knowledge of the values xi. It is reasonable to assume that this knowledge can
also be described by a normal distribution, with the mean xpr,i and the standard deviation σpr,i:

xi ≈ xpr,i.

(The case when for some i, we have no prior information at all is equivalent to setting σpr,i =∞.)

• Finally, each estimate X̃j from a model with a lower spatial resolution is approximately equal to the
value within each of the constituent smaller size cells xi(l,j), with the accuracy corresponding to the
(empirical) standard deviation σe,j of the smaller-cell values within the larger cell:

X̃j ≈ xi(l,j),

where

σ2
e,j

def
=

1

kj
·

kj∑
l=1

(
x̃i(l,j) − Ej

)2
,

and

Ej
def
=

1

kj
·

kj∑
l=1

x̃i(l,j).

We then use the Least Squares technique to combine these approximate equalities, and find the desired
combined values xi by minimizing the resulting sum of weighted squared differences.

Relation Between Different Standard Deviations

As we have mentioned earlier, there is usually a trade-off between accuracy and spatial resolution:

• if we want to estimate the value of the desired quantity with a higher spatial resolution, i.e., the value
corresponding to a small spatial location, then we get lower accuracy, i.e., higher values of the standard
deviation σh,i;

• on the other hand, if we are satisfied with a lower spatial resolution, i.e., with the fact that the estimated
value corresponds to a larger spatial area, then we can get higher accuracy, i.e., lower values of the
standard deviation σl,j � σh,i.

From the mathematical viewpoint, this trade-off makes sense. In principle, as an estimate for a model with
a low spatial resolution, we can take the average of the values corresponding to high spatial resolution, and
averaging usually decreases the approximation error:

σl,j � σh,i � σe,j .

Comment. It should be mentioned that while usually, higher spatial resolution estimates have lower accuracy,
sometimes, a higher-resolution model has more accuracy in some places. For example, in the geosciences,

• the measurements from a borehole provide the most accurate estimates of the corresponding quantities,

• and for these measurements, the spatial location is also known with a very high accuracy.

Resulting Formulas: General Case

According to the Least Squares approach, in the general case, we minimize the following expression:

n∑
i=1

(xi − x̃i)2

σ2
h,i

+

m∑
j=1

1

σ2
l,j

·

(
X̃j −

n∑
i=1

wj,i · xi

)2

+

n∑
i=1

(xi − xpr,i)2

σ2
pr,i

+

m∑
j=1

kj∑
l=1

(X̃j − xi(l,j))2

σ2
e,j

.

In this general case, differentiation with respect to xi leads to the following system of linear equations:

1

σ2
h,i

· (xi − x̃i) +
∑
j:j3i

1

σ2
l,j

· wj,i ·

(
n∑

i′=1

wj,i′ · xi′ − X̃j

)
+

1

σ2
pr,i

· (xi − xpr,i) +
∑
j:j3i

1

σ2
e,j

· (xi − X̃j) = 0,

where j 3 i means that the j-th estimate corresponding to a model with a low spatial resolution covers the
i-th cell.
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Towards Simplification: Fusing Prior Estimates with Estimates from a Model with a High
Spatial Resolution

For each cell i for which we have both a prior estimate xpr,i and an estimate x̃i from a model with a higher
spatial resolution, we can fuse these two estimates by using the above-described standard data fusion technique.
As a result, instead of the two terms

1

σ2
h,i

· (xi − x̃i) +
1

σ2
pr,i

· (xi − xpr,i),

we have a single term

σ−2f,i · (xi − xf,i),

where

xf,i
def
=

x̃i · σ−2h,i + xpr,i · σ−2pr,i

σ−2h,i + σ−2pr,i

and

σ−2f,i
def
= σ−2h,i + σ−2pr,i.

We can use the same formula if we only have a high spatial resolution estimate or if we only have a prior
estimate:

• If we only have a high spatial resolution estimate but no prior estimate, then we should take σ−2pr,i = 0
(i.e., σpr,i =∞).

• If we only have a prior estimate but no high spatial resolution estimate, then we should take σ−2h,i = 0
(i.e., σh,i =∞).

As a result of this fusion, we get the following simplified formulas.

Resulting Formulas: Simplified Equations

σ−2f,i · (xi − xf,i) +
∑
j:j3i

1

σ2
l,j

· wj,i ·

(
n∑

i′=1

wj,i′ · xi′ − X̃j

)
+
∑
j:j3i

1

σ2
e,j

· (xi − X̃j) = 0.

How to Solve This System of Linear Equations

We can use known algorithms for solving this system of linear equations.

It is worth mentioning that usually, these algorithms require that we represent the system in the standard
form Ax = b. To represent our system of equations in this form, we need to move all the terms that do not
contain unknowns to the right-hand side.

Comment. In this section, we assumed that the values xi are independent – in the sense that in principle,
we can have arbitrary combination of values x1, . . . , xn. In some practical situations, not all combinations of
xi are physically possible, there are additional constraints that these values xi must satisfy. For example, we
may have prior restrictions on the individual values of xi: for example, the density xi at a certain location
must be within known bounds (say, between 6 and 8 g/cm3). We can also have constraints relating values in
the neighboring cells: e.g., the difference between the densities in a neighboring cell cannot exceed a certain
value.

In this section, we described how to find the absolute (unconstrained) minimum of the corresponding
quadratic form. In situations in which there are prior constraints, we need to minimize the corresponding
quadratic form under these constraints.
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What is the Accuracy of the Fused Model?

In the probabilistic case, the inaccuracy δa = â− a of each estimate â of a quantity a can be described by its
variance σ2 = E[(δa)2], i.e., by the mean value of the square (δa)2.

When we estimate several quantities x1, . . . , xn, it is also desirable to find out how correlated are the
corresponding inaccuracies δxi = x̂i−xi. These correlations can be described by listing all possible covariances

cii′
def
= E[δxi ·δxi′ ]. For i = i′, we get the variances; thus, the covariance matrix cii′ contains all the information

about the inaccuracies.
In the general Least Squares approach, when the minimized quadratic expression has the form

a0 +

n∑
i=1

ai · xi +

n∑
i=1

n∑
i′=1

aii′ · xi · xi′ ,

then the covariance matrix cii′ is equal to the inverse of the matrix aii′ ; see, e.g., [12]. For the above quadratic
form,

aii′ = σ−2h,i · δii′ +
∑

j:i∈j & i′∈j

σ−2l,j · wj,i · wj,i′ + σ−2pr,i · δii′ +
∑
j:i∈j

σ−2e,j · δii′ ,

where δii′ = 1 when i = i′ and δii′ = 0 when i 6= i′. Thus, we can find the values cii′ of the covariance matrix
by inverting the above matrix aii′ .

5.2 Case of a Single Estimate with Low Spatial Resolution

Description

Let us now consider the simplest case, when when we have exactly one estimate X̃1 from a model with a low
spatial resolution. In general, we only have prior estimates and the estimates with high spatial resolution for
some of the cells.

This situation is typical in geosciences: e.g.,

• we have an estimate originated from the gravity measurements (with a lower spatial resolution) which
covers a huge area in depth, and

• we have estimates originated from seismic measurements (corresponding to higher spatial resolution)
which only cover depths above the Moho surface.

For convenience, let us number the cells in such a way that the cells for which we have either prior estimates
or estimates from a high spatial resolution model come first. Let h denote the total number of such cells.

This means that as the result of combining prior estimates and estimates corresponding to high spatial
resolution model(s), we have h values xf,1, xf,2, . . . , xf,h.

Derivation

In this case, the above system of linear equations takes the following form: for i = 1, . . . , h, we have

σ−2f,i · (xi − xf,i) +
1

σ2
l,1

· w1,i ·

(∑
i′

w1,i′ · xi′ − X̃1

)
+

1

σ2
e,1

(xi − X̃1) = 0;

and for i > h, we have

1

σ2
l,1

· w1,i ·

(∑
i′

w1,i′ · xi′ − X̃1

)
+

1

σ2
e,1

(xi − X̃1) = 0.

For i ≤ h, multiplying both sides by σ2
f,i, we conclude that

xi − xf,i +
σ2
f,i

σ2
l,1

· w1,i ·

(∑
i′

w1,i′ · xi′ − X̃1

)
+
σ2
f,i

σ2
e,1

· (xi − X̃1) = 0.
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If we introduce an auxiliary variable

µ
def
=

1

σ2
l,1

·

(∑
i′

w1,i′ · xi′ − X̃1

)
,

we get the equation

xi − xf,i + w1,i · σ2
f,i · µ+

σ2
f,i

σ2
e,1

· (xi − X̃1) = 0.

By keeping terms proportional to xi in the left-hand side and by moving all the other terms to the right-hand
side, we get (

1 +
σ2
f,i

σ2
e,1

)
· xi = xf,i − w1,i · σ2

f,i · µ+
σ2
f,i

σ2
e,1

· X̃1,

hence

xi =
xf,i

1 +
σ2
f,i

σ2
e,1

−
w1,i · σ2

f,i

1 +
σ2
f,i

σ2
e,1

· µ+ X̃1 ·

σ2
f,i

σ2
e,1

1 +
σ2
f,i

σ2
e,1

.

For i > h, we similarly get

xi − X̃1 + w1,i · σ2
e,1 · µ = 0,

hence

xi = X̃1 − w1,i · σ2
e,1 · µ.

To make this expression practically useful, we must describe µ in terms of the given values x̃i and X̃1. Since
µ is defined in terms of the weighted average of the values xi, let us compute the weighted average of the
above expressions for xi:

n∑
i=1

w1,i · xi =

h∑
i=1

w1,i · xi +

n∑
i=h+1

w1,i · xi,

where

h∑
i=1

w1,i · xi =

h∑
i=1

w1,i · xf,i

1 +
σ2
f,i

σ2
e,1

− µ ·
h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2
f,i

σ2
e,1

+ X̃1 ·
h∑

i=1

w1,i ·
σ2
f,i

σ2
e,1

1 +
σ2
f,i

σ2
e,1

.

Similarly,
n∑

i=h+1

w1,i · xi =

(
n∑

i=h+1

w1,i

)
· X̃1 −

(
n∑

i=h+1

w2
1,i

)
·
σ2
e,1

σ2
l,1

· µ.

By adding these two sums and subtracting X̃1, we conclude that

σ2
l,1 · µ =

n∑
i=1

w1,i · xi − X̃1 =

h∑
i=1

w1,i · xi +

n∑
i=h+1

w1,i · xi − X̃1

=

h∑
i=1

w1,i · xf,i

1 +
σ2
f,i

σ2
e,1

− µ ·
h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2
f,i

σ2
e,1

+ X̃1 ·
h∑

i=1

w1,i ·
σ2
f,i

σ2
e,1

1 +
σ2
f,i

σ2
e,1

+

(
n∑

i=h+1

w1,i

)
· X̃1 −

(
n∑

i=h+1

w2
1,i

)
· σ2

e,1 · µ− X̃1.
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Since
n∑

i=1

w1,i =

h∑
i=1

w1,i +

n∑
i=h+1

w1,i = 1,

we conclude that (
n∑

i=h+1

w1,i

)
· X̃1 − X̃1 = −

(
h∑

i=1

w1,i

)
· X̃1

thus,

X̃1 ·
h∑

i=1

w1,i ·
σ2
f,i

σ2
e,1

1 +
σ2
f,i

σ2
e,1

+

(
n∑

i=h+1

w1,i

)
· X̃1 − X̃1

= X̃1 ·
h∑

i=1

w1,i ·
σ2
f,i

σ2
e,1

1 +
σ2
f,i

σ2
e,1

−

(
h∑

i=1

w1,i

)
· X̃1 = −X̃1 ·

h∑
i=1

w1,i

1 +
σ2
f,i

σ2
e,1

.

So, the equation for µ takes the following simplified form:

σ2
l,1 · µ =

h∑
i=1

w1,i · xf,i

1 +
σ2
f,i

σ2
e,1

− µ ·
h∑

i=1

w2
1,i · σ2

f,i

1 +
σ2
f,i

σ2
e,1

− X̃1 ·
h∑

i=1

w1,i

1 +
σ2
f,i

σ2
e,1

−

(
n∑

i=h+1

w2
1,i

)
· σ2

e,1 · µ.

By moving all terms containing µ to the left-hand side and all other terms to the right-hand side, we get

µ ·

σ2
l,1 +

h∑
i=1

w2
1,i · σ2

f,i

1 +
σ2
f,i

σ2
e,1

+

(
n∑

i=h+1

w2
1,i

)
· σ2

e,1



=

h∑
i=1

w1,i · xf,i

1 +
σ2
f,i

σ2
e,1

− X̃1 ·
h∑

i=1

w1,i

1 +
σ2
f,i

σ2
e,1

=

h∑
i=1

w1,i · (xf,i − X̃1)

1 +
σ2
f,i

σ2
e,1

.

Thus, we can compute µ. So, we arrive at the following formulas.

Resulting Formulas

First, we compute the auxiliary value µ as

µ =
N

D
,

where

N =

h∑
i=1

w1,i · (xf,i − X̃1)

1 +
σ2
f,i

σ2
e,1

and

D = σ2
l,1 +

h∑
i=1

w2
1,i · σ2

f,i

1 +
σ2
f,i

σ2
e,1

+

(
n∑

i=h+1

w2
1,i

)
· σ2

e,1.
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Then, we compute the desired estimates for xi, i = 1, . . . , h, as

xi =
xf,i

1 +
σ2
f,i

σ2
e,1

−
w1,i · σ2

f,i

1 +
σ2
f,i

σ2
e,1

· µ+ X̃1 ·

σ2
f,i

σ2
e,1

1 +
σ2
f,i

σ2
e,1

,

and the estimates xi for i = h+ 1, . . . , n as

xi = X̃1 − w1,i · σ2
e,1 · µ.

5.3 Numerical Example

Simplified Case: Description

To illustrate the above formulas, let us consider the simplest possible case, when we have exactly one estimate
X̃1 from a lower spatial resolution model, and when:

• this estimate covers all n cells;

• all the weights are all equal w1,i = 1/n;

• for each of n cells, there is an estimate corresponding to this cell that comes from a high spatial resolution
model (i.e., h = n);

• all estimates coming from a high spatial resolution model have the same accuracy σh,i = σh;

• the estimate corresponding to a low spatial resolution model is much more accurate than the estimates
corresponding to higher spatial resolution models σl,1 � σh, so we can safely assume that σl = 0; and

• there is no prior information, so σpr,i =∞ and thus, xf,i = x̃i and σf,i = σh.

To cover the cells for which there are no estimates from a high spatial resolution model, we added a heuristic
rule that the estimate from a lower spatial resolution model is approximately equal to the value within each of
the constituent smaller size cells, with the accuracy corresponding to the (empirical) standard deviation σe,j .
In our simplified example, we have individual estimates for each cell, so there is no need for this heuristic rule.

The corresponding heuristic terms in the general least squares approach are proportional to
1

σ2
e,1

, so ignoring

these terms is equivalent to taking σ2
e,1 =∞. Thus, we have

σ2
f,i

σ2
e,1

= 0 and 1 +
σ2
f,i

σ2
e,1

= 1.

Because of this and because of the fact that w1,i =
1

n
and xf,i = x̃i, the formula for N takes the form

N =

n∑
i=1

1

n
· (x̃i − X̃1).

Opening parentheses and taking into account that the sum of n terms equal to
1

n
· X̃1 is simply X̃1, we get

N =
1

n
·

n∑
i=1

x̃i − X̃1.

Similarly, due to our simplifying assumptions σl,1 = 0, w1,i =
1

n
, σf,i = σh, σe,1 = 0, and h = n, we have

D =

n∑
i=1

(
1

n

)2

· σ2
h =

1

n
· σ2

h.
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x̃3 = 5.0

x̃1 = 2.0

x̃4 = 6.0

x̃2 = 3.0

X̃1 = 3.7

Figure 1: Higher and lower spatial resolution estimates

Thus,

µ =
N

D
=

1

n
·

n∑
i=1

x̃i − X̃1

1

n
· σ2

h

.

The formula for xi now turns into

xi = x̃i −
1

n
· σ2

h · µ.

Substituting the above expression for µ, we conclude that

xi = x̃i − λ,

where

λ
def
=

1

n
·

n∑
i=1

x̃i − X̃1.

Numerical Example: Simplified Case

Let us assume that we have n = 4 cells, and that the high spatial resolution estimates for these cells are
x̃1 = 2.0, x̃2 = 3.0, x̃3 = 5.0 and x̃4 = 6.0. We also assume that each of these estimates has the same accuracy
σh = 0.5. Let us also assume that we have an estimate X̃1 = 3.7 for the average X1 of these four values. We
assume that this estimate has a much higher accuracy σl � σh so that we can, in effect, take σl ≈ 0.

Since we assume that the low spatial resolution estimates are accurate (σl ≈ 0), we therefore assume that
the estimated quantity, i.e., the arithmetic average of the four cell values, is practically exactly equal to this
estimate X̃1 = 3.7:

x1 + x2 + x3 + x4
4

≈ 3.7.

For the high spatial resolution estimates x̃i, the average is slightly different:

x̃1 + x̃2 + x̃3 + x̃4
4

=
2.0 + 3.0 + 5.0 + 6.0

4
= 4.0 6= 3.7.

This difference is caused by the fact that, in contrast to accurate low spatial resolution estimates, higher
spatial resolution measurements are much less accurate: the corresponding estimation error has a standard
deviation σh = 0.5. We can therefore, as we described above, use the information from the low spatial
resolution estimates to “correct” the high spatial resolution estimates.

In this particular example, since σl ≈ 0, the correcting term takes the form

λ =
x̃1 + . . .+ x̃n

n
− X̃1 =

2.0 + 3.0 + 5.0 + 6.0

4
− 3.7 = 4.0− 3.7 = 0.3,

so the corrected (“fused”) values xi take the form:

x1 = x̃1 − λ = 2.0− 0.3 = 1.7; x2 = x̃2 − λ = 3.0− 0.3 = 2.7;
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x̃3 = 4.7

x̃1 = 1.7

x̃4 = 5.7

x̃2 = 2.7

Figure 2: The result of model fusion: simplified setting

x3 = x̃3 − λ = 5.0− 0.3 = 4.7; x4 = x̃4 − λ = 6.0− 0.3 = 5.7;

For these corrected values, the arithmetic average is equal to

x1 + x2 + x3 + x4
4

=
1.7 + 2.7 + 4.7 + 5.7

4
= 3.7,

i.e., exactly to the low spatial resolution estimate.

Taking σe,j into Account

What if, in the above numerical example, we take into account the requirement that the actual values in each
cell are approximately equal to X̃1, with the accuracy σe,1 equal to the empirical standard deviation?

In this case, the above formulas take the form

N =
1

1 +
σ2
h

σ2
e,1

·
(
x̃1 + . . .+ x̃n

n
− X̃1

)

and

D =
1

1 +
σ2
h

σ2
e,1

· 1

n
· σ2

h,

so we get the exact same expression for µ:

µ =
N

D
=

1

n
·

n∑
i=1

x̃i − X̃1

1

n
· σ2

h

.

The formulas for the fused values xi are now somewhat more complex:

xi =
x̃i − λ

1 +
σ2
h

σ2
e,1

+ X̃1 ·

σ2
h

σ2
e,1

1 +
σ2
h

σ2
e,1

.

Taking σe,j into Account: Numerical Example

We want to take into account the requirement that the actual values in each cell are approximately equal
to X̃1, with the accuracy σe,j equal to the empirical standard deviation. In our example, the lower spatial

resolution estimate X̃1 covers all four cells. In this example, the above condition takes the form xi ≈ X̃1,
with the accuracy

σ2
e,1 =

1

4
·

4∑
i=1

(x̃i − E1)2,
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where

E1 =
1

4
·

4∑
i=1

x̃i.

For our numerical example, as we have seen,

E1 =
1

4
·

4∑
i=1

x̃i =
x̃1 + x̃2 + x̃3 + x̃4

4
= 4.0

and thus,

σ2
e,1 =

(2.0− 4.0)2 + (3.0− 4.0)2 + (5.0− 4.0)2 + (6.0− 4.0)2

4
=

4 + 1 + 1 + 4

4
=

10

4
= 2.5,

hence σe,1 ≈ 1.58.
Now, we can use the formula

xi =
1

1 +
σ2
h

σ2
e,1

· (x̃i − λ) +

σ2
h

σ2
e,1

1 +
σ2
h

σ2
e,1

· X̃1

to find the corrected (“fused”) values xi. Here, σh = 0.5, σ2
e,1 = 2.5, so

σ2
h

σ2
e,1

=
0.25

2.5
= 0.1

and therefore, with two digit accuracy,

1

1 +
σ2
h

σ2
e,1

=
1

1.1
≈ 0.91

and
σ2
h

σ2
e,1

1 +
σ2
h

σ2
e,1

· X̃1 =
0.1

1.1
· 3.7 ≈ 0.34.

Therefore, we get

x1 ≈ 0.91 · (2.0− 0.3) + 0.34 ≈ 1.89; x2 ≈ 0.91 · (3.0− 0.3) + 0.34 ≈ 2.79;

x3 ≈ 0.91 · (5.0− 0.3) + 0.34 ≈ 4.62; x4 ≈ 0.91 · (6.0− 0.3) + 0.34 ≈ 5.53.

The arithmetic average of these four values is equal to

x1 + x2 + x3 + x4
4

≈ 1.89 + 2.79 + 4.62 + 5.53

4
≈ 3.71,

i.e., within our computation accuracy (since we performed all the computations with two digits after the

decimal point) coincides with the lower spatial resolution estimate X̃1 = 3.7.

6 Model Fusion: Case of Interval Uncertainty

Main Idea

Our solution to the model fusion problem is to take into account three different types of approximate equalities:
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x̃3 ≈ 4.62

x̃1 ≈ 1.89

x̃4 ≈ 5.53

x̃2 ≈ 2.79

Figure 3: The result of model fusion: general setting

• Each higher spatial resolution estimate x̃i is approximately equal to the actual value xi in the cor-
responding (smaller size) cell i, with the approximation error xi − x̃i bounded by the known value
∆h,i:

x̃i −∆h,i ≤ xi ≤ x̃i + ∆h,i.

• Each lower spatial resolution estimate X̃j is approximately equal to the average of values of all the smaller
cells xi(1,j), . . . , xi(kj ,j) within the corresponding larger size cell, with the estimation error bounded by
the known value ∆l,j :

X̃j −∆l,j ≤
∑
i

wj,i · xi ≤ X̃j + ∆l,j .

• Finally, we have prior bounds xpr,i and xpr,i on the values xi, i.e., bounds for which

xpr,i ≤ xi ≤ xpr,i.

Our objective is to find, for each k = 1, . . . , n, the range [xk, xk] of possible values of xk.
The estimates lead to a system of linear inequalities for the unknown values x1, . . . , xn. Thus, for each k,

finding the corresponding endpoints xk and xk means optimizing the values xk under linear constraints. This
is a particular case of a general linear programming problem; see, e.g., [3]. So, we can use Linear Programming
to find these bounds:

• the lower bound xk can be obtained if we minimize xk under the constraints

x̃i −∆h ≤ xi ≤ x̃i + ∆h, i = 1, . . . , n;

X̃j −∆l ≤
∑
i

wj,i · xi ≤ X̃j + ∆l; xpr,i ≤ xi ≤ xpr,i.

• the upper bound xk can be obtained if we maximize xk under the same constraints.

Comment about representing the answer. As a result of applying the linear programming techniques, for
each quantity xk, we get an interval [xk, xk] of possible values.

From the user viewpoint, it is often more convenient to instead present a (numerical) estimate x̂k and
an upper bound ∆k on the inaccuracy δxk = x̂k − xk of this estimate. In precise terms, this means that
|δxk| ≤ ∆k, i.e., the estimation error can only take values from −∆k to ∆k: −∆k ≤ δxk ≤ ∆k.

Since xk = x̂k − δxk, the value xk is the smallest when δxk is the largest and the value xk is the largest
when δxk is the smallest. The estimation error δxk can take values from −∆k to ∆k, so its smallest possible
value is −∆k and its largest possible value is ∆k. Thus, the smallest possible values of xk is x̂k−∆k, and the
largest possible values of xk is x̂k − (−∆k) = x̂k + ∆k. In other words, under this representation, the set of
all possible values of xk is the interval [x̂k −∆k, x̂k + ∆k].

To represent the interval [xk, xk] in this form, we must find the values x̂k and ∆k for which x̂k −∆k = xk
and x̂k + ∆k = xk. By adding and subtracting these two equalities, we conclude that

x̂k =
xk + xk

2
and ∆k =

xk − xk
2

.
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Mathematical comment. For each i, the two constraints x̃i −∆h ≤ xi ≤ x̃i + ∆h and xpr,i ≤ xi ≤ xpr,i can
be combined into a single set of constraints:

x−i ≤ xi ≤ x
+
i ,

where

x−i
def
= max(x̃i −∆h, xpr,i); x+i

def
= min(x̃i + ∆h, xpr,i).

Simplest Case: Description

Let us consider the simplest case when we have a single lower spatial resolution estimate X̃1. In this case, the
linear constraints take the form x−i ≤ xi ≤ x

+
i and

X̃1 −∆l ≤
n∑

i=1

w1,i · xi ≤ X̃1 + ∆l.

Comment. This general expression also includes the case when some cells are not covered by the estimate
X̃1: for the values corresponding to these cells, we simply have w1,i = 0.

Simplest Case: Derivation

Let us select a variable xk, k = 1, . . . , n, and let us check which values of xk are possible.

If the k-th cell is not affected by the estimate X̃1, i.e., if w1,k = 0, then the only restrictions on xk come
from the prior bounds on xk and from the higher spatial resolution estimates. Thus, for such a cell, the set
of possible values is the interval [x−k , x

+
k ].

Let us now consider the case when the k-th cell is affected by the estimate X̃1, i.e., when w1,k > 0.
In this case, a possible value xk must be within the interval [x−k , x

+
k ], and for the remaining variables xi,

i = 1, . . . , k − 1, k + 1, . . . , n, the resulting system of inequalities x−i ≤ xi ≤ x
+
i and

X̃1 −∆l − w1,k · xk ≤
∑
i 6=k

w1,i · xi ≤ X̃1 + ∆l − w1,k · xk

must be consistent.

All the weights w1,i are non-negative. Thus, when xi ∈ [x−i , x
+
i ], the smallest possible value s of the sum

s
def
=
∑
i 6=k

w1,i · xi

is attained when all xi attain their smallest possible values xi = x−i , and the largest possible value s of the
sum s is attained when all xi attain their largest possible values xi = x+i :

s =
∑
i 6=k

w1,i · x−i ; s =
∑
i 6=k

w1,i · x+i .

Thus, we have ∑
i6=k

w1,i · x−i ≤
∑
i 6=k

w1,i ≤
∑
i 6=k

w1,i · x+i .

Now, we have two intervals

[X̃1 −∆l − w1,k · xk, X̃1 + ∆l − w1,k · xk]

and ∑
i6=k

w1,i · x−i ,
∑
i 6=k

w1,i · x+i
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that contain the same sum
∑
i 6=k

w1,i. Thus, their intersection must be non-empty, i.e., the lower endpoint of

the first interval cannot exceed the upper endpoint of the second interval, and vice versa (one can easily check
that if these conditions are satisfied, then the above inequalities are indeed consistent):

X̃1 −∆l − w1,k · xk ≤
∑
i 6=k

w1,i · x+i ;

∑
i 6=k

w1,i · x−i ≤ X̃1 + ∆l − w1,k · xk.

By moving the term w1,k · xk to the other side of each of the inequalities and dividing both sides of each
resulting inequality by a positive number w1,k, we conclude that

1

w1,k
·

X̃1 −∆l −
∑
i 6=k

w1,i · x+i

 ≤ xk ≤ 1

w1,k
·

X̃1 + ∆l −
∑
i 6=k

w1,i · x−i

 .

Simplest Case: Resulting Formulas

For the cells k which are not affected by the estimate X̃1, the resulting bounds on xk are [xk, xk] with xk = x−k
and xk = x+k .

For the cells k which are affected by the estimate X̃1 (i.e., for which w1,k > 0), the resulting range [xk, xk]
has the form

xk =
1

w1,k
·

X̃1 −∆l −
∑
i 6=k

w1,i · x+i

 ; xk =
1

w1,k
·

X̃1 + ∆l −
∑
i6=k

w1,i · x−i

 .

7 Conclusions and Future Work

We propose a new approach to combining data from different sources, an approach which is a fast practical
alternative to joint inversion of multiple datasets. Specifically, in this paper, we consider models that not
only have different accuracy and coverage, but also different spatial resolution. To fuse such models, we must
account for three different types of approximate equalities:

• each higher spatial resolution estimate is approximately equal to the actual value in the corresponding
(smaller size) cell;

• each lower spatial resolution estimate is approximately equal to the average of values of all the smaller
cells within the corresponding larger size cell;

• each lower spatial resolution estimate is also approximately equal to the value within each of the con-
stituent smaller size cells, with the accuracy corresponding to the (empirical) standard deviation of the
smaller-cell values within the larger cell.

Depending on whether we have probabilistic or interval uncertainty, the approach then uses the least squares
or interval technique to combine these approximate equalities. For example, in the least squares approach,
we find the desired combined values by minimizing the resulting sum of weighted squared differences.

On the example of simulated (synthetic) geophysical data, we show that model fusion indeed improves the
accuracy and spatial resolution of individual models.

In the future, we plan to apply the model fusion techniques to more realistic simulated data and to real
geophysical data (and, if necessary, use the results of these applications to further adjust the techniques).
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