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Abstract

In many practical situations, molecules can be obtained from a “template” molecule like benzene by
replacing some of its hydrogen atoms with ligands (other atoms or atom groups). There can be many
possible replacements of this type. To avoid time-consuming testing of all possible replacements, it is
desirable to test some of the replacements and then extrapolate to others – so that only the promising
molecules, for which the extrapolated values are desirable, will have to be synthesized and tested.

For this extrapolation, D. J. Klein and co-authors proposed to use a poset extrapolation technique
developed by G.-C. Rota from MIT. One of the limitations of this approach is that this technique has
been originally proposed on a heuristic basis, with no convincing justification of its applicability to chemical
(or other) problems. In our previous paper, we showed that for the case when all the ligands are of the
same type, the poset technique is actually equivalent to a more familiar (and much more justified) Taylor
series extrapolation. In this paper, we show that this equivalence can be extended to the case when we
have variant ligands.
c©2011 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem: Extrapolation is Needed

In many practical situations, molecules can be obtained from a “template” molecule like benzene C6H6 by
replacing some of its hydrogen atoms with ligands (other atoms or atom groups). There can be many possible
replacements of this type. To avoid time-consuming testing of all possible replacements, it is desirable to test
some of the replacements and then extrapolate to others – so that only the promising molecules, for which
the extrapolated values are desirable, will have to be synthesized and tested.

For this extrapolation, D. J. Klein and co-authors proposed to use a poset extrapolation technique devel-
oped by G.-C. Rota from MIT; see, e.g., [9]. They showed that in many practical situations, this technique
indeed leads to accurate predictions of many important quantities; see, e.g., [1, 2, 3, 4, 5, 6, 7].

One of the limitations of this approach is that this techniques has been originally proposed on a heuristic
basis, with no convincing justification of its applicability to chemical (or other) problems. In our previous
paper [8], we showed that for the case when all the ligands are of the same type, the poset technique is actually
equivalent to a more familiar (and much more justified) Taylor series extrapolation.

In this paper, we show that this equivalence can be extended to the case when we have variant ligands.

2 Poset Approach to Extrapolation: Reminder

In [9], Gian-Carlo Rota, a renowned mathematician from MIT, considered the situation in which there is a
natural partial order relation ≤ on some set of objects, and there is a numerical value v(a) associated to each
object a from this partially ordered set (poset).
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Rota’s technique is based on the fact that we can represent an arbitrary dependence v(a) as

v(a) =
∑
b: b≤a

V (b) (1)

for some values V (b). The possibility to find such values V (b) is easy to understand: the above formula (1)
is a system of linear equations in which we have as many unknowns V (b) as the number of objects – and as
many equations as the number of objects. Thus, we have a system of linear equations with as many equations
as there are unknowns. It is known that in general, such a system always has a solution. (In principle, there
are degenerate cases when a system of n linear equations with n unknowns does not have a solution, but in
[9] it was proven that the poset-related system (1) always has a solution.)

In practice, many values V (b) turn out to be negligible and thus, can be safely taken as 0s. If we know
which values V (b1), . . . , V (bm) are non-zeros, we can then:

• measure the value v(a1), . . . , v(ap) of the desired quantity v for p� n different objects a1, . . . , ap;

• use the Least Squares techniques (see, e.g. [10]) to estimate the values V (bj) from the system

v(ai) =
∑

j: bj≤ai

V (bj), i = 1, . . . , p; (2)

• use the resulting estimates V (bj) to predict all the remaining values v(a) (a 6= a1, . . . , am), as

v(a) =
∑

j: bj≤a

V (bj). (3)

Application to chemistry. In chemistry, objects are molecules, and a natural relation a ≤ b means that the
molecule b either coincides with a, or can be obtained from the molecule a if we replace one or several of its
H atoms with ligands.

3 Traditional (Continuous) and Discrete Taylor Series

Traditional (Continuous) Taylor Series: a Brief Reminder

Traditionally, in physical and engineering applications, most parameters x1, . . . , xn (such as coordinates,
velocity, etc.) are continuous – in the sense that their values can continuously change from one value to
another. The dependence y = f(x1, . . . , xn) of a quantity y on the parameters xi is also usually continuous
(with the exception of phase transitions); moreover, this dependence is usually smooth (differentiable). It is
known that smooth functions can be usually expanded into Taylor series around some point x̃ = (x̃1, . . . , x̃n)
(e.g., around the point x̃ = 0), i.e., as a sum of constant terms, linear terms, quadratic terms, and terms of
higher order.

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
·∆xi +

1

2
·

n∑
i=1

n∑
i′=1

∂2f

∂xi∂xi′
·∆xi ·∆xi′ + . . . ,

where ∆xi
def
= xi − x̃i.

The values of different order terms in the Taylor expansion usually decrease when the order increases –
after all, the Taylor series usually converge, which implies that the terms should tend to 0. So, in practice,
we can ignore higher-order terms and consider only the first few terms in the Taylor expansion. (This is, for
example, how most elementary functions like sin(x), cos(x), exp(x) are computed inside the computers.).

In the simplest case, it is sufficient to preserve linear terms, i.e. to use the approximation

f(x1, . . . , xn) ≈ f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
·∆xi.
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When the linear approximation is not accurate enough, we can use the quadratic approximation

f(x1, . . . , xn) ≈ f(x̃1, . . . , x̃n) +

n∑
i=1

∂f

∂xi
·∆xi +

1

2
·

n∑
i=1

n∑
i′=1

∂2f

∂xi∂xi′
·∆xi ·∆xi′ ,

etc.
Since we do not know the exact expression for the function f(x1, . . . , xn), we thus do not know the actual

values of its derivatives
∂f

∂xi
and

∂2f

∂xi∂xi′
. Hence, when we actually use this approximation, all we know is

that we approximate a general function by a general linear or quadratic formula

f(x1, . . . , xn) ≈ c0 +

n∑
i=1

ci ·∆xi

f(x1, . . . , xn) ≈ c0 +

n∑
i=1

ci ·∆xi +

n∑
i=1

n∑
i′=1

cii′ ·∆xi ·∆xi′ , (4)

where c0 = f(x̃1, . . . , x̃n), ci =
∂f

∂xi
, and cii′ =

1

2
· ∂2f

∂xi∂xi′
.

The values of the coefficients c0, ci, and (if needed) cii′ can then be determined experimentally, by com-
paring the measured values of y with the predictions based on these formulas.

From Continuous to Discrete Taylor Series

As we have mentioned in [8], we can extend the Taylor series approach to the discrete case.
In our chemical problem, the discrete case means that for each location, we are only interested in the

values of the desired physical quantity in the following situations:

• a situation when there is a ligand at this location, and

• a situation when there is no ligand at this location.

In addition to these situations, we can, in principle, consider others, it is just that in our analysis, we are not
interested in these additional situations. However, the general physical laws and dependencies are not limited
to these situations, they work for other situations as well.

So, while we are interested in the values of the desired physical quantity (such as energy) corresponding
to the selected situations, in principle, we can consider this dependence for other situations as well. The
value of, e.g. energy, depends on the values of the electronic density at different points near the ligand
locations, etc. For each possible placement of a ligand of type k (1 ≤ k ≤ m) at a location i (1 ≤ i ≤ n),
let xik1, . . . , xikj , . . . , xikN be parameters describing the distribution in the vicinity of this location (e.g., the
density at a certain point, the distance to a certain atom, the angle between this atom and the given direction,
the angle describing the direction of the spin, etc.). In general, the value of the desired quantity depends on
the values of these parameters:

y = f(x111, . . . , x11N , x121, . . . , x12N , . . . , xnm1, . . . , xnmN ). (5)

We are interested in the situations in which, at each location, there is either a ligand, or there is no ligand.
For each location i and for each parameter xij :

• let di0j denote the value of the j-th parameter in the situation with no ligand at the location i, and

• let dikj denote the value of the j-th parameter in the situation with a ligand of type k at the location i.

The default situation with which we start is the situation in which there are no ligands at all, i.e. in which
xij = di0j for all i and j. Other situations of interest are reasonably close to this one. Thus, we can expand
the dependence (5) in Taylor series in the vicinity of the values di0j . As a result, we obtain the following
expression:

y = y0 +

n∑
i=1

N∑
j=1

yij ·∆xij +
n∑

i=1

N∑
j=1

n∑
i′=1

N∑
j′=1

yij,i′j′ ·∆xij ·∆xi′j′ , (6)
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where ∆xij
def
= xij − di0j , and y0, yij , and yij,i′j′ are appropriate coefficients.

These formulas can be applied to all possible situations, in which at each location i, different parameters
xi1, . . . , xiN can change independently. Situations in which we are interested are characterized by describing,
for each location, whether there is a ligand or not, and if yes, which exactly ligand. Let εik denote the discrete
variable that describes the presence of a ligand of type k at the location i:

• when there is no ligand of type k at the location i, we take εik = 0, and

• when there is a ligand of type k at the location i, we take εik = 1.

By definition, at each location, there can be only one ligand, i.e., if εik = 1 for some k, then εik′ = 0 for all
k′ 6= k.

According to the formula (6), the value y of the desired physical quantity depends on the differences ∆xij

corresponding to different i and j. Let us describe the values of these differences in terms of the discrete
variables εik.

• In the absence of a ligand, when εi = 0, the value of the quantity xij is equal to di0j and thus, the
difference ∆xij is equal to

∆xij = di0j − di0j = 0.

• In the presence of a ligand of type k, when εik = 1, the value of the quantity xij is equal to dikj and
thus, the difference ∆xij = dikj − di0j is equal to

∆ikj
def
= dikj − di0j .

Taking into account that for each location i, only one value εik can be equal to 1, we can combine the above
two cases into a single expression

∆xij =

m∑
k=1

εik ·∆ikj . (7)

Substituting the expression (7) into the expression (6), we obtain an expression which is quadratic in εik:

y = y0 +

n∑
i=1

m∑
k=1

N∑
j=1

yij · εik ·∆ikj+

n∑
i=1

m∑
k=1

N∑
j=1

n∑
i′=1

m∑
k′=1

N∑
j′=1

yij,i′j′ · εik · εi′k′ ·∆ikj ·∆i′k′j′ , (8)

i.e.,

y = y0 +

n∑
i=1

 m∑
k=1

N∑
j=1

yij ·∆ikj

 · εik+

n∑
i=1

n∑
i′=1

 N∑
j=1

m∑
k=1

N∑
j′=1

m∑
k′=1

yij,i′j′ ·∆ikj ·∆i′k′j′

 · εik · εi′k′ . (9)

Combining terms proportional to each variable εik and to each product εik · εi′k′ , we obtain the expression

y = a0 +

n∑
i=1

m∑
k=1

aik · εik +

n∑
i=1

m∑
k=1

n∑
i′=1

m∑
k′=1

aik,i′k′ · εik · εi′k′ , (10)

where

aik =

N∑
j=1

yij ·∆ikj , (11)
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and

aik,i′k′ =

N∑
j=1

N∑
j′=1

yij,i′j′ ·∆ikj ·∆i′k′j′ . (12)

The expression (10) is similar to the continuous Taylor expression (4), but with the discrete variables
εik ∈ {0, 1} instead of the continuous variables ∆xi.

Similar “discrete Taylor series” can be derived if we take into account cubic, quartic, etc., terms in the
original Taylor expansion of the dependence (5).

Discrete Taylor Expansions can be Further Simplified

In the following text, we will use the fact that the expression (10) can be further simplified.

First, we can simplify the terms corresponding to i = i′. Indeed, for each discrete variable εik ∈ {0, 1}, we
have ε2ik = εik. Thus, the term aik,ik · εik · εik corresponding to i = i′ and k = k′ is equal to aik,ik · εik and
can, therefore, be simply added to the corresponding linear term aik · εik.

Similarly, for every location i and for every two ligand types k 6= k′, only one of the terms εik and εik′ can
be different from 0. Thus, the product εik · εik′ is always equal to 0. Therefore, we can safely assume that the
coefficient aik,ik′ at this product is 0.

Thus, we have no terms aik,i′k′ corresponding to i = i′ in our formula, we only have terms with i 6= i′. For
each two pairs ik and i′k′, we can combine terms proportional to εik · εi′k′ and to εi′k′ · εik. As a result, we
obtain a simplified expression

y = v0 +

n∑
i=1

m∑
k=1

vik · εik +
∑
i<i′

m∑
k=1

m∑
k′=1

vik,i′k′ · εik · εi′k′ , (13)

where v0 = c0, vik = cik, and vik,i′k′ = cik,i′k′ + ci′k′,ik.

This expression (13) – and the corresponding similar cubic and higher order expressions – is what we will
understand by a discrete Taylor series.

What We will Do in the Following Text

As we have mentioned earlier, we will show that the poset-related approaches are, in effect, equivalent to the
use of a much simpler (and much more familiar) tool of (discrete) Taylor series.

4 Equivalence Between the Poset-Related Approaches and the Dis-
crete Taylor Series Approach

Discrete Taylor Series: Reminder

In many practical situations, we have a physical variable y that depends on the discrete parameters εik which
take two possible values: 0 and 1, and for which, for every i, at most one value εik can be equal to 1. Then,
in the first approximation, the dependence of y on εik can be described by the following linear formula

y = v0 +

n∑
i=1

m∑
k=1

vik · εik. (14)

In the second approximation, this dependence can be described by the following quadratic formula

y = v0 +

n∑
i=1

m∑
k=1

vik · εik +
∑
i<i′

m∑
k=1

m∑
k′=1

vik,i′k′ · εik · εi′k′ . (15)

etc.
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Chemical Substances

For chemical substances, we have discrete variables εik that describe whether there is a ligand of type k at
the i-th location:

• the value εik = 0 means that there is no ligand of type k at the i-th location, and

• the value εik = 1 means that there is a ligand of type k at the i-th location.

Each chemical substance a from the corresponding family can be characterized by the corresponding tuple

(ε11, . . . , ε1m, . . . , εn1, . . . , εnm).

Poset-Related Approaches: Reminder

We approximate the actual dependence of the desired quantity y on the substance a = (ε11, . . . , εnm) by a
formula

v(a) =
∑
b: b≤a

V (b), (16)

where, in the second order approximation, b runs over all substances with at most two ligands.

Poset-Related Approaches Reformulated in Terms of the Discrete Variables

The discrete Taylor series formula (15) is formulated in terms of the discrete variables εik. Thus, to show
the equivalence of these two approaches, let us first describe the poset-related formula (16) in terms of these
discrete variables.

In chemical terms, the relation b ≤ a means that a can be obtained from b by adding some ligands. In other
words, the corresponding value εik can only increase when we move from the substance b to the substance a.
So, if b = (ε′11, . . . , ε

′
nm) and a = (ε11, . . . , εnm), then b ≤ a means that for every i and k, we have ε′ik ≤ εik.

Thus, the formula (16) means that for every substance a = (ε11, . . . , εnm), the substances b ≤ a are:

• the original substance a0 = (0, . . . , 0);

• substances aik
def
= (0, . . . , 0, 1, 0, . . . , 0) with a single ligand of type k at the location i – corresponding

to all the places i and types k for which εik = 1; and

• substances aik,i′k′
def
= (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) with a ligand of type k at the locations i and a

ligand of type k′ at a location i′ – corresponding to all possible pairs (i, k) and (i′, k′), i < i′, for which
εik = εi′k′ = 1.

Thus, in terms of the discrete variables, the poset formula (16) takes the form

y = V (a0) +
∑

(i,k): εik=1

V (aik) +
∑

i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′). (17)

Proof That the Discrete Taylor Series are Indeed Equivalent to the Poset Formula

The formulas (15) and (17) are now very similar, so we are ready to prove that they actually coincide.
To show that these formulas are equal, let us take into account that, e.g. the linear part of the sum (17)

can be represented as ∑
(i,k): εik=1

V (aik) =
∑

(i,k): εik=1

V (aik) · εik. (18)

Indeed, for all the corresponding pairs (i, k), we have εik = 1, and multiplying by 1 does not change a number.
This new representation (18) allows us to simplify this formula by adding similar terms V (aik) · εik

corresponding to pairs (i, k) for which εik = 0. Indeed, when εik = 0, then the product V (aik) · εik is equal
to 0, and thus, adding this product will not change the value of the sum. So, in the right-hand side of the
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formula (18), we can safely replace the sum over all pairs (i, k) for which εik = 1 by the sum over all pairs
(i, k): ∑

(i,k): εik=1

V (aik) =

n∑
i=1

m∑
k=1

V (aik) · εik. (19)

Similarly, the quadratic part
∑

i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) of the sum (17) can be first replaced with the sum

∑
i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) =
∑

i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) · εik · εi′k′ , (20)

and then, by the sum

∑
i<i′,k,k′: εik=εi′k′=1

V (aik,i′k′) =
∑
i<i′

m∑
k=1

m∑
k′=1

V (aik,i′k′) · εik · εi′k′ . (21)

Substituting expressions (18) and (21) into the formula (17), we obtain the following expression

y = V (a0) +

n∑
i=1

V (aik) · εik +
∑
i<i′

m∑
k=1

m∑
k′=1

V (aik,i′k′) · εik · εi′k′ . (22)

This expression is identical to the discrete Taylor formula (15), the only difference is the names of the
corresponding parameters:

• the parameter v0 in the formula (15) corresponds to the parameter V (a0) in the formula (22);

• each parameter vik in the formula (15) corresponds to the parameter V (aik) in the formula (22); and

• each parameter vik,i′k′ in the formula (15) corresponds to the parameter V (aik,i′k′) in the formula (22).

The equivalence is proven.

5 Conclusion

Several practically useful chemical substances can be obtained by adding ligands to different locations of a
“template” molecule like benzene C6H6 or cubane C8H8. There is a large number of such substances, and
it is difficult to synthesize all of them and experimentally determine their properties. It is desirable to be
able to synthesize and test only a few of these substances and to use appropriate interpolation to predict the
properties of others.

It is known that such an interpolation can be obtained by using Rota’s ideas related to partially ordered
sets. In our previous paper, we have shown that when we only allow one type of ligand, then the exact
same interpolation algorithm can be obtained from a more familiar mathematical technique such as Taylor
expansion series. In this paper, we show that the similar equivalence holds in the general case, when we have
ligands of different type.
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