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Abstract 
 

Fuzzy linear regression has been studied by several researchers since the past three decades. Existing outliers in the 
data set, causes the result of fuzzy linear regression be incorrect. In this paper, a simple and efficient model is 
suggested for computation of fuzzy linear regression with outliers. The proposed method is based on Goal 
Programming technique and for estimation upper and lower fuzzy bands, two separated linear programming models 
are calculated. The proposed method minimizes the estimation error between observed and estimated values and has 
better performance in comparison with previous approaches.  The proposed model is less sensitive to outliers and also, 
we do not need to select any parameters beforehand. The performance of proposed model is illustrated by solving 
several examples and comparing the results with the previous studies. 
© 2011 World Academic Press, UK. All rights reserved. 
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1  Introduction 
 
The purpose of regression model is analyzing the relationship between dependent and independent variables based on 
the given data. In 1982, Tanaka et al. [20] introduced Fuzzy Linear Regression (FLR). He modeled the procedure of 
parameter estimation as a linear programming problem, where the inputs are crisp and the output is a fuzzy number. 
In order to estimate regression parameters, they applied linear programming and minimized the total spread of the 
fuzzy parameters subject to covering the observed values by estimated values. Although their approach is improved 
by many researchers [3, 8, 15, 17], this approach is still one of the most frequently and simplest methods for 
estimating parameters of fuzzy regression. Generally, there are two approaches in fuzzy regression analysis. First, 
Linear programming based on which tries to minimize the fuzziness of the model by minimizing the total spreads of 
its fuzzy coefficients, subject to including the data points of each sample within a specified feasible data interval [19, 
20, 21]. Ge and Wang [7] tried to determine the relationship between threshold value and input data when data 
contains a considerable level of noise or uncertainty. They used the threshold value to measure degrees of fitness in 
fuzzy linear regression. Eventually, they showed that the parameter h is inversely proportional to the input noise. Also, 
many researchers recommended a combination of fuzzy regression models with some other approaches, like Monte-
Carlo methods [1] to improve the result obtained from ordinary LFR. Second, Least squares method, which 
minimizes the sum of squared errors in the estimated value, based on their specifications [1, 4, 6, 7, 22]. This 
approach is indeed a fuzzy extension of the ordinary least squares, which obtains the best fitting to the data, based on 
the distance measure under fuzzy consideration, applying information included in the input–output data set. 

One of the important problem associated with the Tanaka approach is the influence of outliers on the predicted 
upper and lower fuzzy bands. The Tanaka model is very sensitive to outliers and also the outliers make the fuzzy 
linear regression not to be able correct predicting.  There are many studies which discuss about handling the problem 
of outliers [2, 3, 9, 11, 15].  More of the mentioned models need for selecting some parameters beforehand. As there 
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could not be a systematic method for defining parameters, the problem for these models is to select the parameters in 
advance. This paper presents a simple model for computation of fuzzy linear regression with and without outliers. 

The organization of this paper is as follows. In Section 2, the fuzzy linear regression is introduced. Section 3 
explains the proposed model. The numerical examples and results are reported in Section 4. Finally, conclusions are 
included in the last section.    

 
2 Fuzzy Linear Regression 
 
Tanaka et al. [20] proposed the fuzzy linear regression (FLR) model in the case of crisp input and fuzzy output data 
set as follow: 

0 1 1 2 2
ˆ ... k kY A A x A x A x= + + + + (1)

where ( , ), 0,1,...,j j jA c j kα= =  is assumed to be a symmetric triangular fuzzy number with center ja  and half-width 
, 0j jc c ≥ .  To estimate jA , Tanaka et al. [20] applied following model: 
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In model (2), n is the number of observations and [0,1]H ∈ is the threshold level to be chosen by decision maker.  
Later, the model (2) has been modified by other researchers [16, 19].  They suggested the objective function should 

be as 
0 0

min
n k

j ij
i j

c x
= =
  to prevent of being 'ic s =0.  

As mentioned, Tanaka et al. [20] approach is very sensitive to outliers.  In the other words, if the outliers exist in 
the data set, the Tanaka model is not able to predict upper and lower fuzzy bands, correctly. Chen [3] and Peters [15] 
proposed the models to handle the outliers' problem. Chen [3] discussed the outlier problem by applying the following 
model: 
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where k is a limiting value which should be assigned by decision maker. The problem with Chen [3] approach is how 
to choose k value. Although Chen [3] proposed some methods for selecting k , but there is still some problem in 
defining the suitable k value. The Peters [15] model is presented as follow: 
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The problem with Peters [15] model is also selecting P0 and the selection of different P0's would result in 
different outcomes.  

 
3 Proposed Model    
 
In this section, the proposed model is explained. This model applies Goal Programming (GP) technique for estimating 
the fuzzy regression linear parameters.   

Let iUy , iy  and iLy be the upper, center and lower points of ith observed fuzzy data, respectively and ˆiUy  , ˆiLy  be 
the upper and lower point of the ith predicted interval. Moreover, ˆLy and ˆUy are predicted fuzzy upper and lower 
bands which are shown in Figure 1. In this model, it is allowed ˆiLy to be larger than iLy , but must be smaller than iy , 
and ˆiUy  is allowed smaller than iUy but must be greater than iy . In other words, iy  is considered as upper band of 
ˆiLy and lower band of iLy simultaneously. In fact, the objective of the proposed model is minimization of the sum of 

deviations of ˆiLy from iy and iLy , and the sum of deviations of ˆiUy from iy  and iUy . In other word, to obtain ˆiLy , iy is 
selected as upper point (instead of (1 )i iy H e+ − as the other models), and to obtain ˆiUy , iy is selected as lower point 
(instead of (1 )i iy H e− − ). Note that the fuzzy bands ˆLy and ˆUy are calculated, separately here in:  First, a GP model is 
solved to find lower fuzzy band ( ˆLy ), then, another model is implemented to get upper fuzzy band ( ˆUy ). In previous 
studies, the estimated FLR parameters are affected by outliers, because the upper and lower points of fuzzy data are 
used, simultaneously. Since, in proposed model iy , which is less sensitive than outliers, is used instead of upper and 
lower points of fuzzy data, the model can estimate the FLR parameters with least error. So, the main difference of 
proposed model and previous models could be illustrated to be the way of handling outliers without selecting any 
parameters in advance. 

To obtained ˆLy  band, the model (5) is solved. 

0
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In the first constraint, the (1 )i iy H e+ − is replaced by iy in order the upper point to be the iy values when 

predicting ˆLy . In the model (5), iU iUd d+ −− is the distance between iy  and ˆiLy  and | |iL iLd d+ −− is the distance between 

lower point of H-certain observed interval and ˆiLy . Thus, the sum of two deviations should be minimized. The ˆUy  
band is obtained by solving GP model below: 

0
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In each models (5) and (6), there is one estimated band for lower and upper points. The upper line of model (5) 
(lower band) and the lower line of model (6) (upper band) are located around iy 's and could be eliminated to decrease 
the predicted error (see Figure. 1). Thus, the lower and upper fuzzy bands are: 

 
0 0 1 1ˆ ( ) ( )L L L L Ly c c xα α= − + − (7) 

0 0 1 1ˆ ( ) ( )U U U U Uy c c xα α= + + + (8) 
 

where jLα and jLc are the estimated values for ˆLy , and jUα and jUc are the estimated values for ˆUy . 

 
 

Figure 1: The graphical explanation of the proposed model 
 
There are three cases in the linear fuzzy regression analysis: 

(a)  Constant spread; 
(b)  Increasing spread; 
(c)  Decreasing spread. 
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In the case (a), the predicted interval should lay between two parallel lines. Since, in the proposed model, it is 
probable that the slops of ˆLy and ˆUy lines to be different, the means of 'j sα and 'jc s ( 0)j ≠ can be used as the slops 
of ˆLy and ˆUy lines. The means of 'j sα and 'jc s ( 0)j ≠ are calculated as follow: 

1 ( ) 1,..., ,
2j jL jU j kα α α= + = (9)

1 ( ) 1,..., ,
2j jL jUc c c j k= + = (10)

where jLα and jLc are the estimated values for ˆLy , and jUα and jUc are the estimated values for ˆUy . In the cases (b) 
and (c), it is not necessary that the slops of ˆLy and ˆUy lines to be equal.  Hence, some of the estimated 'j sα and 'jc s  
( 0)j ≠  are used. 

 
4 Results  
 
To illustrate the capability of the proposed model, here three examples are solved. The first two examples are with 
outliers and the last example is without outliers.  

Example 1: Table 1 lists the numerical values used by Chen [3]. In this example, three cases A, B and C with one 
outlier point are considered. 

 
Table 1: Outliers with constant, increasing and decreasing spread 

 

x 
(yi,ei) 

A: Constant spread B: Increasing spread C: Decreasing spread 

1 (8.0,1.8) (11,2) (11,12) 

2 (6.4,2.2) (13,2) (13,12) 

3 (9.5,2.6) (21,4) (21,10) 

4 (13.5,2.6) (29,4) (24,10) 

5 (13.0,2.4) (29,6) (31,8) 

6 (15.2,2.3) (34,6) (34,8) 

7 (17.0,2.2) (45,15)a (42,4) 

8 (19.3,4.8)a (44,8) (44,15)a 

9 (20.1,1.9) (48,12) (51,2) 

10 (24.3,2.0) (54,12) (54,2) 
                  a Indicates the outlier. 
 
In all cases, to find ˆLy  and ˆUy , the models (5) and (6) are applied with H=0. The results are shown in Table 2.  

Note that the slops of ˆLy and ˆUy lines are modified by using of equations (7) and (8).  As shown, the value of 

1 0

n k

j ij
i j

c x
= =
  in the proposed model is smaller than in comparison with Tanaka et al. [20] and Chen [3] models.  The 

value of 
1 0

n k

j ij
i j

c x
= =
 in the proposed model is obtained from combination of models (5) and (6) as follow: 

1 2
1 0 1 0 1 0

n k n k n k
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i j i j i jj S j S

c x c x c x
= = = = = =∈ ∈
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where 1S  and 2S show jc 's obtained from models (5) and (6), respectively. Figures 2, 3 and 4 show the results of 
above models graphically. 

 
Table 2: Comparison between Tanaka et al. [20], Chen [3] and proposed model 

 

 Model 
1 0

n k

j ij
i j

c x
= =
  Results 

Case (A) 

Tanaka 44.45703 (4.43,3.67) (1.86,0.14)y x= +  

Chen 32.75 (4.75,4.55) (1.85, 0.15)y x= + −  

Proposed model 23 
ˆ (2.65 1.15) (1.85)Ly x= − + a 
ˆ (5.55 1.15) (1.85)Uy x= + + a 

Case (B) 

Tanaka 123.75 (4.51,0.65) (5.70,2.13)y x= +  

Chen 95.0 (5.76,0.90) (4.95,1.38)y x= +  

Proposed model 69.68 
ˆ (5.81 0.48) (4.19 0.52)Ly x= − + −  
ˆ (6.70 0.42) (5.29 0.58)Uy x= + + +  

Case (C) 

Tanaka 144.0469 (4.76,13.10) (4.90,0.24)y x= +  

Chen 89.375 (5,16.5) (4.875, 1.375)y x= + −  

Proposed model 80 
ˆ ( 1.14 3.8) (5.4)Ly x= − − +  
ˆ (11.4 4.2) (4.6)Uy x= + +  

a The means of 1 1,L Uα α and 1 1,L Uc c are used, respectively. 
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Figure 2: Case A - Comparison between Chen [3], Tanaka et al. [20] and proposed model 
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Figure 3: Case B - Comparison between Chen [3], Tanaka et al. [20] and proposed model 
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Figure 4: Case C - Comparison between Chen [3], Tanaka et al. [20] and proposed model 
 

Example 2: This example has also the outlier problem. The difference between this example and previous example is 
the existence of the point with small ie and large iy . These data were used by Nasrabadi et al. [13].  In this case, the 
values of 1 'α s need to be modified. The results of Nasrabadi et al. [13] model and proposed model are shown in 

Table 3 and Figure 5.  As shown, the value of 
1 0

n k

j ij
i j

c x
= =
 for the proposed model is smaller than the Nasrabadi et al. 

[13] model.  

Example 3: This example has no outliers and used by Kim and Bishu [10] to illustrate how the proposed method 
performs. We compare the results of our method with methods in literature. To evaluate the performance of a fuzzy 
regression model, Kim and Bishu [10] used the ratio of the difference between the membership values to the observed 
membership values as follows: 

 

ˆˆ
ˆ| ( ) ( ) |

  
( )    

ii

i

y i iy

i

y i

S S y t y t dt
error

S y t dt

−
= 


 


                                                      

(12)   
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where ˆiy
S  and 

iyS  are the support of ˆiy  and iy , respectively. To compare the performance of the FLR models, Eq. 

(12) is applied to calculate the errors in estimation the observed responses. The data given for this example was used 
by Tanaka et al. [20]. The data and results are shown in Table 4. By solving models (5) and (6) (at H=0) and 
modification the values 1 'a s and 1 'c s, two below fuzzy bands are calculated:  

 
ˆ (5.55,1.2) (1.325,0) ,Ly x= ⊕ (13)
ˆ (7.20,1.2) (1.325,0) .Ly x= ⊕ (14)

 
Table 3: Numerical data and comparison of Nasrabadi et al. [13] and proposed model 

 

x 
(yi,ei) 

Observed data Nasrabadi model Proposed model

1 (6.4,2.2) (5.66,9.82) (4.82,8.57) 

2 (8.0,1.8) (7.21,11.61) (6.38,10.27) 

3 (16.5,2.6)a (8.76,13.4) (7.94,11.97) 

4 (11.5,2.6) (10.31,15.19) (9.50,13.67) 

5 (13.0,2.4) (11.86,16.98) (11.06,15.37) 

1 0

n k

j ij
i j

c x
= =
  - 16.97 11.09 

a Indicates the outlier. 
 

Table 4: Comparison between different methods 
 

i xi (yi,ei) 
Errors in estimation 

Tanaka et al. Diamond Savic-
Pedrycz 

Kim- 
Bishu 

Modarres et 
al. 

Proposed 
method 

1 1 (8.0,1.8) 1.86 1.23 1.54 1.22 1.35 0.32 

2 2 (6.4,2.2) 1.30 1.39 1.52 1.38 1.27 1.62 

3 3 (9.5,2.6) 0.58 0.42 0.7 0.4 0.23 0.59 

4 4 (13.5,2.6) 0.86 1.09 1.16 1.12 1.25 1.13 

5 5 (13.0,2.4) 1.0 0.40 0.86 0.36 0.13 0.16 

Total error 5.6 4.53 5.78 4.48 4.23 3.82 
 
The right half of Table 4 shows the errors of the five observations for the different methods. The total error of 

the proposed method is 3.82 which obviously better than the other total errors.  
 

5 Conclusion 
 
There are two approaches in Fuzzy linear regression: linear programming and least squares. In this paper, a simple 
model based on first approach is presented for computing of fuzzy linear regression. This model is based on Goal 
Programming. Since the existence of outliers in the data set causes incorrect results, the ability of proposed model is 
less sensitive to outliers. Furthermore, unlike previous models, it is not necessary to select any parameters beforehand. 
In this model, the upper and lower fuzzy bands are computed by two linear goal programming model, separately.  

Several examples are solved by using the proposed model with and without outliers and the results are compared 
with previous models. The proposed model results illustrate that this model has the goodness fit depend both on the 
observation and fuzzy bands.     
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Figure 5: Comparison between Nasrabadi et al. [13] model and proposed model 
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