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Abstract

When it comes to drugs, a major concern may stem from drug noncompliance [5]. Patient medication
compliance is a key factor for the efficacy of any therapy. This paper addresses issues from stochastic
analysis of Markov processes for modeling irregular (or variable) compliance settings. The major questions
addressed in [2] are associated with the mean and variance of the drug concentration; we suggest that
a hybrid stochastic differential system could improve the study established there. To the best of our
knowledge, such modeling is quiet novel as regards pharmacokinetics and pharmacodynamics.
c©2011 World Academic Press, UK. All rights reserved.
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1 Introduction

The effectiveness of drug treatment in clinical practice is considerably lower than the efficacy shown in con-
trolled studies. A major factor contributing to the lower effectiveness of drug treatment is noncompliance.
There are several factors influencing compliance including drug type and formulation, disease status, health
care system, community care and family. But compliance is more closely dependent on patient individual be-
havior. Patient questionnaires allow the identification of some profiles of non-compliers, here we consider that
variable compliance stem from the age (non-compliers are usually younger [3]) and the treatment duration:
most of the patients rely on their memory to ensure that they are taking their medication correctly. But the
phenomenon is repetitive for years and usually under the same conditions, so that memory could be defective
(e.g. noncompliance may start the first year and increase thereafter).

Compiling drug dosing history data turns patients’ variable adherence from a source of confusion to a
source of knowledge. Here the question of how much credibility one has in patient questionnaires must be
addressed first. Since 1986, AARDEX has developed products to measure and analyze patient adherence
to prescribed drug dosing regimens in both trials and practice. Patient’s drug intakes are electronically
monitored by Medication Event Monitoring Systems (MEMSr). The MEMS monitors are drug packages with
integral electronic micro circuitry designed to compile the dosing histories of ambulatory patients’ prescribed
medications [4]. MEMS readers transfer dosing-history data from MEMS monitors to a MS-Windows-based
computer. The main benefit of well documented, detailed, and reliable dosing history data is a more accurate
and cost-effective analysis of collected clinical data.

1.1 Multi-dosing with Full Compliance: Drug Concentration Response for In-
travenous Administration

The drug is administered in multiple fixed doses {di}i=1,2... at some well determined instants {ti}i=1,2.... Here
we assume instantaneous inputs of the drug into the systemic concentration. It is well accepted that kinetics
of first order are involved in the elimination process. The following is a single-compartment pharmacokinetic
model with elimination coefficient ke > 0,

ẋ(t) = −ke x(t) t ∈ [ti−1, ti[

x(ti) = x(t−i ) + di

∗Corresponding author. Email: hana.baili@supelec.fr (H. Baili).



Journal of Uncertain Systems, Vol.5, No.1, pp.38-44, 2011 39

x(t) denotes the drug concentration; it is plotted in the following figure for a particular prescribed drug
regimen.

However, either of the regimen components may vary: the duration between consecutive administration
times and the dose value. Now the administrations are given at increasing random times {Ti}i=1,2... and the
corresponding doses {Di}i=1,2... are random variables as well. A possible approach towards this problem, thus,
can only be stochastic modeling. The following in Section 2 is the proposed model. It is a hybrid stochastic
differential system, described in general first and then applied to study the drug concentration response to
multi-dosing intravenous administration when the compliance is variable.

2 A Hybrid Stochastic Differential System: PDP

Roughly speaking, a piecewise deterministic process (PDP) is a mixture of a deterministic motion and random
jumps of two kinds, spontaneous and predictable ones. The state space of a PDP is a disjoint union of some
manifolds with boundary. Some vector field determines the motion between jumps. The jump mechanism has
two further ingredients: a hazard rate for spontaneous jump times and a probability measure to reinitiate the
motion after any jump, of both types, so that the deterministic motion starts afresh after every random jump.
This results in a càdlàg stochastic process which is strong Markovian. The vector field, the jump rate and the
transition measure are the triplet of ingredients also called local characteristics of a PDP. This process has
been widely used since Davis introduced it in 1984. The reference [1] is our main tool on the subject.

State space E : a disjoint union

E = {ξ = (x, y) : y ∈ Y, x ∈My} ,
⋃
y∈Y My

where Y is a discrete set either finite or countable. For each y ∈ Y , My is an open set from Rd(y), here d is a
function on Y into N.

Thus, a PDP is denoted (xt, yt) or ξt with t ∈ R+; yt is a Y -valued continuous-time process and xt is a
continuous-time process with values in My as long as yt = y. yt is said the discrete component of the state
and xt its continuous or phase component.

Vector field Φ :

y0 = y ∈ Y x0 = x ∈My

xt = c(t) t ∈ [0, T1[
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c(t) is the integral curve (or flow) of a vector field Φ at x, that is a map such that

c(0) = x ċ(t) = Φ (c(t)) .

(Recall that T1 is the instant of the first jump of xt.)

Jumping rate λ : T1 is a random variable with the following probability distribution

Pξ {T1 > t|Ft} = exp

(
−
∫ t

0

λ(ξs) ds

)
t ∈ [0, tb(ξ)[

where tb(ξ) = tb(x, y) is the instant at which the curve c starting at x reaches the boundary ∂My ; tb(ξ) = +∞
if this never occurs.

We define the active (or essential) boundary Γ as a set of boundary points ξ̄ = (x̄, ȳ) of the state space
such that

lim
x→x̄

Pξ=(x,ȳ) {T1 = tb(ξ) <∞} = 1.

These are boundary points almost surely reachable by the process within a predictable time, where it jumps
instantaneously.

Transition measure Q : the conditional probability distribution under Pξ=(x,y) of the post jump state
ξ(T1) given the conditioning event {

ξ(T−1 ) = (x̄, y)
}

for (x̄, y) ∈ E ∪ Γ. This is the probability under P(x,y) of transition from x(T−1 ) = x̄ and y(T−1 ) = y to the
set dξ′ ∈ E (E is the Borel σ-algebra of E), i.e.

Q(x̄, y, dξ′) = P(x,y)

{
(x(T1), y(T1)) ∈ dξ′ |x(T−1 ) = x̄ , y(T−1 ) = y

}
.

2.1 Back to the Application in Subsection 1.1

First of all we set these assumptions:

• {Di}i=1,2... is a sequence of positive random variables which are mutually independent and identically
distributed;

• {Ti}i=1,2... and {Di}i=1,2... are independent.

It is clear that the above model can be applied for drug concentration when compliance is variable; the
remainder now is to identify all its ingredients. Here the discrete component has only one possible value,
i.e., Y is a singleton {y}. Thus, we omit to denote any dependence on y in the following. M =]0,+∞[,
Φ(x) = −ke x, and c(t) = x exp(−ket). ∂M = {0} and tb(x) = +∞ for all x, this is because ∂M is never
reached and thus the essential boundary Γ = ∅.

As to actuarial analysis, we assume only two sorts of patients: sick and undergoing a therapy, or dead.
Let t0 be the person’s age when he/she falls sick, this is his/her age on starting the therapy as well; t0 is
assumed known. Let t be the time elapsed since the therapy was taken up, this is also the current sickness
duration. A sick person dies at a random time with hazard rate λd depending on its age and the sickness
duration. When a patient dies, the therapy finishes. Besides, we assume a fixed finite period tf for the therapy.
Then t ∈ [0, tf], and for t = tf the therapy finishes as well. The phase component xt of the process represents
the drug concentration and jumps with rate λc(t0 + t, t) depending on the current patient’s age and therapy
duration. This is in link with what is announced in the very beginning of the introduction. Then the total
hazard rate of jumping is λ(t0 + t, t) = λd(t0 + t, t) + λc(t0 + t, t), and after every jump the process either
sticks at a life-after-death ∆ with probability λd/λ or is reinitiated according to

Q(x̄, dx′) = Px
{
x(Ti) ∈ dx′ |x(T−i ) = x̄

}
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with probability λc/λ. As to the Markov kernel Q we recall that

x(Ti) = x(T−i ) +Di i = 1, 2, ....

Here we need the common probability distribution to the Di’s. This calls for statistical characterization
of the sequence {Di}i=1,2.... The dose distribution is either discrete with finite support (e.g. for solid dosage),
or a distribution with density on a bounded interval from ]0,+∞[. In any case, this is the typical statement
of the theory of large samples in classical mathematical statistics, i.e., statistics of independent identically
distributed observations {D1, ..., Dn} in the asymptotics n → ∞. Since drug dosing history data are not
available, let us take as example a uniform distribution for the random doses.

3 The PDP Differential Formula

This section gives the key to compute expectations for PDP’s. This formula is in fact a corollary of the
calculus establishing the extended generator for a PDP (see pages 69-74 of [1]).

Theorem 1 Let ξt = (xt, yt) be a PDP with state space E and essential boundary Γ. Let f be a measurable
function f : E ∪ Γ → R such that: for each ξ = (x, y) ∈ E the map t → f [c(t, x), y] is absolutely continuous
on [0, tb(ξ)] (on R+ if tb(ξ) is not finite). Then for each t ≥ 0,

f(ξt)− f(ξ0) =

∫ t

0

Uf(ξs) ds+
∑
i≥1

1{0<Ti≤ t} 1{ξT−
i
∈Γ} Cf(ξT−i

)− (1)

∫ t

0

∫
E

[f(ξs−)− f(ξ′)] q(ds× dξ′).

Notation The operator U is given by

Uf(ξ) = Φf(ξ) + λ(ξ)

{∫
E

f(ξ′)Q(ξ, dξ′) − f(ξ)

}
ξ ∈ E

where

Φf(ξ) = Φf(x, y) =

d(y)∑
i=1

∂f

∂xi
(ξ)Φi(x),

U is called the extended generator of ξt. The operator C is given by

Cf(ξ) =

∫
E

f(ξ′)Q(ξ, dξ′)− f(ξ) ξ ∈ Γ.

Remark. Associated to the process ξt, q(ds×dξ′) is a compensated random measure counting jumps to dξ′

at jump instants in ds. The stochastic integral∫ t

0

∫
E

[f(ξs−)− f(ξ′)] q(ds× dξ′)

in formula (1) is a martingale if for any starting point ξ ∈ E and each t ≥ 0,

Eξ

∑
i≥1

1{0<Ti≤ t} |f(ξTi)− f(ξT−i
)|

 <∞.

This holds in particular if f is bounded and if for any starting point ξ ∈ E and each t ≥ 0,

Eξ

∑
i≥1

1{0<Ti≤ t}

 <∞.
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3.1 The Application (continued)

We claim that the operators U and C involved in the differential formula for our process are given by: for
t < tf and x ∈]0,+∞[,

Uf(t, x) =
∂f

∂t
(t, x)− ke x

∂f

∂x
(t, x)− λ(t0 + t, t)f(t, x) +

λd(t0 + t, t)f(∆) + λc(t0 + t, t)

∫
x′∈]0,+∞[

Q(x, dx′)f(t, x′)

and

Cf(tf, x) = f(∆)− f(tf, x)

for x ∈]0,+∞[. Since the main thing is the drug concentration response so long as the therapy doesn’t stop,
there is no loss of information in setting this convention: we extend functions at ∆ by 0. Then

Uf(t, x) =
∂f

∂t
(t, x)− ke x

∂f

∂x
(t, x)− λ(t0 + t, t)f(t, x) +

λc(t0 + t, t)

∫
x′∈]0,+∞[

Q(x, dx′)f(t, x′) t < tf x ∈]0,+∞[,

Cf(tf, x) = −f(tf, x) x ∈]0,+∞[.

In addition, if the process jumps to ∆, it stays there, this says that Q({∆}, •) = 0. Since by convention
f(∆) = 0, Φ(∆) = 0 and λ(∆) = 0, then

Uf(∆) = 0.

Now we are ready to write the differential formula for our process: Let f be a measurable function
f : [0, tf]×]0,+∞[∪{∆} → R such that for each x ∈]0,+∞[, the map t → f (t, x exp(−ket)) is absolutely
continuous on [0, tf]. Then for each t < tf,

f(t, xt)− f(0, x0) =

∫ t

0

{
∂f

∂s
(s, xs)− ke xs

∂f

∂x
(s, xs)− λ(t0 + s, s)f(s, xs)

+λc(t0 + s, s)

∫
x′∈]0,+∞[

Q(xs, dx
′)f(s, x′)

}
ds

−
∫ t

0

∫
[0,tf]×]0,+∞[∪{∆}

[f(s, xs−)− f(ξ′)] q(ds× dξ′).

We must have

f(tf, x(t−f )) = f(∆) = 0.

Under the condition of the Remark, and by the optional stopping theorem we obtain the Dynkin formula
for our process. This condition holds naturally in our application; it just says that the mean number of admin-
istrations per finite time interval is finite. The Dynkin formula is the main tool for calculating expectations
for a wide class of functions.

Dynkin’s formula: For each t < tf,

Ex {f(t, xt)} − f(0, x) = Ex
{∫ t

0

[
∂f

∂s
(s, xs)− ke xs

∂f

∂x
(s, xs)−

λ(t0 + s, s)f(s, xs) + λc(t0 + s, s)

∫
x′∈]0,+∞[

Q(xs, dx
′)f(s, x′)

]
ds

}
.
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Now we are able to show how the mean and the variance of the drug concentration evolve in time by
applying the Dynkin formula to both f(x) = x and f(x) = x2. Denote p the common distribution density to
the doses

p(x) =
1

Dmax
1]0,Dmax](x).

The following is the derivation of an ordinary differential equation for the drug concentration mean Eµ {xt}
denoted m(t). The notation Eµ means expectation under Pµ; this is equivalent to say that xt starts at t = 0
with probability law µ. In fact, for any probability distribution µ on ]0,+∞[, we define a probability measure
on Ω by

Pµ{•} =

∫
x∈]0,+∞[

Px{•}µ(dx),

µ is nothing but the probability distribution of x0 under Pµ. For each t < tf,

m(t) = m(0) +

∫ t

0

[−ke − λ(t0 + s, s)]m(s)ds+

Eµ

{∫ t

0

λc(t0 + s, s)

∫
x′∈]0,+∞[

p(x′ − xs)x′ dx′ ds

}

= m(0) +

∫ t

0

[−ke − λ(t0 + s, s)]m(s)ds+

Eµ

{
1

Dmax

∫ t

0

λc(t0 + s, s)

∫
x′∈]xs,xs+Dmax]

x′ dx′ ds

}

= m(0) +

∫ t

0

[−ke − λ(t0 + s, s) + λc(t0 + s, s)]m(s)ds+
Dmax

2

∫ t

0

λc(t0 + s, s) ds

= m(0) +

∫ t

0

[−ke − λd(t0 + s, s)]m(s)ds+
Dmax

2

∫ t

0

λc(t0 + s, s) ds.

This is equivalent to

dm(t)

dt
=
Dmax

2
λc(t0 + t, t)− [ke + λd(t0 + t, t)]m(t) t ∈ [0, tf[. (2)

Similar calculation gives an ODE for the second order moment Eµ
{

(xt)
2
}

denoted m2(t):

dm2(t)

dt
=

D2
max

3
λc(t0 + t, t)− [2ke + λd(t0 + t, t)]m2(t) + (3)

Dmaxλc(t0 + t, t)m(t) t ∈ [0, tf[.

Solving equation (2) first and then equation (3) with the initial conditions below gives the variance of the
drug concentration

m(0) =

∫
]0,+∞[

µ(dx)x, m2(0) =

∫
]0,+∞[

µ(dx)x2.

4 Conclusion and Future Work

Compliance with medical recommendations, especially with drug therapy is a complex challenge. We give an
advance in the understanding of variable compliance using tools from stochastic analysis of jumping Markov
processes, in the light of the seminal work of M.H.A. Davis.

A big open question remains about λ(t0 + t, t): how to construct estimators for this jumping intensity?
It is surprising that statistical inference based on a PDP model has received little attention in the literature
despite the wide range of applicability of such a model. Here the observations are the jump times {Ti}i=1,2...

related to λ via the generalized exponential distribution.
In a near-future work we hope to be able to model the drug concentration response to oral-instead of

intravenous-multi-dosing with variable compliance. In this case, we presume that the resulting process is
nothing but a two-dimensional PDP.
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