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Abstract

After introducing the notion of an f-primary of a fuzzy automaton, this paper presents a decomposition
of a fuzzy automaton (possibly with infinite state-set) as a union of its f-primaries. En route, it is also
shown that the concepts of primaries and f-primaries of a fuzzy automaton coincide in the case of compact
fuzzy automaton.
©2011 World Academic Press, UK. All rights reserved.

1 Introduction

The decompositions of finite and infinite automata (as a union of its ‘simpler’ subautomata) have been
studied in [I Bl [, [7]. A well-known result in this context about (crisp) finite automata, is the so called
“Primary Decomposition Theorem”. It says that such automata can be so decomposed uniquely as a union
of their primaries. Its counterpart for fuzzy automata, having finite state-sets, has been provided in [5].
It turns out that this theorem may not hold good for fuzzy automata having infinite state-sets. However,
in [8], it was shown that a counterpart of this result holds for fuzzy automata, having even infinite state-
sets, provided their state-set topologies are compact (cf. [6] for a similar observation). The present paper
continues similar study for fuzzy automata and is mainly motivated by the work of Bavel and Thomas in [2],
in which the authors have shown that (crisp) automata, whose state-sets and input-sets may be of arbitrary
cardinality (such automata have been called ‘monadic algebras’ in [2]), admit a certain type of decomposition
by using a suitable generalization of the concept of primaries of (crisp) automata. In particular, we produce a
decomposition of an arbitrary fuzzy automaton in terms of its f-primaries. En route, we make some related
observations also.

2 Preliminaries

In this section we collect some results, which are useful in the next section. We start from the following
concept of fuzzy automata which resembles the concept of fuzzy machines, as given in [5].

Definition 2.1 A fuzzy automaton is a triple M = (Q, X,0), where Q is a nonempty set (of states of
M), X is a monoid (the input monoid of M ), whose identity shall be denoted as e, and § is a fuzzy subset
of Q X X X Q, i.e., amap 0:Q x X xQ — [0,1], such that Vq,p € Q,Vx,y € X,

saen={ 5 Fo20

and  0(q,zy,p) = V{0(q,z,7) No(r,y,p) : v € Q}.
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Remark 2.1 As in [6], we take the view that a (crisp) automaton is a triple (Q, X, 0), where Q is a (possibly
infinite) set, X is a monoid with identity e, and 6 : Q@ x X — @Q is a function such that 6(q,e) = q and

0(q,zy) = 6(0(q, x),y),Yq € Q,Vx,y € X. By identifying 6 with the function §:QxXxQ— [0,1], given
by 0(q,z,p) = 1 or 0 according as 6(q,x) = p or 6(q,x) # p, we see that the concept of a fuzzy automaton
generalizes that of a (crisp) automaton.

Let X be a set and 2% be its power set. Recall (cf. [10]) that a function & : 2X — 2% is called a Kuratowski
closure operator on X if VA, B € 2%, (i) A C k(A), (i) k(k(A)) = k(A), (iii) k(AUB) = k(A) Uk(B), and (iv)
k(p) = ¢. Each such k gives rise to a topology, say T, such that A is T-closed if A = k(A) (and consequently
G C X is T-open if X — G = k(X — G)). A useful consequence of (iii) (used throughout this paper) is:
AC B = k(A) Ck(B).

Definition 2.2 ([8]) Given a fuzzy automaton (Q,X,0) and A C Q, the source and the successor of A are
respectively the sets

00(A) ={q€Q:6(q,z,p) >0, for some (z,p) € X x A}, and
so(A) ={p € Q:6(q,z,p) >0, for some (x,q) € X x A}.

We shall frequently write og(A) and sg(A) as just o(A) and s(A), and o({q}) and s({q}) as just o(g) and
s(q)-

Proposition 2.1 ([]]) Let (Q, X, ) be a fuzzy automaton.

(a) The source and the successor, viewed as functions o : 29 — 29 and s : 29 — 29, turn out to be
Kuratowski closure operators on Q, inducing two topologies on @ (which we shall respectively denote as

T(Q) and T*(Q)).

(b) The topologies T(Q) and T*(Q) are dual in the sense that each A C Q is T(Q)-open if and only if A is
T*(Q)-closed.

Definition 2.3 ([5]) A fuzzy automaton (R, X, \) is called a subautomaton of a fuzzy automaton (Q, X, 0)
ZfR - stQ(R) =R, and §/R><X><R = A

Proposition 2.2 ([8]) Let M = (Q, X,d) and N = (R,Y,\) be fuzzy automata. Then N is subautomaton of
M if and only if R is T(Q)-open.

Now, we recall the concept of primaries, which plays a key role in the study of decomposition of fuzzy
automata.

Definition 2.4 ([5]) Let (Q, X, 0) be a fuzzy automaton. A subset R C Q is called
(i) genetically closed if 3P C R such that o(P) C s(P) and s(P) = R;
(i) a primary subset of Q if R is a nonempty minimal genetically closed subset of Q.

Definition 2.5 ([8]) A primary of a fuzzy automaton M = (Q, X, 8) is a subautomaton of M whose state-set
s a primary subset of Q.

In [8], the primaries of a fuzzy automaton have been characterized in terms of the topology on its state-set
by using the concept of core, which is reproduced below.

Definition 2.6 The core of any subset R of the state-set Q of a fuzzy automaton is the set
uw(R)={q€ R:0(q) C R}

We shall frequently write p({q}) as just u(q). Before stating the next proposition, we first recall the
following definition from Willard [10].

Definition 2.7 A closed subset of topological space is called regular closed if it is equal to the closure of its
imterior.

For example, the closures of open subsets are always regular closed.
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Proposition 2.3 ([8]) A closed subset R of Q is genetically closed if and only if R is a T*(Q)-regular closed
subset of Q).

Proposition 2.4 ([8]) The state-set of a primary of a fuzzy automaton (Q, X,0) is a minimal T*(Q)-regular
closed subset of Q.

Proposition 2.5 ([]]) Let (Q, X, ) be a fuzzy automaton and p € Q. Then s(p) is a primary of Q if and
only if p € u(s(p)).

We close this section by recalling the definition of a compact fuzzy automaton and some of the associated
results from [g].

Definition 2.8 A fuzzy automaton (Q, X, ) is called compact if the topology T(Q) is compact.

Proposition 2.6 A fuzzy automaton (Q,X,0) is compact if and only if there exists a finite subset Q' of Q
such that s(Q') = Q, or equivalently, if and only if o(Q) is finite.

Proposition 2.7 A primary of a compact fuzzy automaton is a mazximal singly generated subautomaton.

3 f-Primaries and Decomposition of a Fuzzy Automaton

In this section, chiefly inspired from [2], we have given the concept of f-primaries of a fuzzy automaton and
shown that each fuzzy automaton can be expressed, though non-uniquely, as a union of its ¢ f-primaries’. In
this section, unless mentioned otherwise, @ is assumed to be equipped with the topology T*(Q).

Definition 3.1 Let M = (Q, X, 0) be a fuzzy automaton. Then a subset R of @ is called finitely closed if
for each finite subset T of R there exists ¢ € Q such that T C s(q).

Remark 3.1 For each q € Q, s(q) is obviously a finitely closed subset of Q.
Lemma 3.1 Let (R, X, \) be a primary of a fuzzy automaton (Q, X,5). Then s(o(p)) = R,Vp € u(R).

Proof: Let p € u(R). Then o(p) C R and so s(o(p) C R (as s(R) = R). But as s(o(p)) is a regular closed
subset (since the closures of open subsets are always regular closed) and R is a minimal regular closed subset

of Q,s(c(p)) = R.

Lemma 3.2 Let (R, X,)\) be a primary of a fuzzy automaton (Q, X, §). Then for every finite subset T of R,
T C s(r) for somer € R.

Proof: We prove this lemma by induction on the number of elements in 7. The result is obvious if |T'| = 1.
Now assume the result to be true for all 7" having k£ — 1 elements. Consider some 7" C R having k elements.
Pick any p € T. By induction hypothesis, ¢ € R such that T — {p} C s(q). Thus T C s(q) U {p} C s({g,p}).
Put S = {q,p} and let m € u(R). Then by Lemma 3.1, R = s(c(m)). Note that ¢ € R = ¢q € s(c(m)) =
d(m/,x,q) > 0 for some (m',z) € o(m) x X. Now m’ € o(m) = o(m’) C o(m) C R (as m € p(R)) =
m’ € p(R) = s(o(m’)) = R (by Lemma 3.1). Consequently, p € R = p € s(a(m’)) = d(r,y,p) > 0 for
some (r,y) € o(m’) x X. From r € o(m'), we get m’ € s(r), whereby s(m’) C s(r). This, together with the
facts that ¢ € s(m/) and p € s(r), gives ¢,p € s(r). Hence S = {¢,p} C s(r). Thus s({¢,p}) C s(s(r)), i.e.,
s({q,p}) C s(r). Hence T' C s(r).

Proposition 3.1 Let (R, X,\) be a primary of a fuzzy automaton (Q,X,d). Then R is a mazimal finitely
closed subset of Q.

Proof: Lemma 3.2 already shows that R must be finitely closed. So only the maximality of R needs to be
shown. Let S be another finitely closed subset of @ such that R C S. Let ¢ € S and p € u(R). Since
w(R) C R C SpeS. Thus p,g € S. As S is a finitely closed subset of @, there exists r € @ such that
{p,q} C s(r), whereby p,q € s(r). Also, as p € u(R),o(p) C R. Now p € s(r) = r € o(p). Hence r € R,
whereby s(r) C s(R) = R. But ¢ € R (as q € s(r)), showing that S C R. Hence S = R, proving that R is a
maximal finitely closed subset of Q.
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Remark 3.2 The converse of the above theorem need not be true, even for a (crisp) automaton, as the
following counter-example shows.

Counter-example 3.1 Let M = (Q, X,0) be a (crisp) automaton, for which Q is the set of integers, X =
{0,1,2,...}, and § : Q x X — Q be given by 6(n,r) =n—r,Vn € Q,Vr € X.

We note that Ym,n € @Q,n € o(m) if and only if n > m. First, we show that M is the only primary of
itself.

Let A be a nonempty subset of Q. Then two cases arise.

Case 1: When A is finite

In this case u(A) = ¢, as there does not exist any n € A such that o(n) C A (since ¥n € Q, o(n) is
infinite). Thus s(u(A)) = ¢, whereby A is not a regular closed subset of Q.

Case 2: When A is infinite

In this case, if p(A) = ¢, then A cannot be reqular closed as indicated above. So let u(A) # ¢ and
n € u(A). Thenn € A and o(n) C A. Also, Vm € o(n),o(m) C o(o(n)) = o(n) C A. Thus m € u(A) C
s(p(A)),Vm € o(n), i.e., m € s(u(A)),Ym > n. Next, as n € u(A), we have s(n) C s(u(A)), whereby
m € s(u(A)),Ym € s(n), i.e., m € s(u(A)),¥Ym < n. Thus we have shown that m € s(u(A)),Vm > n and
Vm <n, i.e., m € s(u(A)),¥m € Q, showing that s(u(A4)) = Q.

Hence VA C Q,s(u(A)) # A if A £ Q. Thus Q is the only reqular closed subset of itself. Let R =
{1,2,3,...} be a subset of Q. Then obviously it is finitely closed. But R cannot be regular closed, as @ is the
only regular closed subset of itself. Thus a finitely closed subset is not neccesarily regular closed, and hence,
not a primary.

Proposition 3.2 Let M = (Q, X,0) be a fuzzy automaton. Then each mazimal finitely closed subset of Q is
T(Q)-open.

Proof: Let R be a maximal finitely closed subset of ). We have to show that s(R) = R. Let T be a finite
subset of s(R). For each ¢ € T, we can find some p € R with ¢ € s(p). The set S of all such p’s must be finite
as T is finite. Also, S C R. Obviously, T' C s(S). Now as R is finitely closed, 3t € @ such that S C s(t).
Hence s(S5) C s(t) (since s(s(t)) = s(t)), whereby T' C s(t). Thus for each finite subset T of s(R), 3t € @
such that T' C s(t). Hence s(R) is a finitely closed subset of (). But as R is a maximal finitely closed set and
R C s(R), we find that s(R) = R.

Definition 3.2 An f-primary of a fuzzy automaton M = (Q, X, 9) is a subautomaton of M whose state-set
18 a mazximal finitely closed subset of Q.

Proposition 3.3 Let M = (Q, X, ) be a fuzzy automaton. Then every primary of M is an f-primary of M.

Proof: Follows trivially from Proposition 3.1 and Definition 3.2.

Remark 3.3 From Remark 3.2, it is clear that the converse of above proposition need not be true.

Proposition 3.4 Let M = (Q, X, ) be a fuzzy automaton and p € Q. Then s(p) is a primary of M if and
only if s(p) is an f-primary of M.

Proof: In view of Proposition 3.3, we only need to prove that if s(p) is an f-primary then it is a primary.
So let s(p) be an f-primary of M. In view of Proposition 2.5, it suffices to show that p € u(s(p)), or that
o(p) C s(p). Let ¢ € o(p). Then p € s(q), whereby s(p) C s(q). As s(q) is finitely closed and s(p), being an

f-primary, is maximal finitely closed, s(q) = s(p). Thus ¢ € s(p), showing that o(p) C s(p).

Proposition 3.5 Let M = (Q, X, ) be a compact fuzzy automaton and N = (R, X, \) be its subautomaton.
Then N is an f-primary of M if and only if N is a primary of M.

Proof: Once again, in view of Proposition 3.3, we only need to prove that if IV is an f-primary of M then it
is a primary. Now, as M is compact, there exists a finite subset R’ of R such that s(R’) = R (cf. Proposition
2.6). Also, as R is finitely closed, 3¢ € @ such that R’ C s(gq), whereby s(R') C s(q). Thus R C s(g). But
as s(q) is finitely closed and R is maximal finitely closed (as N is an f-primary), s(q) = R. Hence N is a
primary of M (cf. Proposition 2.7).

Theorem 3.1 FEvery fuzzy automaton can be expressed as the union of its f-primaries.
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Proof: From Remark 3.1, for each q € @, s(q) is a finitely closed subset of @, whereby each ¢ € @ will be
contained in some finitely closed subset of @ (as ¢ € s(q),Vq € Q). Let g € Q and let F;, ={RC Q : R
is finitely closed and ¢ € R}. F, is nonempty as, at least, it contains s(¢q) (cf. Remark 3.1). Let R; C
Ry C R3 C ... be any chain in F;. Then UjesR; is also a finitely closed subset of (), because for any finite
T C UjesR;, T C Ry, for some j € J, whereby Jp € Q such that T C s(p). Thus UjesR; is an upper bound
in F; of the chain Ry € Ry C R3 C .... Thus it has been shown that every chain in the partially ordered set
F4 has an upper bound. Therefore by Zorn’s lemma, F, has a maximal element. Thus for each g € @, there
exists a maximal finitely closed subset containing it, i.e., an f-primary of Q) containing ¢. Also, Upcgs(p) = Q.
Hence every fuzzy automaton can be expressed as the union of its f-primaries.

Remark 3.4 The decomposition obtained in the previous theorem need not be unique even for a (crisp)
automaton, as the following counter-ezample will show.

Counter-example 3.2 Let M = (Q, X,0) be the (crisp) automaton, where @Q is the set of integers, X =
{0,1,2,...}, and § : Q x X — Q is given by

n+x ifn>0
) —In+=z ifn=0
8(n,z) = n ifn<0,z=0

In+x|  ifn<0,2#0

Vn e Q,Vx € X.
We note that each s(—i),i € N (the set of natural numbers), and s(0) are f-primaries of M. Here Q can
be expressed in two ways, given by Q = Ujens(—1) and Q = (Uiens(—i)) U s(0).
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