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Abstract

One of the main tasks of science and engineering is to use the current values of the physical quantities
for predicting the future values of the desired quantities. Due to the (inevitable) measurement inaccuracy,
we usually know the current values of the physical quantities with interval uncertainty. Traditionally, it
is assumed that all the processes are continuous; as a result, the range of possible values of the future
quantities is also known with interval uncertainty. However, in many practical situations (such as phase
transitions), the dependence of the future values on the current ones becomes discontinuous. We show
that in such cases, initial interval uncertainties can lead to arbitrary bounded closed ranges of possible
values of the future quantities. We also show that the possibility of such a discontinuity may drastically
increase the computational complexity of the corresponding range prediction problem.
c©2010 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

1.1 Objectives of Science and Engineering

One of the main tasks of science and engineering is to use the current values of the physical quantities
x1, . . . , xn to predict the future values y of the desired quantities.

To be able to perform this prediction, we must know how y depends on xi, i.e., we must know the
algorithm y = f(x1, . . . , xn) which transforms the current values x1, . . . , xn into the desired prediction y.
Once we know this algorithm, and we know the values of the physical quantities x1, . . . , xn, we can then
predict y as y = f(x1, . . . , xn).

Comment. In reality, often, the algorithm f represents the actual physical dependence only approximately.
For example, in quantum physics, only probabilistic predictions are possible, so any deterministic prediction
algorithm is approximate.

In many practical situations, however, the real-life dynamics is known reasonably accurately. In such
situations, we can safely assume that the algorithm f describes the exact dependence. This is the assumption
that we make in this paper.

1.2 Measurement Inaccuracy

In the above description, we assumed that we know the exact current values of the quantities x1, . . . , xn. In
practice, however, these values usually come from measurements, and measurements are never 100% accurate.
As a result, the measured value x̃i of the i-th quantity is, in general, different from its (unknown) actual
value xi.

Usually, the manufacturer of the corresponding measuring instrument provides us with a guaranteed upper

bound ∆i on the (absolute value) of the measurement error ∆xi
def
= x̃i − xi of the i-th quantity.

In this case, after we measure xi and get the measurement result x̃i, we can conclude that the actual value
of xi belongs to the interval xi = [x̃i − ∆i, x̃i + ∆i]. In other words, due to the (inevitable) measurement
inaccuracy, we usually know the current values of the physical quantities with interval uncertainty.

Comment. Often, in addition to the range xi of possible values of xi, we also know the probabilities of different
values xi ∈ xi; see, e.g., [12]. In this paper, however, we only consider the range information.
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1.3 The Effect of Measurement Inaccuracy on Prediction

In this paper, we assume that we know the exact algorithm f(x1, . . . , xn) which transforms the current values
x1, . . . , xn into the desired future value y. Under this assumption, in the idealized situation in which we
know the exact values xi of the current quantities, we could compute the exact value y = f(x1, . . . , xn) of the
desired future quantity.

In practice, for each i, we only know the interval xi of possible values of xi. In this case, the only thing
that we can conclude about the quantity y is that y belongs to the set

y = f(x1, . . . ,xn)
def
= {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}.

1.4 Case of Fuzzy Uncertainty: From the Computational Viewpoint, It Can be
Reduced to the Crisp Case

In the fuzzy case, for each possible value of xi ∈ xi, the experts describe the degree µi(xi) to which this value
is possible.

For each degree of certainty α, we can determine the set of values of xi that are possible with at least this
degree of certainty – the α-cut {x |µ(x) ≥ α} of the original fuzzy set. Vice versa, if we know α-cuts for every
α, then, for each object x, we can determine the degree of possibility that x belongs to the original fuzzy set
[1, 3, 5, 6, 7]. A fuzzy set can be thus viewed as a nested family of its α-cuts.

If instead of a (crisp) interval xi of possible values of the i-th quantity, we have a fuzzy set µi(x) of possible
values, then we can view this information as a family of nested intervals xi(α) – α-cuts of the given fuzzy
sets.

Our objective is then to compute the fuzzy number corresponding to the desired value y = f(x1, . . . , xn).
In this case, for each level α, to compute the α-cut of this fuzzy number, we can apply the interval algorithm
to the α-cuts xi(α) of the corresponding fuzzy sets. The resulting nested sets form the desired fuzzy set for y.

1.5 Traditional Assumption: All Physical Dependencies are Continuous

Traditionally, it is assumed that all the processes are continuous; in particular, that the function y =
f(x1, . . . , xn) computed by the algorithm f is continuous. It is well known that the range of a continuous
function on a bounded connected set, e.g., on the box

x1 × . . .× xn,

is an interval. Thus, for continuous functions f , the range y of possible values of the future quantity y is an
interval.

Thus, due to inevitable measurement inaccuracy, we can only make predictions with interval uncertainty.
Computing such intervals is one of the main tasks of interval computations; see, e.g., [2].

1.6 Discontinuous Dependencies: A Physical Possibility

Some physical processes are discontinuous: e.g., phase transitions. When a water is heated and boils, its
density abruptly changes from the density of water to the (orders of magnitude) smaller density of steam.

Of course, all the molecules in water move continuously. So, strictly speaking, the density cannot change
abruptly: theoretically, it does continuously change from the density of water to the density of steam. However,
for all practical purposes, this transition is so fast that from the prediction viewpoint, we can safely assume
that:

• the future density can be equal to the density of water,

• the future density can be equal to the density of steam, but

• the future density cannot be equal to any intermediate value.
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1.7 Formulation of the Problem

How does the possibility of discontinuous dependencies change the class of possible ranges? How does it affect
the computational complexity of computing these ranges?

These are the questions that we will handle in this paper.

2 How Discontinuities Affect the Class of Possible Ranges?

Let us first describe how the possibility of discontinuous dependencies changes the class S of possible ranges
S. Before we describe this problem in precise terms, let us make some preliminary comments.

Comment. From the mathematical viewpoint, the following result is similar to the results from [9, 10].

2.1 It is Sufficient to Consider Closed Ranges

Let S ∈ S be a possible range, i.e., a possible set of values of some physically relevant quantity y. Let us also
assume that for this range S, the values s1, s2, . . . , sk, . . . are all possible (i.e., sk ∈ S), and that the sequence
sk converges to a certain number s. In this case, no matter how accurately we compute s, we will always find
a number sk that is indistinguishable from s (and possible). Therefore, it is natural to assume that this limit
value s is also possible.

In other words, it is natural to assume that every set S ∈ S contains all its limit points, i.e., that it is a
closed set.

2.2 It is Sufficient to Consider Closed Classes of Sets

A similar requirement can be formulated for different sets S ∈ S.
Indeed, on the class of all bounded closed sets, there is a natural metric – Hausdorff distance dH(S, S′).

This distance is defined as the smallest ε > 0 for which S is contained in the ε-neighborhood of S′ and S′ is
contained in the ε-neighborhood of S. In more precise terms, the Hausdorff distance is the smallest number
ε for which

∀s ∈ S ∃s′ ∈ S′ (d(s, s′) ≤ ε)

and
∀s′ ∈ S′ ∃s ∈ S (d(s, s′) ≤ ε),

where d(s, s′) = |s− s′| is the standard distance between the points on the real line.
Informally, it means that if dH(S, S′) ≤ ε, and we only know the values s ∈ S and s′ ∈ S′ with accuracy

ε, then we cannot distinguish between the sets S and S′.
So, if the sets S1, S2, . . . , Sk, . . . are all possible (i.e., Si ∈ S), and the sequence of sets Sk converges to a

certain set S (i.e., dH(Sk, S)→ 0), then no matter how accurately we compute the values, we will always find
a set Sk that is indistinguishable from the set S (and possible). Therefore, it is natural to assume that this
limit set S is also possible.

In other words, it is natural to assume that the class S contains all its limit points, i.e., that it is a closed
class under the Hausdorff metric.

2.3 Towards Formalization of the Problem

We know that continuous dynamics functions are physically possible.
We assume that at least one function describing physical dynamics is discontinuous. In the simplest case,

we have a monotonic function of one variable that has a “jump”: it continuously grows until some threshold
value, then makes a jump, and then again continuously grows. In this case, the range of this variable is not
a single interval, it is a union of two intervals.

Thus, we arrive at the following definition.

Definition 1. A class S of closed bounded non-empty subsets of the real line is called a class of ranges if it
satisfies the following conditions:

(i) the class S contains an interval;
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(ii) the class S is closed under arbitrary continuous transformations, i.e., if S ∈ S and f(x) is a continuous
function, then f(S) ∈ S;

(ii) there exist a value x0 and a function f0(x) which is continuously increasing for x < x0 and for x > x0
and which has a “jump” at x0 (f0(x0−) < f0(x0+)) such that the class S is closed under f0, i.e., if
S ∈ S then f0(S) ∈ S; and

(iv) the class S is closed under Hausdorff metric.

2.4 Main Result

Theorem 1. The class of ranges coincides with the class of all bounded closed sets.

2.5 Proof

First, every two intervals can be obtained from each other by a continuous transformation – e.g., by a linear
function. Since the class S contains an interval and it is closed under arbitrary continuous transformations,
we can thus conclude that this class contains all possible intervals.

Let us take an arbitrary interval I = [a1, a2] that contains a point x0 inside. We have already shown that
this interval belongs to the class S. By the construction of a discontinuous function f0(x) as monotonic, for
this interval, the image f0(I) is the union of two disjoint intervals: [f0(a1), f(x0−)] ∪ [f(x0+), f0(a2)].

Now, let us consider unions of two disjoint intervals, i.e., sets of the type [a1, a2] ∪ [a3, a4] with a2 < a3.
Every two sets [a1, a2] ∪ [a3, a4] and [a′1, a

′
2] ∪ [a′3, a

′
4] of this type can be obtained from each other by a

continuous transformation – e.g., we can take a piece-wise linear transformation f(x) which maps:

• [a1, a2] into [a′1, a
′
2],

• [a2, a3] into [a′2, a
′
3], and

• [a3, a4] into [a′3, a
′
4].

Since the class S contains one such set and it is closed under arbitrary continuous transformations, we can
thus conclude that this class contains all possible two-interval sets.

Let us take an arbitrary two-interval set

S = [a1, a2] ∪ [a3, a4]

for which the second interval [a3, a4] contains a point x0 inside. We have already shown that this two-interval
set belongs to the class S. By the construction of a discontinuous function f0(x) as monotonic, for this
two-interval set, the image f0(S) is the union of three disjoint intervals:

[f0(a1), f0(a2)] ∪ [f0(a3), f0(x0−)] ∪ [f0(x0+), f0(a4)].

Now, let us consider unions of three disjoint intervals, i.e., sets of the type

[a1, a2] ∪ [a3, a4] ∪ [a5, a6]

with a2 < a3 and a4 < a5. Every two sets

[a1, a2] ∪ [a3, a4] ∪ [a5, a6]

and
[a′1, a

′
2] ∪ [a′3, a

′
4] ∪ [a′5, a

′
6]

of this type can be obtained from each other by a continuous transformation – e.g., we can take a piece-wise
linear transformation f(x) which maps:

• [a1, a2] into [a′1, a
′
2],
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• [a2, a3] into [a′2, a
′
3],

• [a3, a4] into [a′3, a
′
4],

• [a4, a5] into [a′4, a
′
5], and

• [a5, a6] into [a′5, a
′
6].

Since the class S contains one such set and it is closed under arbitrary continuous transformations, we can
thus conclude that this class contains all possible three-interval sets.

By applying f0, we can now conclude that the class S contains all 4-interval sets, etc., and any finite
unions of intervals.

Let us now prove that the class S contains an arbitrary bounded closed set S.
Indeed, for every ε, we can consider an interval-based approximation Sε to the set S, by taking the union

Sε of all the grid intervals [k · ε, (k+ 1) · ε] (with integer k) for which [k · ε, (k+ 1) · ε]∩S 6= ∅. One can easily
check that in the limit ε→ 0, we have Sε → S. Thus, from the fact that the class S contains all finite unions
of intervals Sε, we conclude that the class S must also contain their limit S.

The theorem is proven.

3 How Discontinuities Affect the Computational Complexity of the
Prediction Problem

3.1 Computational Complexity of the Prediction Problem: Interval Uncertainty,
Linear Functions

Before we discuss how discontinuities affect the computational complexity of the prediction problem, let us
recall the computational complexity of the prediction problem in the continuous cases, i.e., under interval
uncertainty. Let us start with the simplest case of a linear function

y = f(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi.

In this case, substituting the (approximate) measured values x̃i, we get the approximate value

ỹ = a0 +
n∑

i=1

ai · x̃i

for y.
The approximation error ∆y = ỹ − y of this approximation can be described as

∆y =
n∑

i=1

ai ·∆xi,

where each input error ∆xi can take any value from −∆i to ∆i.

The sum
n∑

i=1

ai ·∆xi attains its largest possible value if each term ai ·∆xi in this sum attains the largest

possible value:

• If ai ≥ 0, then this term is a monotonically non-decreasing function of ∆xi, so it attains its largest value
at the largest possible value ∆xi = ∆i; the corresponding largest value of this term is ai ·∆i.

• If ai < 0, then this term is a decreasing function of ∆xi, so it attains its largest value at the smallest
possible value ∆xi = −∆i; the corresponding largest value of this term is −ai ·∆i = |ai| ·∆i.

In both cases, the largest possible value of this term is |ai| ·∆i, so, the largest possible value of the sum ∆y is

∆ = |a1| ·∆1 + . . .+ |an| ·∆n.

Similarly, the smallest possible value of ∆y is −∆.
Hence, the interval of possible values of ∆y is [−∆,∆], and the interval of possible values of the actual

value y is [ỹ −∆, ỹ + ∆].
The corresponding range can be computed in linear time, i.e., efficiently.
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3.2 Computational Complexity of the Prediction Problem: Interval Uncertainty,
Quadratic (and Higher Order) Functions

Already for quadratic functions

y = f(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑
j=1

aij · xi · xj ,

the problem of computing the exact range

y = f(x1, . . . ,xn) = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

over interval inputs xi ∈ xi = [x̃i −∆i, x̃i + ∆i] is, in general, NP-hard; see, e.g., [4, 13].

3.3 What is NP-Hard? A Brief Description

NP-hard means, crudely speaking, that no feasible (polynomial time) algorithm can compute the exact end-
points of the range y for all possible intervals x1, . . . ,xn. (Strictly speaking, this interpretation is only true
under the widely believed but still unproven hypothesis that P6=NP.

3.4 What is NP-Hard? A More Detailed Description

To be more precise, it is well known that some algorithms are practically useful, while some other algorithms
are computationally useless: even for reasonable size inputs, they require time which exceeds the number of
particles in the Universe. This distinction is very different to formalize. Usually:

• algorithms for which the computation time tA(x) is bounded by some polynomial P (n) of the length
n = len(x) of the input (e.g., linear-time, quadratic-time, etc.) are practically useful, while

• for practically useless algorithms, the computation time grows with the size of the input much faster
than a polynomial.

In view of this empirical fact, in theoretical computer science, algorithms are usually considered feasible if
their running time is bounded by a polynomial of n. The class of problems which can be solved in polynomial
time is usually denoted by P; see, e.g., [11].

Not all practically useful problems can be solved in polynomial time. To describe such problems, researchers
have defined several more general classes of problems. One of the most well known classes is the class NP. By
definition, this class consists of all the problems which can be solved in non-deterministic polynomial time –
meaning that if we have a guess, we can check, in polynomial time, whether this guess is a solution to our
problem.

Most computer scientists believe that NP6=P, i.e., that some problems from the class NP cannot be solved
in polynomial time. However, this inequality has not been proven, it is still an open problem. What is known is
that some problems are NP-hard, i.e., any problem from the class NP can be reduced to each of these problems
in polynomial time. One of such NP-hard problems is the problem SAT of propositional satisfiability: given
a propositional formula F , i.e., a formula obtained from Boolean (yes-no) variables x1, . . . , xn by using &, ∨,
and ¬, check whether there exist values x1, . . . , xn which make this formula true.

NP-hardness of SAT means that if NP6=P (i.e., if at least one problem from the class NP cannot be solved
in polynomial time), then SAT also cannot be solved in polynomial time. In other words, SAT is the hardest
of the problems from this class.

It is known that all the problems from the class NP can be solved in exponential time. Indeed, for a
problem of size n, there are ≤ an possible guesses, where a is the size of the corresponding alphabet, so we
can simply try all these guesses one by one.

3.5 Computational Complexity of the Prediction Problem: General Uncertainty,
Linear Functions

We have already mentioned that due to possible discontinuities, the range of possible values of each input
xi is, in general, different from the interval; there may be gaps – specifically, it can be equal to an arbitrary
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bounded closed set. In particular, when each gap is the largest possible, this range can be equal to the 2-point
set {xi, xi}.

Let us show that for such 2-point inputs, the problem of computing the range becomes NP-hard already
for linear functions f(x1, . . . , xn).

The proof is typical proof of NP-hardness: we reduce a known NP-hard problem to our problem. Specifi-
cally, we take the partition problem [11]. In this problem, we are given n positive integers s1, . . . , sn, and we

must check whether there exist values εi ∈ {−1, 1} for which
n∑

i=1

εi · si = 0. We will reduce each particular

case of this problem to the following particular case of our problem: a0 = 0, ai = si, xi = −1, and xi = 1 for
all i. For the resulting linear function

y = f(x1, . . . , xn) =
n∑

i=1

si · xi,

0 belongs to the range

f({x1, x1}, . . . , {xn, xn}) = {f(x1, . . . , xn) : x1 ∈ {x1, x1}, . . . , xn ∈ {xn, xn}}

if and only if the original problem has a solution. The reduction is proven, hence our problem is indeed
NP-hard.

Comment. This result was, in effect, proven in [4, 8]. The difference is that in [4, 8], this NP-hardness was
proven to justify the use of intervals, while we already know that we have to go beyond intervals, so our
NP-hardness is the (inevitable) complexity of an important practical problem.

4 Conclusions

One of the main tasks of science and engineering is to use the current values of the physical quantities for
predicting the future values of the desired quantities. Due to the measurement inaccuracy, we usually know
the current values of the physical quantities with interval uncertainty. Traditionally, it is assumed that all
the processes are continuous; as a result, the range of possible values of the future quantities is also known
with interval uncertainty.

However, in many practical situations (such as phase transitions), the dependence of the future values
on the current ones becomes discontinuous. In this paper, we have shown that in such cases, initial interval
uncertainties can lead to arbitrary bounded closed range of possible values of the future quantities. We have
also shown that the possibility of such a discontinuity may drastically increase the computational complexity
of the corresponding range prediction problem: e.g., for linear functions, the complexity increases from linear
time to NP-hard.
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