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Abstract

In decision theory, a traditional way to describe the user’s preferences is to use a utility function. Pref-
erences determine the utility function uniquely – modulo linear transformations (re-scaling). In practice,
user’s preferences are often probabilistic: when presented with the choice between the same two alterna-
tives A and A′, the user may sometimes select A and sometimes select A′. Since deterministic preferences
are described by utilities, it is natural to describe probabilistic preferences by random utilities. In this
paper, we show that, similar to the deterministic case, random utilities are also uniquely determined by
the user preferences.
c©2010 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Utility: a standard way to describe preferences. To describe user’s preferences, traditionally, the
notion of a utility is used; see, e.g., [1, 3].

To assign numerical values to different alternatives, we must fix two alternatives:

• a very negative alternative A− (such as losing a large amount of money) and

• a very positive alternative A+ (such as winning a large amount of money).

For every real number p ∈ [0, 1], we can now define a lottery L(p) in which the outcome is A+ with probability
p and A− with the remaining probability 1− p.

• When p = 1, the corresponding lottery L(1) coincides with the positive alternative A+.

• When p = 0, the corresponding lottery L(0) coincides with the negative alternative A−.

In general, the larger the value p, the larger the probability of the positive outcome A+ and thus, the more
preferable the lottery A(p). If we denote the fact that to the user, an alternative A is better than the
alternative A′ by A′ < A, we can then conclude that if p < p′, then L(p) < L(p′).

The lotteries L(p) corresponding to different values p ∈ [0, 1] thus form a continuous scale going from
the negative alternative L(0) = A− to the positive alternative L(1) = A+. Since we selected A− as a very
negative alternative and A+ as a very positive alternative, most alternatives A are in between A− and A+.
Since A− = L(0) < A < L(1) = A+, it is reasonable to assume that there exists an intermediate value
p ∈ [0, 1] for which the alternative A is equivalent to the lottery L(p): A ≡ L(p). This value p is called the
utility u(A) of the alternative A.

In particular, according to this definition, the original alternatives A− and A+ have utilities u(A−) = 0
and u(A+) = 1.
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Expected utility: description and justification. One of the main objectives of decision theory is to
help the user select the best actions. To make this selection, we must characterize the quality of different
actions.

Let us assume that the action a can lead to n possible outcomes A1, . . . , An. For each outcome Ai, we
know its probability pi (so that p1 + . . .+ pn = 1) and its utility ui. How can we describe the quality of this
action?

The action a is, in effect, a lottery in which we get each alternative Ai with the corresponding probability
pi. By definition of utility, to the user, each alternative Ai is, in each turn, equivalent to a lottery L(ui) in
which we get A+ with probability ui and A− with the remaining probability 1 − ui. Thus, the action a is
equivalent to the compound lottery in which:

• with probability p1, we launch the lottery L(u1);

• with probability p2, we launch the lottery L(u2);

• . . . ; and

• with probability pn, we launch the lottery L(un).

Each lottery L(ui) results either in A+ or in A−. Thus, the ultimate outcome of the above compound lottery
is either A+ or A−. The probability to get A+ in this compound lottery can be computed by using the formula
of the full probability:

Prob(A+) = Prob(launching L(u1)) · Prob(A+|launching L(u1)) + . . .+

Prob(launching L(un)) · Prob(A+|launching L(un)) = p1 · u1 + . . .+ pn · un. (1)

Thus, the action a is equivalent to a lottery L(u), with

u = p1 · u1 + . . .+ pn · un. (2)

By definition of the utility, this means that the utility u of an action is equal to the expression (2). In other
words, the utility u of the action is equal to the expected value p1 ·u1 + . . .+pn ·un of the utilities of different
outcomes.

Each action a is thus equivalent to the lottery L(u), where u is the utility of this action. So, comparing
different actions a, a′, . . . , is equivalent to comparing the corresponding lotteries L(u), L(u′), . . . The higher
the value u, the more preferable the lottery. Thus, we must select the action with the largest value of expected
utility.

How unique are utility values? The numerical values of the utilities ui depend on the selection of the
alternatives A− and A+. One can show that if we select different alternatives A′− and A′+, then the resulting
utilities u′i can be obtained from the original ones by an appropriate linear transformation: u′i = a · ui + b for
some a > 0 and b.

Thus, in general, the utility function is defined uniquely modulo linear transformation. If we restrict
ourselves to normalized utilities, i.e., utilities for which, for given two alternatives A− and A+ we have

u−
def
= u(A−) = 0 and u+

def
= u(A+) = 1, then preferences uniquely determine utility values.

In practice, preferences are often probabilistic. The traditional decision making theory is based on
the assumption that the user’s preferences are deterministic, i.e., that when presented with a choice between
two alternatives A and A′, the user will always choose the same one.

In practice, preferences are often probabilistic: when the alternatives A and A′ are close to each other,
a user often selects one of the them at random, so that when presented with the same choice, the user can
make different choices at different times.
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Random utilities: a reasonable way to describe probabilistic preferences. Probabilistic preferences
mean that a user is not sure about his or her own preferences. For example, when

• sometimes A is preferred to A′ and

• sometimes, A′ is preferred to A,

this means that the user cannot decide between two different models:

• one in which A is better and

• one in which A′ is better.

Different probabilities of different decisions mean that the user selects different models with different proba-
bilities. Each of these models can be described by certain values of the utilities u1 = u(A1), . . . , un = u(An).

Thus, random preferences mean that instead of a fixed vector u
def
= (u1, . . . , un), we can have different vectors

u with different probabilities.
A situation in which we have different vectors with different probabilities is called a random vector – just

like a situation in which we have different numbers with different probabilities is called a random number. In
these terms, instead of a deterministic utility vector, we now have a random utility vector.

A natural question: are random utilities uniquely determined by the user preferences? We
have mentioned that for deterministic preferences, the utility function is uniquely determined by the user
preferences – provided that we normalize it by setting u(A−) = 0 and u(A+) = 1. We thus arrive at a natural
question: Is the random utility also uniquely determined by the user preferences?

What we do in this paper. In this paper, we show that indeed, uniquely of utilities can be extended to
the probabilistic case. This paper expands on the preliminary results published in [2].

2 Formulation of the Problem in Precise Terms

Let us describe the problem in precise terms.

Definition 1. Let an integer n be given.

• By a utility vector, we mean an n-dimensional real-valued vector

u = (u1, . . . , un).

• By a lottery, we mean a collection p = (p−, p1, . . . , pn, p+) of n+ 2 non-negative numbers pi ≥ 0 whose
sum is equal to 1:

p− + p1 + . . .+ pn + p+ = 1.

• For each utility vector u = (u1, . . . , un) and each lottery

p = (p−, p1, . . . , pn, p+),

the utility of a lottery is defined as the value

p · u def
= p− · 0 + p1 · u1 + . . .+ pn · un + p+ · 1. (3)

Discussion. In other words, p · u is the expected utility provided that we take u− = 0 and u+ = 1.
For each utility vector u,

• we select a lottery p over a lottery p′ if u · p > u · p′, and

• we consider the lotteries p and p′ to be of equal value if u · p = u · p′.

For a random utility vector u, it is reasonable to define the probability of preferring p to p′ as the probability
that u · p > u · p′. Thus, the definition of the random utility vector must guarantee that such probabilities
exist:
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Definition 2. By a random utility vector, we mean a probability measure P on the set of all utility vectors
for which for every two lotteries p and p′, the set {u : u · p > u · p′} is measurable.

Discussion. We would like to also require that the set {u : u · p = u · p′} is also measurable. However, this
requirements follows from Definition 2. Indeed, the condition u · p = u · p′ simply means that we do not have
u · p > u · p′ and we do not have u · p′ > u · p. Thus, the set {u : u · p = u · p′} is a complement to the union of
two (disjoint) measurable sets {u : u · p > u · p′} and {u : u · p′ > u · p} and is, thus, itself measurable – with
the probability

P (u · p = u · p′) = 1− P (u · p > u · p′)− P (u · p′ > u · p). (4)

3 Main Result

Now, we are ready to formulate and prove our main uniqueness result.

Definition 3. Let P be a random utility vector, and let p and p′ be lotteries. By the probability P (p > p′)
that p is preferable to p′ mean a value

P (p > p′) = P (u · p > u · p′). (5)

Main uniqueness result. Let P1 and P2 be random utility vectors which lead to the same preference
probabilities for every two lotteries p and p′, i.e., for which

P1(p > p′) = P2(p > p′) (6)

for all p and p′. Then, P1 = P2.

Discussion. In other words, a random utility vector is uniquely determined by the user preferences.

Proof: first comment. As we have mentioned, from the fact that

P1(p > p′) = P2(p > p′) (7)

for all p and p′, we can also conclude:

• that P1(p = p′) = P2(p = p′) for all p and p′, and thus,

• that P1(p ≥ p′) = P2(p ≥ p′) for all p and p′.

Proof: reduction to characteristic functions. It is known that a probability measure can be uniquely

reconstructed from its characteristic function χ(ω)
def
= E[exp(i · ω · u)], where i

def
=
√
−1, ω = (ω1, . . . , ωn) and

ω · u def
= ω1 · u1 + . . .+ ωn · un. (8)

The characteristic function is, in effect, the Fourier transform of the probability measure.
Thus, to show that the probability measures P1 and P2 coincide, it is sufficient to prove that their char-

acteristic functions are equal.

Proof: reduction to cdf of linear combinations of ui. For each vector ω, the corresponding value of
the characteristic function is uniquely determined by probability distribution of the corresponding random

variable U
def
= ω1 · u1 + . . .+ ωn · un. Thus, to prove that the characteristic functions of P1 and P2 are equal,

it is sufficient to prove that for every ω, both probability measures P1 and P2 lead to the same probability
distribution for U , i.e., to the same cumulative distribution function

F (t)
def
= P (U ≤ t) = P (ω1 · u1 + . . .+ ωn · un ≤ t). (9)

So, to prove that P1 = P2, it is sufficient to prove that for all possible values of ω1, . . . , ωn, and t, we have

P1(ω1 · u1 + . . .+ ωn · un ≤ t) = P2(ω1 · u1 + . . .+ ωn · un ≤ t). (10)
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Proof: case of positive t > 0. Let us start with the case of positive t. For t > 0, the inequality
ω1 · u1 + . . .+ ωn · un ≤ t is equivalent to

a1 · u1 + . . .+ an · un ≤ 1, (11)

where we denoted ai
def
= ωi/t. Thus, to prove the equality (10) for positive t > 0, it is sufficient to prove that

for all possible real numbers a1, . . . , an, we have

P1(a1 · u1 + . . .+ an · un ≤ 1) = P2(a1 · u1 + . . .+ an · un ≤ 1). (12)

We know that for every two probability vectors p and p′, the inequality p · u ≥ p′ · u has the same probability
under the probability measures P1 and P2. This inequality has the form

p1 · u1 + . . .+ pn · un + p+ ≥ p′1 · u1 + . . .+ p′n · un + p′+. (13)

Thus, to prove the equality (12), it is sufficient to find the vectors p and p′ for which the inequality (13) is
equivalent to (11). By moving all the terms of (13) which are proportional to ui into the right-hand side and
all other terms to the left-hand side, we can reduce (13) to the following inequality

(p′1 − p1) · u1 + . . .+ (p′n − pn) · un ≤ p+ − p′+. (14)

When p+ > p′+, we can divide both sides of (14) by the positive difference p+ − p′+ and get the equivalent
inequality

p′1 − p1
p+ − p′+

· u1 + . . .+
p′n − pn
p+ − p′+

· un ≤ 1. (15)

For this inequality to be equivalent to (8), we must make sure that for all i from 1 to n, we have

ai =
p′i − pi
p+ − p′+

. (16)

Let us denote ε
def
= p+ − p′+, then (16) means that

ai =
p′i − pi
ε

, (17)

i.e., that
p′i = pi + ε · ai. (18)

Let us choose p− = p1 = . . . = pn = p+ =
1

n+ 2
. By definition of ε as ε = p+ − p′+, we have

p′+ =
1

n+ 2
− ε. (19)

From (18), we get

p′i =
1

n+ 2
+ ε · ai. (20)

The value p′− can be determined from the condition that the sum of all the probabilities is 1, as

p′− = 1− p′1 − . . .− p′n − p′+. (21)

Substituting the formulas (19) and (20) into this expression, we conclude that

p′− =
1

n+ 2
+ ε ·

(
1−

n∑
i=1

ai

)
. (22)

For the values (19), (20), and (22) to represent a lottery, we must make sure that all the values p′−, p′i, and

p′+ are non-negative. When ε→ 0, these values all tend to a positive number
1

n+ 2
. Thus, for a sufficiently

small ε > 0, they are indeed all positive. For this ε and for the corresponding values p and p′, the inequality
(13) is equivalent to (11).

Thus, from the fact that the preference probabilities coincide we deduce the desired equality (10).



Journal of Uncertain Systems, Vol.4, No.4, pp.306-311, 2010 311

Proof: case of t = 0. For t = 0, the desired inequality has the form

ω1 · u1 + . . .+ ωn · un ≤ 0. (23)

We want to find the values p and p′ for which this inequality is equivalent to

(p′1 − p1) · u1 + . . .+ (p′n − pn) · un ≤ p+ − p′+. (24)

For this, we take p− = p1 = . . . = pn = p+ =
1

n+ 2
, p′+ = p+ =

1

n+ 2
, p′i = pi + ε · ωi for some small ε > 0,

and p′− = 1− p′1 − . . .− p′n − p′+.
Similarly to the case t > 0, for sufficiently small ε, the resulting values p′−, p′i, and p′+ are all non-negative

and thus, form a lottery. For this lottery, the desired inequality (23) is equivalent to the inequality (24)
corresponding to comparing the lotteries p and p′. Thus, from the fact that the preference probabilities
coincide, we conclude that the probabilities of satisfying the inequality (23) also coincide. So, we get the
desired equality (10) for t = 0 as well.

Proof: auxiliary result for t > 0. Similarly to the inequality (10), we can similarly prove that

P1(ω1 · u1 + . . .+ ωn · un < t) = P2(ω1 · u1 + . . .+ ωn · un < t) (25)

for all ω1, . . . , ωn, and t > 0.

Proof: case of t < 0. If we change the signs of all the values ω1, . . . , ωn, and t, then the inequality (10) for
t < 0 takes the equivalent form

P1(ω′1 · u1 + . . .+ ω′n · un ≥ t′) = P2(ω′1 · u1 + . . .+ ω′n · un ≥ t′), (26)

where we denoted ω′i
def
= −ωi and t′

def
= −t. Here, t′ > 0. The probability that U ′

def
= ω′1 ·u1 + . . .+ω′n ·un ≥ t′

is equal to 1 minus the probability that U ′ < t′:

P1(ω′1 · u1 + . . .+ ω′n · un ≥ t′) = 1− P1(ω′1 · u1 + . . .+ ω′n · un < t′); (27)

P2(ω′1 · u1 + . . .+ ω′n · un ≥ t′) = 1− P2(ω′1 · u1 + . . .+ ω′n · un < t′). (28)

We already know, from the formula (25), that

P1(ω′1 · u1 + . . .+ ω′n · un < t′) = P2(ω′1 · u1 + . . .+ ω′n · un < t′). (29)

Thus, we have
P1(ω′1 · u1 + . . .+ ω′n · un ≥ t′) = 1− P1(ω′1 · u1 + . . .+ ω′n · un < t′) =

1− P2(ω′1 · u1 + . . .+ ω′n · un < t′) = P2(ω′1 · u1 + . . .+ ω′n · un ≥ t′), (30)

i.e., the desired equality (26).
We can considered all possible cases; thus, our main statement is proved.

Acknowledgments

The authors are thankful to Sa-aat Niwitpong and Vladik Kreinovich for their help.

References

[1] Fishburn, P.C., Utility Theory for Decision Making, Wiley, New York, 1970.

[2] Kosheleva, O.M., and V. Kreinovich, Uniqueness Theorem for Random Utility Functions, Technical Report, In-
formatika Research Center, St. Petersburg, Russia, 1989 (in Russian).

[3] Luce, R.D., and H. Raiffa, Games and Decisions: Introduction and Critical Survey, Dover, New York, 1989.


	jus-4-4-9 Proof.pdf
	Formulation of the Problem
	Formulation of the Problem in Precise Terms
	Main Result




