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Abstract

How many points should we allocate to different assignments and tests? to different problems on a
test? Usually, professors use subjective judgment to allocate points. In this paper, we provide an objective
procedure for allocating points.
c©2010 World Academic Press, UK. All rights reserved.
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1 Formulation of the Problem

Points need to be allocated. The overall grade for a class is formed by adding the grades for different
assignments and tests. In the syllabus, it is usually described that, e.g., the first test is worth 10 points, the
second test is worth 25 points, etc., with the total of 100 points.

Example. For a better understanding, let us start with a simple example. Suppose that we allocate:

• 10 points to the first test,

• 40 points to the second test, and

• 50 points to the final exam.

Suppose that a student s got:

• gs1 = 80 points out of 100 on the first test,

• gs2 = 75 points out of 100 on the second test, and

• gs3 = 90 points out of 100 on the final exam.

In this case, the student’s overall grade gs for this class is

gs = p1 · gs1 + p2 · gs2 + p3 · gs3 = 0.1 · 80 + 0.4 · 75 + 0.5 · 90 = 8.0 + 30.0 + 45.0 = 83, (1)

where

p1 =
10

100
= 0.1, p2 =

40

100
= 0.4, p3 =

50

100
= 0.5. (2)

Points need to be allocated (cont-d). Similarly, the grade for a test is formed by adding the grades
earned on each of the problems. In the text of the test, it is usually described how many points each problem
is worth.
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Allocating points is important. An appropriate allocation of points is very important. For example, if
we allocate almost all the points to the final exam, some students will see no reason to study hard during the
semester. They will try to cram the material during the finals, and as a result, even if they pass the finals,
their knowledge of the material will not be as good as the knowledge of the students who studied diligently
during the semester.

On the other hand, if we allocate too few points to the final exam, then some students will have no
incentive to review the class material for the final exam. As a result, their knowledge of the material that
was studied in the beginning of the semester will be not as good as the knowledge of those students who did
review this material at the end of the class.

How points are allocated now. At present, the points for different assignments, tests, and problems are
allocated based on the teacher’s subjective experience. As a result, there is a high variety of point allocation.

Formulation of the problem. Since it is very important to properly allocate points for different assign-
ments, tests, and problems, it is desirable to find a more objective ways for such allocation.

Such an objective way is presented in this paper. This paper capitalizes on the preliminary ideas described
in [1].

2 A New Approach

Our main idea. Most classes are prerequisites for other classes (or for some qualification exams). For
example, Pre-calculus is a prerequisite for Calculus I, Calculus I is a prerequisite for Calculus II, etc. For such
classes, it is desirable to allocate the points in such a way that a success in this class will be a good indication
of the success in the next class.

If we grade too easily, students may be happier with their good grades, but some of them will pass the
class without acquiring the knowledge needed for the next class – and so they may fail this next class. On
the other hand, if we grade too harsh, we unnecessarily fail many students who may have not learned all the
details but whole knowledge is actually good enough to successfully pass the next class.

From this viewpoint, the best way to allocate points is to select the allocations for which the resulting
grade is the best predictor for the grade in the next class.

Available data. To find the best allocation of points, we must use the grades that the students got for
different assignments and tests, and the grades they got in the next class.

Let us denote the total number of assignments and tests by T , and let us denote the total number of
students who took this class in the past by S. Let us denote the grade of student s (1 ≤ s ≤ S) on assignment
or test t (1 ≤ t ≤ T ) by gst. The grade of student s at the next class (for which this class is a prerequisite)
will be denoted by ns.

From the idea to the algorithm. We want to predict the value ns based on the grades gs1, . . . , gsT . For
such a prediction, it is natural to start with a linear regression

ns ≈ a0 + a1 · gs1 + . . . + aT · gsT . (3)

The coefficients at can be found from the Least Squares method (see, e.g., [2]), by minimizing the sum

S∑
s=1

(a0 + a1 · gs1 + . . . + aT · gsT − ns)
2. (4)

The standard Least Squares formulas lead to the following system of linear equations for determining the
coefficients at:

a0 + a1 · g1 + . . . + aT · gT = n; (5)

at + a1 · g1 · gt + . . . + aT · gT · gt = n · gt 1 ≤ t ≤ T, (6)
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where

gt
def
=

1

S

S∑
s=1

gst, n
def
=

1

S

S∑
s=1

ns, gt · gt′
def
=

1

S

S∑
s=1

gst · gst′ . (7)

The resulting coefficients are not exactly points, since the values a1, . . . , aT do not necessarily add up to 1.
To get the desired values of the points p1, . . . , pT , we therefore need to normalize these values and take

pt =
at
a
, (8)

where

a
def
= a1 + . . . + aT . (9)

For these values, we have at = pt · a and thus, the above linear regression formula takes the form

ns ≈ a0 + a1 · gs1 + . . . + aT · gsT = a0 + a · gs, (10)

where

gs
def
= p1 · gs1 + . . . + pT · gsT . (11)

Thus, we arrive at the following algorithm.

Allocating points: main algorithm. Based on the grades gs1, . . . , gsT , and ns, we first compute the
averages

gt
def
=

1

S

S∑
s=1

gst, n
def
=

1

S

S∑
s=1

ns, gt · gt′
def
=

1

S

S∑
s=1

gst · gst′ . (12)

Then, we solve the following system of T + 1 linear equations to find T + 1 unknowns a0, a1 . . . , aT :

a0 + a1 · g1 + . . . + aT · gT = n; (13)

at + a1 · g1 · gt + . . . + aT · gT · gt = n · gt 1 ≤ t ≤ T. (14)

After that, we compute the sum

a
def
= a1 + . . . + aT (15)

and we compute the desired point values pt as

pt =
at
A
. (16)

For each student s, the resulting class grade

gs
def
= p1 · gs1 + . . . + pT · gsT (17)

can be used to predict the grade ns in the next class as

ns ≈ a0 + a · gs. (18)

Discussion. One might expect that we would aim at finding the points for which ns ≈ gs. However, it is
reasonable to expect some decrease in knowledge between the classes, so ns ≈ a0 + a · gs, with a < 1, is a
more reasonable idea.

For example, in the University of Texas at El Paso’s Computer Science (CS) undergraduate program, the
passing grade for some classes is D (corresponding, crudely speaking, to 60 points out of 100). However, for
the classes that serve as prerequisites to other classes, the passing grade is C (70 points out of 100), because
it is understood that usually, student forget. So, to make sure that they have at least a D level knowledge of
the material by the time they reach the next class, we must make sure that they have a C level by the time
they finish the previous class.
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3 Additional Complications

Two iterations may be needed. In the previous text, we assumed that the grades for different assignments
reflect the students’ level of knowledge for different parts of the material. This is usually true when there
are enough points allocated to this assignment. However, if too few points are allocated to an assignment,
students may not spend as much time on it and thus, the corresponding grades may be low. If based on the
above procedure, we allocate more points to this assignment, students may take it more seriously and their
grades for this assignment may improve. This change in grades may require a re-allocation of points.

So, ideally, after we determine the initial grade allocations, we should then collect new grades data. After
we have collected enough grade data, we should then repeat the same procedure – to see if re-allocation of
points is necessary.

From the main algorithm to algorithms that cover more complex situations. In the derivation of
the above algorithm, we assumed that we have a class with a well-defined next class, and that for this next
class, the current class is the only prerequisite. We also assumed that linear regression is adequate.

Let us discuss what to do in more complex situations.

Case of multiple prerequisites. In some situations, there are several prerequisites for a class. For example,
in the above-mentioned CS program, there are two prerequisites for the Data Structures class: Discrete
Mathematics (DM) and Elementary Algorithms and Data Structures (CS2).

In such cases, we need to determine points for both prerequisite classes. Here, in addition to the grades
gs1, . . . , gsT for the first class, we also have grades g′s1, . . . , g

′
sT ′ for the second class. We want to find the

coefficients a0, a1, . . . , aT , a
′
1, . . . , a

′
T ′ for which

ns ≈ a0 + a1 · gs1 + . . . + aT · gsT + a′1 · g′s1 + . . . + a′T ′ · gsT ′ . (19)

The coefficients at and a′t′ can be found from the Least Squares method, by minimizing the sum

S∑
s=1

(a0 + a1 · gs1 + . . . + aT · gsT + a′1 · g′s1 + . . . + a′T ′ · g′sT ′ − ns)
2. (20)

The standard Least Squares formulas lead to the following system of linear equations for determining the
coefficients at and a′t′ :

a0 + a1 · g1 + . . . + aT · gT + a′1 · g′1 + . . . + aT · g′T ′ = n; (21)

at + a1 · g1 · gt + . . . + aT · gT · gt + a′1 · g′1 · gt + . . . + a′T ′ · g′T ′ · gt = n · gt; (22)

a′t′ + a1 · g1 · g′t′ + . . . + aT · gT · g′t′ + a′1 · g′1 · g′t′ + . . . + a′T ′ · g′T ′ · g′t′ = n · g′t′ , (23)

where, in addition to (7), we have

g′t′
def
=

1

S

S∑
s=1

g′st′ , gt · g′t′ = g′t′ · gt
def
=

1

S

S∑
s=1

gst · g′st′ , (24)

g′t · g′t′
def
=

1

S

S∑
s=1

g′st · g′st′ . (25)

To get the desired values of the points p1, . . . , pT , p
′
1, . . . , p

′
T ′ , we normalize these values and take

pt =
at
a
, p′t′ =

a′t′

a′
, (26)

where
a

def
= a1 + . . . + aT ; a′

def
= a′1 + . . . + a′T ′ . (27)

For these values, we have at = pt · a and a′t′ = p′t′ · a′ and thus, the above linear regression formula takes the
form

ns ≈ a0 + a · gs + a′ · g′s, (28)

where
gs

def
= p1 · gs1 + . . . + pT · gsT ; g′s

def
= p′1 · g′s1 + . . . + p′T · g′sT ′ . (29)
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Case of several follow-up classes. Another realistic situation is when for a given class, there are several
follow-up classes. For example, in the above-mentioned CS program, the Data Structures class is a pre-
requisite for several junior- and senior-level classes. In this case, for each student s, we have several grades
ns1, . . . , nsC for the follow-up classes.

To apply the above procedure, we can then take, as ns,

• either the smallest of these follow-up grades

ns = min(ns1, . . . , nsC); (30)

this will guarantee that the student is successful in all follow-up classes,

• or the average of these follow-up grades

ns =
ns1 + . . . + nsC

C
; (31)

this will guarantee that the student is successful on average in the follow-up classes.

Case of non-linear regression. If we have reasons to believe that linear regression does not adequately
capture the students’ success in the next classes, we may want to use quadratic regression, i.e., find the
coefficients at and att′ for which

ns ≈ a0 +
T∑

t=1

at · gst +
T∑

t=1

T∑
t′=1

att′ · gst · gst′ . (32)

The optimal values of the coefficients at and att′ can also be obtained from the Least Squares method. In this
case, the grade for the class will be obtained not as a weighted average of the grades for different assignments
and tests, but rather as a non-linear combination of these grades.

This non-linearity may sound unusual, but it is actually used in grading. For example, in some CS classes,
to get a C, students need to get at least a C average for the lab assignments (assignments t = 1, . . . , `) and at
least a C average for all the tests (assignments t = `+ 1, . . . , T ). Thus, in effect, we have a non-linear formula
for the class grade:

gs = min

(
gs1 + . . . + gs`

`
,
gs,`+1 + . . . + gs,T

T − `

)
. (33)
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