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Abstract

In many applications, we have numerous molecules that are obtained from a “template” molecule
like benzene C6H6 or cubane C8H8 by replacing some of its hydrogen atoms with other atoms or atom
groups (called ligands). Depending on how many original atoms are replaced and which ones are replaced,
we obtain a large number of different chemical substances. It is desirable to be able, based on the
measurements performed on a small number of such substances, to accurately predict the characteristics
(such as energy) of all similar substances.

Such predictions are very important, since, e.g. cubanes, while kinetically stable, are highly explo-
sive. As a result, at present, they are actively used as high-density, high-energy fuels and explosives,
and researchers are investigating the potential of using cubanes (and similarly high-energy molecules) in
medicine and nanotechnology.

In a 2007 paper in the Journal of Mathematical Chemistry, one of the authors (DJK) showed that
accurate predictions can be obtained by using the ideas of the famous MIT mathematician Gian-Carlo
Rota on partially ordered sets. In this paper, we show that similar predictions can be made by using much
simpler Taylor series techniques.
c©2010 World Academic Press, UK. All rights reserved.
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1 Formulation of the Chemical Situation

Need for new substances. One of the main objectives of chemistry is to design new molecules, and, more
generally, new chemical compounds which are efficient for various practical tasks. New substances have already
resulted in new materials for buildings and for spaceships, new explosives and new fuels, new medicines, etc.
New compounds are being designed and tested all the time.

Properties of new substances are difficult to predict. The main reason why new compounds need
to be tested is that it is very difficult to accurately predict the properties of the new substance. Often, it is
assumed that compound’s properties are related to the molecular structure associated with the compound, and
compounds with similar molecular structure have similar properties. This is known as the QSAR (Quantitative
Structure-Activity Relationship) hypothesis. With such a hypothesis at hand and reasonable approximate
techniques, we can predict approximate values of a substance’s characteristics; based on these predictions,
we can consider the corresponding molecule to be potentially useful for a given application. However, the
approximate prediction methods are usually very crude. As a result, we do not know whether the resulting
molecule is actually useful or not until we have actually synthesized this molecule and measured the values of
the corresponding characteristics.

For example, this is how new medicines are designed: a large number of different promising substances
are synthesized and tested, but only a few turn out to be practically useful.

∗Corresponding author. Email: jenava@miners.utep.edu (J. Nava).
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Comment. To avoid confusion, we should mention that in chemistry, relevant numerical characteristics are
called numerical properties, or simply “properties”, for short. We will therefore use this term “numerical
properties” in the current text.

This may be somewhat confusing to computer science readers because in computer science, a property is
something which can be either true or false, but cannot have numerical values: e.g., “x is positive” (x > 0) is
a property, but the value x itself is not called property in computer science.

New substances are difficult to synthesize: an example. Synthesis of a new compound is usually
a very difficult task, a task that takes a large amount of time and resources. As an example, we can cite
cubanes, a family of substances that include the “basic” cubane molecule C8H8
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and cubane derivatives, i.e., substances which are obtained from the basic cubane by replacing its hydrogen
atoms H with other atoms or atom groups (called ligands). For example, if we replace each hydrogen atom
with a methyl group CH3, we obtain the following cubane derivative:
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For simplicity, such substituted molecules are often denoted by placing a bold dot in places where substitution
occurred:
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After the synthesis of cubane, attained by Eaton and Cole in 1964 [2], a wealth of cubane derivatives and
cubane-like compounds have been synthesized. Cubanes are kinetically stable and highly reactive; as a result,
at present, they (specially nitrocubanes, with NO2 ligands) are actively used as high-density, high-energy fuels
and explosives, and researchers are investigating the potential of using cubanes (and similarly high-energy
molecules) in medicine [4] and nanotechnology [3].

Comment. The above example is about the synthesis of an organic compound, but similar problems appear
in inorganic chemistry as well.

Step-by-step transitions as a way to predict properties of derivative compounds. As we have
mentioned earlier, predictions of properties of chemical compounds are based on the QSAR (Quantitative
Structure-Activity Relationship) hypothesis, according to which compounds with similar molecular structure
have similar properties. In particular, this means that if the compound b is obtained from the compound a
by adding a single ligand, then the properties of the compound b should be similar to the properties of the
compound a.

When b is obtained from a by adding several ligands, the similarity between the molecular structures of a
and b is smaller and therefore, the properties of a and b are not as similar to each other. Thus, to predict the
properties of a derivative compound with several ligands, it is reasonable to consider a sequence of molecules
in which the next one is obtained by making a small change to the previous one:

• we start with a known basic molecule,

• we make small changes step-by-step, and

• we end up with the desired molecule.

For some substances, this is exactly how they are synthesized: by adding certain ligands in a step-by-step
manner to a basic substance.

In many cases, this is not how the compound is synthesized, but it is a reasonable way to predict the
properties of the desired compound. For example, one can picture the octamethyl cubane (in which methyl
ligands CH3 are added to all 8 locations) as a sequence of methylations (adding the methyl ligand) starting
from cubane to obtain methyl cubane (with a single methyl added), afterwards to obtain dimethyl cubanes
(with two methyl ligands added), and so on to finally have the octamethyl cubane. The same step-by-step
approach can be imagined for additions or for eliminations over a basic molecule.
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The step-by-step approach can be helpful for prediction. As we have mentioned, it is usually difficult
to accurately predict the properties of a new substance before this substance is synthesized.

However, the step-by-step approach leads to the following idea: the properties of the generated molecules
change gradually, starting with the properties of the original molecule, and eventually resulting in the char-
acteristics of the desired new molecule.

So maybe knowing the properties of the substances at early stages of the step-by-step approach, one can
use such a knowledge to try to predict the properties of other substances related by the same step-by-step
procedure. Depending on the predicted numerical property one can decide whether or not to synthesize the
corresponding substance, which ends up saving time and resources.

Another example; benzene-based molecules. A similar step-by-step approach can be applied to other
substances, for example to benzene, C6H6, and its substituted derivatives. These substances are very practi-
cally important since most organic molecules contain benzene or benzene-based components.

Similarly to the cubanes case, instead of the usual detailed molecular representation of benzene and its
derivatives, we will use the following simplified graph representation:

@
@
@
@
@�
�
�
�
�

�
�
�
�
�@
@
@
@
@

@
@@�

�
�

�
�
�@
@@

⇒
t

@
@@�

�
�

�
�
�@
@@

⇒ . . .

Other examples of step-by-step substitutions are given in [7, 10].

Chemical problem. In all these cases, we have the following chemical problem. We have a step-by-step
process of designing a new chemical substance by sequential replacements. Based on the experimentally
determined values of the desired quantity for the original molecule and for the first few replacement results,
we would like to predict the values of this quantity for the molecules on all the stages of the replacement
process.
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2 The Importance of Symmetry

It is worth mentioning that molecules such as benzene or cubane have the following property of symmetry:
for every two atoms, we can find a rotation that moves the first atom into the position of the second one
while keeping the molecule configuration intact. For example, for benzene, rotation by 60◦ transforms the
first atom into the second one, the second into the third one, etc.
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This rotation transforms the molecule in which the first atom was replaced into the molecule in which the
second atom was replaced, etc. t

@
@
@�
��

�
�
�@
@@

1

⇒
t

@
@
@�
��

�
�
�@
@@ 2

⇒ . . .

b1 b2

A simple rotation does not change the chemical properties of a molecule – and hence, does not change
the values of any numerical property of the substance. Let us start with monosubstituted molecules, i.e.,
molecules in which a single ligand has been substituted. All the monosubstituted molecules can be obtained
from each other by rotation. We can therefore conclude that all these molecules have the same values of all
the numerical quantities.

Comment. In chemical terms, we can say that these molecules are equivalent and that they can be treated
as a single molecular species.

Similar rotation-related analysis can be applied to other benzene derivatives. Let us consider benzenes in
which two H atoms are replaced; in chemistry, such molecules are called disubstituted. The chemical properties
of these molecules depend on the relative location of the replaced H atoms. Three such locations are possible:

• In some molecules, two neighboring H atoms are replaced. This substitution is called ortho.

• In other molecules, the replaced H atoms are separated by the “distance” of 2, i.e., in which the replaced
atoms are not immediate neighbors, but immediate neighbors of immediate neighbors. This kind of
substitution is called meta.

• Finally, it is also possible that the replaced atoms are separated by the “distance” of 3. This substitution
is called para.

All the orthosubstituted molecules can be obtained from each other by rotation, and thus, have the same
values of all the numerical quantities: t
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Similarly, all the metasubstituted molecules can be obtained from each other by an appropriate rotation:t
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and all parasubstituted molecules are similarly equivalent to each other:t
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As a result, for molecules obtained from benzene by a double replacement, we have at most three different
molecular species, depending on whether the distance between the two replaced atoms is 1, 2, or 3 (ortho,
meta and para, respectively): t
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Cubanes have a similar result: there is only one monosubstituted cubane. For disubstituted cubanes, there
are 3 possible molecular structures depending on whether the distance between the two replaced atoms is 1,
2, or 3:
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This symmetry also reduces the number of multiple-atom replacement molecules. For example, for benzene,
when we take rotation symmetry into account, we conclude that there are only 3 different trisubstituted
structures (with 3 ligands): t

t
t

@
@@�

��

�
��@@

@

t
t

t@
@@�

��

�
��@@

@

t
tt

@
@@�

��

�
��@@

@



276 J. Nava et al.: Discrete Taylor Series as a Simple Way to Predict Properties of Chemical Substances

Tetrasubstitutions (with 4 ligands) can be described by listing the two (6 − 4 = 2) H atoms which have not
been substituted, so we also have 3 possible alternatives:
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For pentasubstitutions (with 5 ligands), we only need to describe a single non-substituted H atom:
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Finally, we have the completely substituted (hexasubstituted) molecule, the result of substituting all six H
atoms:
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Hence, in total we need to predict the numerical properties of

1 + 1 + 3 + 3 + 1 + 1 = 13

different molecules:

• the original nonsubstituted benzene molecule;

• the monosubstituted;

• three disubstituted;

• three trisubstituted;

• three tetrasubstituted;

• the pentasubstituted; and

• the completely substituted (hexasubstituted molecule.
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3 Predicting Properties: Approaches Using Partially Ordered Sets
(Posets)

First step: reduction to posets. To predict numerical properties of substances related by substitutions,
D. J. Klein and others have proposed approaches based on the notion of a partially ordered set (poset, for
short); see, e.g., [1, 5, 6, 7, 8, 9]. These approaches use the fact that the substitution reaction leads to a natural
(partial) ordering on the set of all the corresponding molecules: namely, a relation x ≤ y meaning that the
molecule y either coincides with x, or can be obtained from the molecule x by one or several substitutions.

Molecules are elements of this partially ordered set (poset, for short). Let n denote the number of molecules,
i.e., the number of elements in this set. For a molecule a from this set, let v(a) denote the corresponding
numerical property of a.

Values defined on posets. The problem of predicting the values v(a) defined on a poset occurs not only
in chemistry, the same problem occurs in other applications as well; see, e.g., [14]. To solve such problems,
Gian-Carlo Rota, a renowned mathematician from MIT, proposed the following idea [14]. We can represent
an arbitrary dependence v(a) as

v(a) =
∑
b: b≤a

V (b)

for some values V (b). The possibility to find n such values V (b) corresponding to n different elements b of
the poset comes from the fact that the above equations form a system of n linear equations (for n different
a). In the general case, a system of n linear equations with n unknown has a unique solution. (In principle,
there are degenerate cases when a system of n linear equations with n unknowns does not have a solution or
has an infinite number of different solutions, but in [14] it was proved that for posets we always have a unique
solution.)

Prediction on posets: general approach. The above formula by itself does not immediately lead to
a prediction algorithm since to use this formula for determining n values v(a), we need to know n different
values V (b). However, in practice, in many cases, some of the values V (b) turn out to be negligible.

If we know which values V (b) are negligible, we can replace them with 0s and thus, consider a model with
m < n non-zero parameters V (b). Once we have such an expression, we can then:

• measure the value v(a1), . . . , v(am) of the desired quantity v for m < n different elements a1, . . . , am;

• use the resulting system of m linear equations with m unknown parameters V (b) to find the values of
these parameters; and then

• use the known values of the parameters V (b) to predict all the remaining values v(a) (a 6= a1, . . . , am).

In practice, measurements are inevitably imprecise; to decrease the effect of the corresponding measurement
errors on the predicted values, it makes sense to measure more than m values v(ai). Then, we get more than
m equations with m unknowns V (b), i.e. we have an over-determined system of linear equations. To solve
this over-determined system of linear equations, we can, e.g., use the Least Squares method (see, e.g. [16]).

Towards chemical applications. In our chemical examples, we start with the original molecule, we per-
form a few (e.g. 1 or 2) substitutions, and measure the values v(a) for the resulting molecules.

The original molecule a0 is not obtained by substitution. So, by the definition of the partial order, the
only molecule b with b ≤ a0 is the molecule a0 itself. Thus, for the original molecule, we have v(a0) = V (a0).
So, by measuring the value v(a0), we thus determine the value V (a0) = v(a0) of the corresponding parameter
as well.

For a molecule a which is obtained by a monosubstitution from the original molecule a0, we have a0 ≤ a
and a ≤ a. Thus, the above expression for v(a) in terms of the parameters V (b) takes the form v(a) =
V (a0) + V (a). Since we already know V (a0), after measuring the value v(a), we determine the value V (a) as
V (a) = v(a)− V (a0).

For a molecule a which is obtained by two substitutions at two different places, we have a0 ≤ a, a ≤ a,
a1 ≤ a, and a2 ≤ a, where:
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• a1 is obtained from the original molecule by a single substitution (only) in the first place, and

• a2 is obtained from the original molecule by a single substitution (only) in the second place.

Here, we have v(a) = V (a0) +V (a) +V (a1) +V (a2). We already know the value V (a0). From the analysis of
single-substitution molecules, we know the value V (a1) and V (a2). Thus, we can determine the value V (a)
as V (a) = v(a)− V (a0)− V (a1)− V (a2).

At this stage, we have no information about the values V (b) corresponding to more complex molecules.
In general, these values can be positive or they can be negative. Since there is no information that would
enable us to prefer positive or negative values, it is reasonable, as a first approximation, to assume that the
unknown values are all 0s. Under this assumption, we can use the formula v(a) =

∑
b≤a

V (b) with b going over

0-, 1- and 2-substituted molecules, to predict all the remaining values of v(a).
If for the actually synthesized molecules, these predictions turn out to be not accurate enough, it makes

sense to perform additional measurements on trisubstituted molecules, find the values V (b) for such molecules,
and thus to attain a more accurate approximation to v(a).

The use of symmetry. As we have mentioned, in many practical cases, natural symmetries simplify the
problem. For example, for the benzene or for the cubanes, all monosubstituted molecules are equivalent and
thus, they have the exact same value of the desired quantity v. In this case, the values V (b) corresponding to
these molecules are also equal. For example, in the above formula

v(a) = V (a0) + V (a) + V (a1) + V (a2)

for the disubstituted molecule, we have V (a1) = V (a2).
It is therefore reasonable to treat these equal values as a single parameter, and rewrite, e.g. the above

formula as v(a) = V (a0) + 2V (a1) + V (a).
Let us illustrate this approach on the example of benzenes and cubanes.

First example: benzenes. In the benzenes example, to describe the value v(a) of the desired characteristic
v for all the molecules a, we need to find the values V (b) corresponding to the following molecules:

• the original benzene molecule b0,

• the monosubstituted molecule b1, and

• three different diatomic substitutions b12, b13, and b14 in which the distance between the substitution
locations is equal to, correspondingly, 1, 2, and 3 (ortho, metha and para disubstitutions, respectively):
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For every other molecule a, we approximate the value v(a) as

v(a) =
∑
b: b≤a

n(b) · V (b),

where n(b) is the number of different molecules b from which a can be obtained by substitution.
For example, for the following tetrasubstituted molecule b4
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we have 1 occurrence of the original benzene b0, 4 occurrences of a monosubstituted molecule b1, corresponding
to the molecules
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We also have 2 occurrences of the disubstituted molecule b12 in which the substitute locations are neighbors
(at distance 1):
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and two occurrences of the molecule b14 in which the distance between the substitutions is 3:
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Thus, for the above molecule b4, we have

v(b4) = V (b0) + 4V (b1) + 2V (b12) + 2V (b13) + 2V (b14).
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Second example: cubanes. In the cubanes example, to describe the value v(a) of the desired characteristic
v for all the molecules a, we need to find the values V (c) corresponding to the following molecules:

• the original cubane molecule c0,

• the monosubstituted molecule c1, and

• three different diatomic substitutions c12, c13, and c14 in which the distance between the substitution
locations is equal to, correspondingly, 1, 2, and 3:
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For every other molecule a, we approximate the value v(a) as

v(a) =
∑
c: c≤a

n(c) · V (c),

where n(c) is the number of different molecules c from which a can be obtained by substitution.
For example, for the following pentasubstituted molecule c5
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we have 1 occurrence of the original cubane c0, 5 occurrences of a monosubstituted molecule c1, corresponding
to the molecules
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We also have 5 occurrences of the disubstituted molecule c12 in which the substitute locations are neighbors
(at distance 1):
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4 occurrences of the molecule c13 in which the distance between the substitutions is 2:
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and 1 occurrence of the molecule c14 in which the distance between the substitutions is 3:

t

t

�
�
�

�
��

�
�
�

�
��



282 J. Nava et al.: Discrete Taylor Series as a Simple Way to Predict Properties of Chemical Substances

Results. As shown in [8], the resulting formulas lead to very good quality predictions of different quantities
such as energy, boiling point, vapor pressure at a certain temperature, etc.

Problems with the poset approach. Empirically, the poset-related cluster approaches has been very
successful. However, these approaches have the following two limitations.

First, these approaches are based on mathematical notions – such as the notion of a poset – with which
most chemists (and other users of these models) are not very familiar. From this viewpoint, it is desirable to
reformulate these approaches in terms of mathematical techniques which are more familiar to the users.

Second, the user’s confidence in the success of each computational approach is based largely on the previous
successes of this approach. As of now, the poset-related approaches have relatively few empirically successful
applications, much fewer than more well-known and widely used mathematical techniques. As a result, the
user’s confidence in the success of these new approaches is lower than for the more traditional approaches.
From this viewpoint, it would also be beneficial to show that the new approaches can be reformulated in more
familiar terms – this will increase the user’s confidence in these new approaches.

In this paper, we show that poset-related approaches can be indeed reformulated in terms of the technique
which is much more familiar to most users and which has a much longer history of successful applications: the
technique of Taylor series. In fact, we will show that poset-based approaches are equivalent to the approaches
based on Taylor series.

4 Discrete Taylor Series: Main Idea

Prediction: one of the main objectives of science. One of the main objectives of science and engineer-
ing is to predict the results of different situations. For example, in Newton’s mechanics, we want to predict
the positions and velocities of different objects (e.g., planets) at future moments of time.

In chemistry, there have also been many interesting predictions. Some of these predictions came from
the classification of chemical elements and/or substances; see, e.g., [12, 15]. The classical example of such
predictions are predictions made possible by Mendeleev’s Periodic Law. In chemistry, there are also many
examples of successful predictions of properties based on the molecular structure.

In some situations, we know the exact equations that describe the objects of interest. In such situations,
we face a purely mathematical problem: to solve these equations and thus compute the value y of the desired
characteristic based on the known values of the parameters x1, . . . , xn that describe the given objects.

Taylor series: a standard tool for solving (continuous) problems in science and engineering. In
other situations, however, we do not know the exact equations (or, as is the case in many chemical problems,
the equations are too difficult to be efficiently solved). In such situation, when we do not know the exact
equations, we can use approximate semi-empirical techniques. Specifically, since we do not know the exact
formula for the dependence y = f(x1, . . . , xn), we start with a (reasonably) general multi-parametric formula
for such a dependence y = f(x1, . . . , xn, c1, . . . , cm), and then estimate the values of the parameters c1, . . . , cm
from the measurement results.

Traditionally, in physical and engineering applications, most parameters x1, . . . , xn (such as coordinates,
velocity, etc.) are continuous – in the sense that their values can continuously change from one value to
another. The dependence y = f(x1, . . . , xn) is also usually continuous (with the exception of phase transi-
tions); moreover, this dependence is usually smooth (differentiable). It is known that smooth functions can
be usually expanded into Taylor series around some point x̃ = (x̃1, . . . , x̃n) (e.g., around the point x̃ = 0).
For example, for a function of one variable, we have

f(x) = f(x̃) +
df

dx
·∆x +

1

2
· d

2f

dx2
·∆x2 + . . . ,

where ∆x
def
= x− x̃.

In general, an arbitrary dependence is represented as a sum of constant terms: linear terms, quadratic
terms, and terms of higher order.

f(x1, . . . , xn) = f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
·∆xi +

1

2
·

n∑
i=1

n∑
i′=1

∂2f

∂xi∂xi′
·∆xi ·∆xi′ + . . . ,
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where ∆xi
def
= xi − x̃i.

The values of different order terms in the Taylor expansion usually decrease when the order increases –
after all, the Taylor series usually converge, which implies that the terms should tend to 0. So, in practice,
we can ignore higher-order terms and consider only the first few terms in the Taylor expansion. (This is, by
the way, how most elementary functions like sin(x), cos(x), exp(x) are computed inside the computers.).

In the simplest case, it is sufficient to preserve linear terms, i.e. to use the approximation

f(x1, . . . , xn) ≈ f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
·∆xi.

When the linear approximation is not accurate enough, we can use the quadratic approximation

f(x1, . . . , xn) ≈ f(x̃1, . . . , x̃n) +
n∑

i=1

∂f

∂xi
·∆xi +

1

2
·

n∑
i=1

n∑
i′=1

∂2f

∂xi∂xi′
·∆xi ·∆xi′ ,

etc.
Since we do not know the exact expression for the function f(x1, . . . , xn), we thus do not know the actual

values of its derivatives
∂f

∂xi
and

∂2f

∂xi∂xi′
. Hence, when we actually use this approximation, all we know is

that we approximate a general function by a general linear or quadratic formula

f(x1, . . . , xn) ≈ c0 +
n∑

i=1

ci ·∆xi;

f(x1, . . . , xn) ≈ c0 +
n∑

i=1

ci ·∆xi +
n∑

i=1

n∑
i′=1

cii′ ·∆xi ·∆xi′ , (1)

where c0 = f(x̃1, . . . , x̃n), ci =
∂f

∂xi
, and cii′ =

1

2
· ∂2f

∂xi∂xi′
.

The values of the coefficients c0, ci, and (if needed) cii′ can then be determined experimentally, by com-
paring the measured values of y with the predictions based on these formulas.

From continuous to discrete Taylor series. How can we use a similar approach in the discrete case?
The discrete case means, for example, that for each location, we are only interested in the values of the desired
physical quantity in two different situations:

• a situation when there is a ligand at this location, and

• a situation when there is no ligand at this location.

In addition to these situations, we can, in principle, consider others, it is just that in our analysis, we are not
interested in these additional situations. However, the general physical laws and dependencies are not limited
to these two situations, they work for other situations as well.

So, while we are interested in the values of the desired physical quantity (such as energy) corresponding to
the selected situations, in principle, we can consider this dependence for other situations as well. The value
of, e.g. energy, depends on the values of the electronic density at different points near the ligand locations,
etc. For each possible ligand location i, let xi1, . . . , xij , . . . , xiN be parameters describing the distribution in
the vicinity of this location (e.g., the density at a certain point, the distance to a certain atom, the angle
between this atom and the given direction, the angle describing the direction of the spin, etc.). In general,
the value of the desired quantity depends on the values of these parameters:

y = f(x11, . . . , x1N , . . . , xn1, . . . , xnN ). (2)

We are interested in the situations in which, at each location, there is either a ligand, or there is no ligand.
For each location i and for each parameter xij :

• let x−ij denote the value of the j-th parameter in the situation with no ligand at the location i, and
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• let x+
ij denote the value of the j-th parameter in the situation with a ligand at the location i.

The default situation with which we start is the situation in which there are no ligands at all, i.e. in which
xij = x−ij for all i and j. Other situations of interest are reasonably close to this one. Thus, we can expand

the dependence (2) in Taylor series in the vicinity of the values x−ij . As a result, we obtain the following
expression:

y = y0 +
n∑

i=1

N∑
j=1

yij ·∆xij +
n∑

i=1

N∑
j=1

n∑
i′=1

N∑
j′=1

yij,i′j′ ·∆xij ·∆xi′j′ , (3)

where ∆xij
def
= xij − x−ij , and y0, yij , and yij,i′j′ are appropriate coefficients.

These formulas can be applied to all possible situations, in which at each location i, different parameters
xi1, . . . , xiN can change independently. Situations in which we are interested are characterized by describing,
for each location, whether there is a ligand or not. Let εi denote the discrete variable that describes the
presence of the ligand at the location i:

• when there is no ligand at the location i, we take εi = 0, and

• when there is a ligand at the location i, we take εi = 1.

According to the formula (3), the value y of the desired physical quantity depends on the differences ∆xij

corresponding to different i and j. Let us describe the values of these differences in terms of the discrete
variables εi.

• In the absence of the ligand, when εi = 0, the value of the quantity xij is equal to x−ij and thus, the

difference ∆xij is equal to ∆xij = x−ij − x−ij = 0.

• In the presence of the ligand, when εi = 1, the value of the quantity xij is equal to x+
ij and thus, the

difference ∆xij = x+
ij − x−ij is equal to

∆ij
def
= x+

ij − x−ij .

We can combine these two cases into a single expression

∆xij = εi ·∆ij . (4)

Substituting the expression (4) into the expression (3), we obtain an expression which is quadratic in εi:

y = y0 +

n∑
i=1

N∑
j=1

yij · εi ·∆ij +

n∑
i=1

N∑
j=1

n∑
i′=1

N∑
j′=1

yij,i′j′ · εi · εi′ ·∆ij ·∆i′j′ , (5)

i.e., equivalently,

y = y0 +
n∑

i=1

 N∑
j=1

yij ·∆ij

 · εi +
n∑

i=1

n∑
i′=1

 N∑
j=1

N∑
j′=1

yij,i′j′ ·∆ij ·∆i′j′

 · εi · εi′ . (6)

Combining terms proportional to each variable εi and to each product εi · εi′ , we obtain the expression

y = a0 +
n∑

i=1

ai · εi +
n∑

i=1

n∑
i′=1

aii′ · εi · εi′ , (7)

where

ai =

N∑
j=1

yij ·∆ij , (8)

and

aii′ =
N∑
j=1

N∑
j′=1

yij,i′j′ ·∆ij ·∆i′j′ . (9)

The expression (7) is similar to the continuous Taylor expression (1), but with the discrete variables
εi ∈ {0, 1} instead of the continuous variables ∆xi.

Similar “discrete Taylor series” can be derived if we take into account cubic, quartic, etc., terms in the
original Taylor expansion of the dependence (2).
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Discrete Taylor expansions can be further simplified. In the following text, we will use the fact that
the expression (7) can be further simplified.

First, we can simplify the terms corresponding to i = i′. Indeed, for each discrete variable εi ∈ {0, 1}, we
have ε2i = εi. Thus, the term aii · εi · εi corresponding to i = i′ is equal to aii · εi and can, therefore, be simply
added to the corresponding linear term ai · εi. As a result, we arrive at the following simplified version of the
discrete Taylor expansion:

y = c0 +
n∑

i=1

ci · εi +
∑
i6=i′

cii′ · εi · εi′ , (10)

where c0 = a0, cii′ = aii′ , and ci = ai + aii.
Second, we can combine terms proportional to εi · εi′ and to εi′ · εi. As a result, we obtain a further

simplified expression

y = v0 +
n∑

i=1

vi · εi +
∑
i<i′

vii′ · εi · εi′ , (11)

where v0 = c0 and vii′ = cii′ + ci′i.
This expression (11) – and the corresponding similar cubic and higher order expressions – is what we will

understand by a discrete Taylor series.

What we will do in the following text. As we have mentioned earlier, we will show that the poset-
related approaches are, in effect, equivalent to the use of a much simpler (and much more familiar) tool of
(discrete) Taylor series.

5 Equivalence Between the Poset-Related Approaches and the Dis-
crete Taylor Series Approach

Discrete Taylor series: reminder. In many practical situations, we have a physical variable y that de-
pends on the discrete parameters εi which take two possible values: 0 and 1. Then, in the first approximation,
the dependence of y on εi can be described by the following linear formula

y = v0 +
n∑

i=1

vi · εi. (12)

In the second approximation, this dependence can be described by the following quadratic formula

y = v0 +

n∑
i=1

vi · εi +
∑
i<i′

vii′ · εi · εi′ , (13)

etc.

Chemical substances: case study. For chemical substances like benzenes and cubanes, we have discrete
variables εi that describe whether there is a ligand at the i-th location:

• the value εi = 0 means that there is no ligand at the i-th location, and

• the value εi = 1 means that there is a ligand at the i-th location.

Each chemical substance a from the corresponding family can be characterized by the corresponding tuple
(ε1, . . . , εn).

Poset-related approaches: reminder. We approximate the actual dependence of the desired quantity y
on the substance a = (ε1, . . . , εn) by a formula

v(a) =
∑
b: b≤a

V (b), (14)

where, in the second order approximation, b runs over all substances with at most two ligands.
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Poset-related approaches reformulated in terms of the discrete variables. The discrete Taylor
series formula (13) is formulated in terms of the discrete variables εi. Thus, to show the equivalence of these
two approaches, let us first describe the poset-related formula (14) in terms of these discrete variables.

In chemical terms, the relation b ≤ a means that a can be obtained from b by adding some ligands. In
other words, the corresponding value εi can only increase when we move from the substance b to the substance
a. So, if b = (ε′1, . . . , ε

′
n) and a = (ε1, . . . , εn), then b ≤ a means that for every i, we have ε′i ≤ εi.

Thus, the formula (14) means that for every substance a = (ε1, . . . , εn), the substances b ≤ a are:

• the original substance a0 = (0, . . . , 0);

• substances ai
def
= (0, . . . , 0, 1, 0, . . . , 0) with a single ligand at the location i – corresponding to all the

places i for which εi = 1; and

• substances aii′
def
= (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) with two ligands at the locations i and i′ – correspond-

ing to all possible pairs of places i < i′ at which εi = εi′ = 1.

Thus, in terms of the discrete variables, the poset formula (14) takes the form

y = V (a0) +
∑

i: εi=1

V (ai) +
∑

i<i′: εi=εi′=1

V (ai,i′). (15)

Proof that the discrete Taylor series are indeed equivalent to the poset formula. The formulas
(13) and (15) are now very similar, so we are ready to prove that they actually coincide.

To show that these formulas are equal, let us take into account that, e.g. the linear part of the sum (15)
can be represented as ∑

i: εi=1

V (ai) =
∑
i εi=1

V (ai) · εi. (16)

Indeed, for all the corresponding values i, we have εi = 1, and multiplying by 1 does not change a number.
This new representation (16) allows us to simplify this formula by adding similar terms V (ai) · εi corre-

sponding to indices i for which εi = 0. Indeed, when εi = 0, then the product V (ai) · εi is equal to 0, and
thus, adding this product will not change the value of the sum. So, in the right-hand side of the formula (16),
we can safely replace the sum over all i for which εi = 1 by the sum over all indices i from 1 to n:∑

i: εi=1

V (ai) =
n∑

i=1

V (ai) · εi. (17)

Similarly, the quadratic part
∑

i<i′: εi=εi′=1

V (ai,i′) of the sum (15) can be first replaced with the sum

∑
i<i′: εi=εi′=1

V (ai,i′) =
∑

i<i′: εi=εi′=1

V (ai,i′) · εi · εi′ , (18)

and then, by the sum ∑
i<i′: εi=εi′=1

V (ai,i′) =
∑
i<i′

V (ai,i′) · εi · εi′ . (19)

Substituting expressions (16) and (19) into the formula (15), we obtain the following expression

y = V (a0) +
n∑

i=1

V (ai) · εi +
∑
i<i′

V (ai,i′) · εi · εi′ . (20)

This expression is identical to the discrete Taylor formula (13), the only difference is the names of the
corresponding parameters:

• the parameter v0 in the formula (13) corresponds to the parameter V (a0) in the formula (20);

• each parameter vi in the formula (13) corresponds to the parameter V (ai) in the formula (20); and

• each parameter vii′ in the formula (13) corresponds to the parameter V (ai,i′) in the formula (20).

The equivalence is proved.
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6 Important Observation: The Presence of Symmetry does Not
Change the Equivalence

General idea. As we have mentioned, symmetry simply means that some of the coefficients vi and vii′
coincide. For example, for benzenes and cubanes, symmetry means that v1 = v2 = . . . = vi = . . ., and that
the value vii′ depends only on the distance between the locations i and i′.

Example: benzene. For benzene, as we have mentioned,

• the values vi are all equal to each other, and

• the values vii′ and vi′i depend only on the distance d between the locations i and i′.

To capture this symmetry, let us use the following denotations:

• by V , we denote the common values of vi; and

• by Vd, we denote the common value of vii′ and vi′i when the distance between the locations i and i′ is
equal to d.

Let us number the locations in a sequential order:

@
@@�

��

�
��@@

@

1

2

3

4

5

6

In these notations, the general quadratic formula (13) takes the form

y = v0 + V ·

(
n∑

i=1

εi

)
+ V1 · (ε1 · ε2 + ε2 · ε3 + ε3 · ε4 + ε4 · ε5 + ε5 · ε6 + ε6 · ε1)+

V2 · (ε1 · ε3 + ε2 · ε4 + ε3 · ε5 + ε4 · ε6 + ε5 · ε1 + ε6 · ε2) + V3 · (ε1 · ε4 + ε2 · ε5 + ε3 · ε6). (21)

In other words, we have

y = v0 + V ·N +
3∑

d=1

Vd ·Nd, (22)

where N is the total number of ligands, and Nd is the total number of pairs (i, i′) of ligands which are located
at a distance d to each other.

Comment. The same formula (22) holds for cubanes as well.

7 Discussion: Advantages of the Taylor Representation

Main advantage of the Taylor representation. In our opinion, the main advantage of the Taylor series
representation is that the Taylor series is a more familiar technique for a wide range of scientists.

As a result of this familiarity, Taylor series have a much larger number of successful applications than the
poset-related methods; therefore, scientists are more confident in Taylor series techniques.
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Additional advantage of the Taylor representation: Taylor series can clarify the equivalence of
different arrangements. In addition to the above main advantage, the Taylor series representation also
has an additional advantage: this representation makes it easier to check whether different arrangements lead
to the exact same results.

For example, in the poset formulation, it is natural to consider, instead of the original order b ≤ a, the
dual order b ≤′ a which is defined as a ≤ b. In chemical terms, the original order a ≤ b means that we can
obtain the substance b from the substance a by adding ligands at different locations. Correspondingly, the
dual order b ≤′ a means that we can obtain the substance b from the substance a by removing ligands at
different locations.

In the original order ≤, the minimal element is the original substance a0 (with no ligands added), and the
second order poset approximation means that we use the values V (b) corresponding to the substances with
0, 1, and 2 ligands. In the dual order ≤′, the minimal element is the substance with the ligands in all the
places, and the second order poset approximation means that we use the values V (b) corresponding to the
substances with 0, 1, and 2 missing ligands. Will this new order lead to a different approximation?

In the poset formulation, it is difficult to immediately answer this question: the two orders are different,
so at first glance, it may look like the resulting approximations are different too.

However, if we reformulate this question in terms of the discrete Taylor series, we almost immediately
obtain an answer: yes, the resulting approximation is exactly the same for the new order. Indeed, in terms of
the discrete variables, the new order simply means that we have a new starting point for the Taylor expansion:
instead of the substance with no ligands, we now have, as a starting point, the substance with all the ligands
present. Thus, the discrete variables ε′i that describe the difference between the current substance and the
starting point must also change:

• ε′i = 0 (no change) if there is a ligand at the i-th location, and

• ε′i = 1 (change) if there is no ligand at the i-th location.

One can easily see that the relation between the new and the old variables is simple: ε′i = 1−εi, or, equivalently,
εi = 1− ε′i.

Discrete Taylor series in terms of the new variables means that we are approximating the dependence of y
on the variables ε′i by a quadratic formula. If we substitute the values ε′i = 1− εi into this quadratic formula,
we obtain an expression which is quadratic in εi. Vice versa, if we start with the original discrete Taylor
series expression which is quadratic in εi and substitute the values εi = 1− ε′i into this quadratic formula, we
obtain an expression which is quadratic in ε′i. Thus, in both cases, we approximate the original dependence
by a function which is quadratic in εi. So, if we use the Least Squares method, we get the exact same best
approximation in both cases.

Additional advantage: a detailed description. Let us describe the above argument related to the
additional advantage in detail. If we substitute the expression εi = 1− ε′i into the general quadratic formula

y = v0 +
n∑

i=1

vi · εi +
∑
i<i′

vii′ · εi · εi′ ,

we obtain the formula

y = v0 +
n∑

i=1

vi · (1− ε′i) +
∑
i<i′

vii′ · (1− εi) · (1− εi′).

Opening the parentheses, we conclude that

y = v0 +

n∑
i=1

vi −
n∑

i=1

viε
′
i +
∑
i<i′

vii′ −
∑
i<i′

vii′ · εi −
∑
i<i′

vii′ · εi′ +
∑
i<i′

vii′ · εi · εi′ .

Combining terms of different order in terms of ε′i, we conclude that

y = v′0 +
n∑

i=1

v′i · ε′i +
∑
i<i′

v′ii′ · ε′i · ε′i′ ,
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where

v′0 = v0 +
n∑

i=1

vi +
∑
i<i′

vii′ ; v′i = −vi −
∑

i′: i<i′

vii′ −
∑

i′: i′<i

vi′i,

and v′ii′ = vii′ .

Similarly, if we have a representation

y = v′0 +
n∑

i=1

v′i · ε′i +
∑
i<i′

v′ii′ · ε′i · ε′i′ ,

we can substitute ε′i = 1− εi and obtain a quadratic expression

y = v0 +
n∑

i=1

vi · εi +
∑
i<i′

vii′ · εi · εi′ ,

where

v0 = v′0 +
n∑

i=1

v′i +
∑
i<i′

v′ii′ , vi = −v′i −
∑

i′: i<i′

v′ii′ −
∑

i′: i′<i

v′i′i, vii′ = v′ii′ .

Example. In the benzene example, when we have the formula (21), the above formula relating v′i and vi
takes the following form:

v′0 = v0 + 6V + 6V1 + 6V2 + 3V3, V ′ = −V − 2V1 − 2V2 − V3, V ′1 = V1, V ′2 = V2, V ′3 = V3,

and, correspondingly,

v0 = v′0 + 6V ′ + 6V ′1 + 6V ′2 + 3V ′3 , V = −V ′ − 2V ′1 − 2V ′2 − V ′3 , V1 = V ′1 , V2 = V ′2 , V3 = V ′3 .

Comment. From the computational viewpoint, instead of computing the values v′, V ′, and V ′i in their natural
order, it is faster to first compute V ′. Then we can compute v′0 by using a simpler (and thus, faster-to-compute)
formula v′0 = v0 + 3V − 3V ′.

8 Conclusion

Several practically useful chemical substances can be obtained by adding ligands to different locations of a
“template” molecule like benzene C6H6 or cubane C8H8. There is a large number of such substances, and
it is difficult to synthesize all of them and experimentally determine their properties. It is desirable to be
able to synthesize and test only a few of these substances and to use appropriate interpolation to predict the
properties of others.

It is known that such an interpolation can be obtained by using Rota’s ideas related to partially ordered
sets. In this paper, we show that the exact same interpolation algorithm can be obtained from a more familiar
mathematical technique such as Taylor expansion series.
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