Computing with Tensors: Potential Applications of Physics-Motivated Mathematics to Computer Science

Martine Ceberio, Vladik Kreinovich*
Department of Computer Science, University of Texas at El Paso, 500 W. University, El Paso, TX 79968, USA
Received 9 January, 2009; Revised 30 January, 2010

Abstract

In this paper, we explain what tensors are and how tensors can help in computing. © 2010 World Academic Press, UK. All rights reserved.

Keywords: tensors, tensor computing, matrix multiplication, quantum computing

1 Why Tensors and What are Tensors: A Brief Reminder

One of the main problems of modern computing is that we have to process large amounts of data and therefore, long time required to process this data. A similar situation occurred in the 19 century physics: physicists had to process large amounts of data and, because of the large amount of data, a long time required to process this data. In the 19 century, the problem was solved by using tensors. It is therefore a natural idea to also use tensors to solve the problems with modern computing.

Let us recall how tensors helped the 19 century physics; see, e.g., [6]. Physics starts with measuring and describing the values of different physical quantities. It goes on to equations which enable us to predict the values of these quantities.

A measuring instrument usually returns a single numerical value. For some physical quantities (like mass m), the single measured value is sufficient to describe the quantity. For other quantities, we need several values. For example, we need three components E_{x}, E_{y}, and E_{z} to describe the electric field at a given point. To describe the tension inside a solid body, we need even more values: we need 6 values $\sigma_{i j}=\sigma_{j i}$ corresponding to different values $1 \leq i, j \leq 3: \sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{23}$, and σ_{13}.

The problem was that in the 19 century, physicists used a separate equation for each component of the field. As a result, equations were cumbersome and difficult to solve.

The main idea of the tensor approach is to describe all the components of a physical field as a single mathematical object:

- a vector a_{i},
- or, more generally, a tensor $a_{i j}, a_{i j k}, \ldots$

As a result, we got simplified equations - and faster computations.
It is worth mentioning that originally, mostly vectors (rank-1 tensors) were used. However, the 20 century physics has shown that higher-order matrices are also useful. For example:

- matrices (rank-2 tensors) are actively used in quantum physics,
- higher-order tensors such as the rank-4 curvature tensor $R_{i j k l}$ are actively used in the General Relativity Theory.

2 From Tensors in Physics to Computing with Tensors

As we have mentioned earlier, 19 century physics encountered a problem of too much data. To solve this problem, tensors helped.

Modern computing suffers from a similar problem. A natural idea is that tensors can help. Two examples justify our optimism:

[^0]- modern algorithms for fast multiplication of large matrices; and
- quantum computing.

3 Modern Algorithm for Multiplying Large Matrices

In many data processing algorithms, we need to multiply large-size matrices:

$$
\begin{gather*}
\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)\left(\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\ldots & \ldots & \ldots \\
b_{n 1} & \ldots & b_{n n}
\end{array}\right)=\left(\begin{array}{ccc}
c_{11} & \ldots & c_{1 n} \\
\ldots & \ldots & \ldots \\
c_{n 1} & \ldots & c_{n n}
\end{array}\right) ; \tag{1}\\
c_{i j}=a_{i 1} \cdot b_{1 j}+\ldots+a_{i k} \cdot b_{k j}+\ldots+a_{i n} \cdot b_{n j} . \tag{2}
\end{gather*}
$$

There exist many efficient algorithms for matrix multiplication.
The problem is that for large matrix size n, there is no space for both A and B in the fast (cache) memory. As a result, the existing algorithms require lots of time-consuming data transfers ("cache misses") between different parts of the memory.

An efficient solution to this problem is to represent each matrix as a matrix of blocks; see, e.g., [2, 8]:

$$
A=\left(\begin{array}{ccc}
A_{11} & \ldots & A_{1 m} \tag{3}\\
\ldots & \ldots & \ldots \\
A_{m 1} & \ldots & A_{m m}
\end{array}\right)
$$

then

$$
\begin{equation*}
C_{\alpha \beta}=A_{\alpha 1} \cdot B_{1 \beta}+\ldots+A_{\alpha \gamma} \cdot B_{\gamma \beta}+\ldots+A_{\alpha m} \cdot B_{m \beta} \tag{4}
\end{equation*}
$$

Comment. For general arguments about the need to use non-trivial representations of 2-D (and multidimensional) objects in the computer memory, see, e.g., [15, 16].
In the above idea,

- we start with a large matrix A of elements $a_{i j}$;
- we represent it as a matrix consisting of block sub-matrices $A_{\alpha \beta}$.

This idea has a natural tensor interpretation:

- each element of the original matrix is now represented as
- an (x, y)-th element of a block $A_{\alpha \beta}$,
- i.e., as an element of a rank-4 tensor $\left(A_{\alpha \beta}\right)_{x y}$.

So, in this case, an increase in tensor rank improves efficiency.
Comment. Examples when an increase in tensor rank is beneficial are well known in physics: e.g., a representation of a rank-1 vector as a rank-2 spinor works in relativistic quantum physics [6].

4 Quantum Computing as Computing with Tensors

Classical computation is based on the idea a bit: a system with two states 0 and 1 . In quantum physics, due to the superposition principle, we can have states

$$
\begin{equation*}
c_{0} \cdot|0\rangle+c_{1} \cdot|1\rangle \tag{5}
\end{equation*}
$$

with complex values c_{0} and c_{1}; such states are called quantum bits, or qubits, for short.

The meaning of the coefficients c_{0} and c_{1} is that they describe the probabilities to measure 0 and 1 in the given state: $\operatorname{Prob}(0)=\left|c_{0}\right|^{2}$ and $\operatorname{Prob}(1)=\left|c_{1}\right|^{2}$. Because of this physical interpretations, the values c_{1} and c_{1} must satisfy the constraint $\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1$.

For an n-(qu)bit system, a general state has the form

$$
\begin{equation*}
c_{0 \ldots 00} \cdot|0 \ldots 00\rangle+c_{0 \ldots 01} \cdot|0 \ldots 01\rangle+\ldots+c_{1 \ldots 11} \cdot|1 \ldots 11\rangle \tag{6}
\end{equation*}
$$

From this description, one can see that each quantum state of an n-bit system is, in effect, a tensor $c_{i_{1} \ldots i_{n}}$ of rank n.

In these terms, the main advantage of quantum computing is that it can enable us to store the entire tensor in only n (qu)bits. This advantage explains the known efficiency of quantum computing; see, e.g., [11. For example:

- we can search in an unsorted list of n elements in time \sqrt{n} - which is much faster than the time n which is needed on non-quantum computers;
- we can factor a large integer in time which does not exceed a polynomial of the length of this integer and thus, we can break most existing cryptographic codes like widely used RSA codes which are based on the difficulty of such a factorization on non-quantum computers.

5 New Idea: Tensors to Describe Constraints

A general constraint between n real-valued quantities is a subset $S \subseteq R^{n}$. A natural idea is to represent this subset block-by-block - by enumerating sub-blocks that contain elements of S.

Each block $b i_{1} \ldots i_{n}$ can be described by n indices i_{1}, \ldots, i_{n}. Thus, we can describe a constraint by a boolean-valued tensor $t_{i_{1} \ldots i_{n}}$ for which:

- $t_{i_{1} \ldots i_{n}}=$ "true" if $b_{i_{1} \ldots, i_{n}} \cap S \neq \emptyset$; and
- $t_{i_{1} \ldots i_{n}}=$ "false" if $b_{i_{1} \ldots, i_{n}} \cap S=\emptyset$.

Processing such constraint-related sets can also be naturally described in tensor terms.
This representation speeds up computations; see, e.g., [3, 4].

6 Computing with Tensors Can Also Help Physics

So far, we have shown that tensors can help computing. It is possible that the relation between tensors and computing can also help physics.

As an example, let us consider Kaluza-Klein-type high-dimensional space-time models of modern physics; see, e.g., [7, 9, 12, 14]. Einstein's original idea [5] was to use "tensors" with integer or circular values to describe these models. From the mathematical viewpoint, such "tensors" are unusual. However, in computer terms, integer or circular data types are very natural: e.g., circular data type means fixed point numbers in which the overflow bits are ignored. Actually, from the computer viewpoint, integers and circular data are even more efficient to process than standard real numbers.

7 Remaining Open Problem

One area where tensors naturally appear is an efficient Taylor series approach to uncertainty propagation; see, e.g., [1, 10, 13. Specifically, the dependence of the result y on the inputs x_{1}, \ldots, x_{n} is approximated by the Taylor series:

$$
\begin{equation*}
y=c_{0}+\sum_{i=1}^{n} c_{i} \cdot x_{i}+\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} \cdot x_{i} \cdot x_{j}+\ldots \tag{7}
\end{equation*}
$$

The resulting tensors $c_{i_{1} \ldots i_{r}}$ are symmetric:

$$
\begin{equation*}
c_{i_{1} \ldots i_{r}}=c_{\pi\left(i_{1}\right) \ldots \pi\left(i_{r}\right)} \tag{8}
\end{equation*}
$$

for each permutation π. As a result, the standard computer representation leads to a r ! duplication. An important problem is how to decrease this duplication.

Acknowledgment

This work was supported in part by NSF grant HRD-0734825 and by Grant 1 T36 GM078000-01 from the National Institutes of Health. The authors are thankful to Fred G. Gustavson and Lenore Mullin for her encouragement.

References

[1] Berz, M., and G. Hoffstätter, Computation and application of taylor polynomials with interval remainder bounds, Reliable Computing, vol.4, no.1, pp.83-97, 1998.
[2] Bryant, R.E., and D.R. O'Hallaron, Computer Systems: A Programmer's Perspective, Prentice Hall, Upper Saddle River, New Jersey, 2003.
[3] Ceberio, M., S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, A. Murguia, and J. Santillan, How to take into account dependence between the inputs: From interval computations to constraint-related set computations, with potential applications to nuclear safety, bio- and geosciences, Journal of Uncertain Systems, vol.1, no.1, pp.11-34, 2007.
[4] Ceberio, M., V. Kreinovich, A. Pownuk, and B. Bede, From interval computations to constraint-related set computations: Towards faster estimation of statistics and ODEs under interval, p-box, and fuzzy uncertainty, In: P. Melin, O. Castillo, L.T. Aguilar, J. Kacprzyk, and W. Pedrycz (eds.), Foundations of Fuzzy Logic and Soft Computing, Proceedings of the World Congress of the International Fuzzy Systems Association IFSA'2007, Cancun, Mexico, June 18-21, 2007, Springer Lecture Notes on Artificial Intelligence, vol.4529, pp.33-42, 2007.
[5] Einstein, A., and P. Bergmann, On the generalization of Kaluza's theory of electricity, Ann. Phys., vol.39, pp.683701, 1938.
[6] Feynman, R., R. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison Wesley, Boston, Massachusetts, 2005.
[7] Green, M.B., J.H. Schwarz, and E. Witten, Superstring Theory, vols.1-2, Cambridge University Press, 1988.
[8] Gustavson, F.G., The relevance of new data structure approaches for dense linear algebra in the new multicore/many core environments, In: R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski (eds.), Proceedings of the 7th International Conference on Parallel Processing and Applied Mathematics PPAM'2007, Gdansk, Poland, September 9-12, 2007, Springer Lecture Notes in Computer Science, vol.4967, pp.618-621, 2008.
[9] Lee, H.C. (ed.), An Introduction to Kaluza-Klein Theories, World Scientific, Singapore, 1984.
[10] Neumaier, A., Taylor forms, Reliable Computing, vol.9, pp.43-79, 2002.
[11] Nielsen, M., and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[12] Polchinski, J., String Theory, vols.1-2, Cambridge University Press, 1998.
[13] Revol, N., K. Makino, and M. Berz, Taylor models and floating-point arithmetic: proof that arithmetic operations are validated in COSY, J. Log. Algebr. Program., vol.64, no.1, pp.135-154, 2005.
[14] Starks, S.A., O. Kosheleva, and V. Kreinovich, Kaluza-Klein 5D ideas made fully geometric, International Journal of Theoretical Physics, vol.45, no.3, pp.589-601, 2006.
[15] Tietze, H., Famous Problems of Mathematics: Solved and Unsolved Mathematical Problems, from Antiquity to Modern Times, Graylock Press, New York, 1965.
[16] Zaniolo, C., S. Ceri, C. Faloutsos, R.T. Snodgrass, V.S. Subrahmanian, and R. Zicari, Advanced Database Systems, Morgan Kaufmann, 1997.

[^0]: *Corresponding author. Email: vladik@utep.edu (V. Kreinovich).

