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Abstract

In this paper, we explain what tensors are and how tensors can help in computing.
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1 Why Tensors and What are Tensors: A Brief Reminder

One of the main problems of modern computing is that we have to process large amounts of data and therefore,
long time required to process this data. A similar situation occurred in the 19 century physics: physicists had
to process large amounts of data and, because of the large amount of data, a long time required to process
this data. In the 19 century, the problem was solved by using tensors. It is therefore a natural idea to also
use tensors to solve the problems with modern computing.

Let us recall how tensors helped the 19 century physics; see, e.g., [6]. Physics starts with measuring and
describing the values of different physical quantities. It goes on to equations which enable us to predict the
values of these quantities.

A measuring instrument usually returns a single numerical value. For some physical quantities (like mass
m), the single measured value is sufficient to describe the quantity. For other quantities, we need several
values. For example, we need three components Ex, Ey, and Ez to describe the electric field at a given
point. To describe the tension inside a solid body, we need even more values: we need 6 values σij = σji
corresponding to different values 1 ≤ i, j ≤ 3: σ11, σ22, σ33, σ12, σ23, and σ13.

The problem was that in the 19 century, physicists used a separate equation for each component of the
field. As a result, equations were cumbersome and difficult to solve.

The main idea of the tensor approach is to describe all the components of a physical field as a single
mathematical object:

• a vector ai,

• or, more generally, a tensor aij , aijk, . . .

As a result, we got simplified equations – and faster computations.
It is worth mentioning that originally, mostly vectors (rank-1 tensors) were used. However, the 20 century

physics has shown that higher-order matrices are also useful. For example:

• matrices (rank-2 tensors) are actively used in quantum physics,

• higher-order tensors such as the rank-4 curvature tensor Rijkl are actively used in the General Relativity
Theory.

2 From Tensors in Physics to Computing with Tensors

As we have mentioned earlier, 19 century physics encountered a problem of too much data. To solve this
problem, tensors helped.

Modern computing suffers from a similar problem. A natural idea is that tensors can help. Two examples
justify our optimism:
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• modern algorithms for fast multiplication of large matrices; and

• quantum computing.

3 Modern Algorithm for Multiplying Large Matrices

In many data processing algorithms, we need to multiply large-size matrices:a11 . . . a1n
. . . . . . . . .
an1 . . . ann

b11 . . . b1n
. . . . . . . . .
bn1 . . . bnn

 =

c11 . . . c1n
. . . . . . . . .
cn1 . . . cnn

 ; (1)

cij = ai1 · b1j + . . .+ aik · bkj + . . .+ ain · bnj . (2)

There exist many efficient algorithms for matrix multiplication.
The problem is that for large matrix size n, there is no space for both A and B in the fast (cache) memory.

As a result, the existing algorithms require lots of time-consuming data transfers (“cache misses”) between
different parts of the memory.

An efficient solution to this problem is to represent each matrix as a matrix of blocks; see, e.g., [2, 8]:

A =

A11 . . . A1m

. . . . . . . . .
Am1 . . . Amm

 , (3)

then

Cαβ = Aα1 ·B1β + . . .+Aαγ ·Bγβ + . . .+Aαm ·Bmβ . (4)

Comment. For general arguments about the need to use non-trivial representations of 2-D (and multi-
dimensional) objects in the computer memory, see, e.g., [15, 16].

In the above idea,

• we start with a large matrix A of elements aij ;

• we represent it as a matrix consisting of block sub-matrices Aαβ .

This idea has a natural tensor interpretation:

• each element of the original matrix is now represented as

• an (x, y)-th element of a block Aαβ ,

• i.e., as an element of a rank-4 tensor (Aαβ)xy.

So, in this case, an increase in tensor rank improves efficiency.

Comment. Examples when an increase in tensor rank is beneficial are well known in physics: e.g., a represen-
tation of a rank-1 vector as a rank-2 spinor works in relativistic quantum physics [6].

4 Quantum Computing as Computing with Tensors

Classical computation is based on the idea a bit: a system with two states 0 and 1. In quantum physics, due
to the superposition principle, we can have states

c0 · |0〉+ c1 · |1〉 (5)

with complex values c0 and c1; such states are called quantum bits, or qubits, for short.
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The meaning of the coefficients c0 and c1 is that they describe the probabilities to measure 0 and 1 in the
given state: Prob(0) = |c0|2 and Prob(1) = |c1|2. Because of this physical interpretations, the values c1 and
c1 must satisfy the constraint |c0|2 + |c1|2 = 1.

For an n-(qu)bit system, a general state has the form

c0...00 · |0 . . . 00〉+ c0...01 · |0 . . . 01〉+ . . .+ c1...11 · |1 . . . 11〉. (6)

From this description, one can see that each quantum state of an n-bit system is, in effect, a tensor ci1...in of
rank n.

In these terms, the main advantage of quantum computing is that it can enable us to store the entire
tensor in only n (qu)bits. This advantage explains the known efficiency of quantum computing; see, e.g., [11].
For example:

• we can search in an unsorted list of n elements in time
√
n – which is much faster than the time n which

is needed on non-quantum computers;

• we can factor a large integer in time which does not exceed a polynomial of the length of this integer –
and thus, we can break most existing cryptographic codes like widely used RSA codes which are based
on the difficulty of such a factorization on non-quantum computers.

5 New Idea: Tensors to Describe Constraints

A general constraint between n real-valued quantities is a subset S ⊆ Rn. A natural idea is to represent this
subset block-by-block – by enumerating sub-blocks that contain elements of S.

Each block bi1 . . . in can be described by n indices i1, . . . , in. Thus, we can describe a constraint by a
boolean-valued tensor ti1...in for which:

• ti1...in =“true” if bi1...,in ∩ S 6= ∅; and

• ti1...in =“false” if bi1...,in ∩ S = ∅.
Processing such constraint-related sets can also be naturally described in tensor terms.

This representation speeds up computations; see, e.g., [3, 4].

6 Computing with Tensors Can Also Help Physics

So far, we have shown that tensors can help computing. It is possible that the relation between tensors and
computing can also help physics.

As an example, let us consider Kaluza-Klein-type high-dimensional space-time models of modern physics;
see, e.g., [7, 9, 12, 14]. Einstein’s original idea [5] was to use “tensors” with integer or circular values to
describe these models. From the mathematical viewpoint, such “tensors” are unusual. However, in computer
terms, integer or circular data types are very natural: e.g., circular data type means fixed point numbers in
which the overflow bits are ignored. Actually, from the computer viewpoint, integers and circular data are
even more efficient to process than standard real numbers.

7 Remaining Open Problem

One area where tensors naturally appear is an efficient Taylor series approach to uncertainty propagation;
see, e.g., [1, 10, 13]. Specifically, the dependence of the result y on the inputs x1, . . . , xn is approximated by
the Taylor series:

y = c0 +
n∑
i=1

ci · xi +
n∑
i=1

n∑
j=1

cij · xi · xj + . . . . (7)

The resulting tensors ci1...ir are symmetric:

ci1...ir = cπ(i1)...π(ir) (8)

for each permutation π. As a result, the standard computer representation leads to a r! duplication. An
important problem is how to decrease this duplication.
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