
Journal of Uncertain Systems
Vol.4, No.4, pp.244-249, 2010

Online at: www.jus.org.uk

A Faster Algorithm for Computing the Sum of p-Boxes

Jaruchat Busaba1, Sirima Suwan1, Olga Kosheleva2,∗
1Department of Applied Statistics, Faculty of Applied Science,

King Mongkut’s University of Technology North Bangkok,

1518 Pibulsongkram Rd., Bangsue, Bangkok 10800 Thailand
2Department of Teacher Education, University of Texas at El Paso,

500 W. University, El Paso, TX 79968, USA

Received 9 January, 2009; Revised 30 January, 2010

Abstract

For many real-life quantities x, we do not have the complete information about their probability
distribution. For such quantities, for each value x0, instead of the exact value of the cumulative distribution
function Fx(x0) = Prob(x ≤ x0), we only know the interval [F x(x0), F x(x0)] of possible values of Fx(x0).
These intervals form a probability box, or p-box. Once we know p-boxes for x and y, and (which is fairly
typical) we have no information about the correlation between x and y, what is the p-box for x + y?
Algorithms for computing this p-box are known. In this paper, we describe a new faster algorithm for
computing this p-box. This algorithm uses Fast Fourier Transform (FFT) to reduce computation time
from O(n2) to O(n · log(n)), where n is the number of points x at which we know the intervals [F (x), F (x)].
c©2010 World Academic Press, UK. All rights reserved.

Keywords: imprecise probabilities, p-boxes, efficient algorithm

1 Cumulative Distribution Functions: A Natural Tool for Describ-
ing Probability Distributions

In many practical problems, we want to satisfy certain constraints, i.e., we want to make sure that a certain
quantity x does not exceed a give threshold x0 (or, vice versa, exceed a certain threshold x0).

For example, when we design a car,

• we want to make sure that the level of pollution x generated by the car does not exceed the allowed
level x0, and

• we also want to make sure that the power x of the car’s engine is at least as large as what is needed to
move this car with a required speed.

Usually, in practice, the value of the corresponding quantity x depends on many factors. For example, the
power of the car’s engine depends on the quality of the gasoline which may slightly differ from one gas station
to the other. In such situations, at best, we can determine the probabilities of different values of x.

Since the quantity x is now random, it is impossible to 100% guarantee that the value of x is always
below or always under the given threshold. The only thing that we can, in principle, guarantee, is that the
probability of not satisfying a given constraint is sufficiently low. Thus, to gauge the quality of a given design,
we must find, for each value x0, the probability F (x0) = Prob(x ≤ x0) that the quantity x does satisfy the
constraint – or, equivalently, the probability Prob(x > x0) = 1−F (x0) that x does not satisfy the constraint.

The values of F (x0) for different x0 form a cumulative distribution function (cdf, for short). Thus, cdf is
indeed a natural tool for describing probability distributions.

2 p-Boxes: A Natural Tool for Describing Partial Information
about Probabilities

For many real-life quantities x, we do not have the complete information about their probability distributions.

∗Corresponding author. Email: olgak@utep.edu (O. Kosheleva).



Journal of Uncertain Systems, Vol.4, No.4, pp.244-249, 2010 245

For such quantities, for each value x0, instead of the exact value of the cumulative distribution function
F (x0) = Prob(x ≤ x0), we only know the interval [F (x0), F (x0)] of possible values of F (x0). The intervals
corresponding to different x0 form a probability box, or p-box; see, e.g., [3, 4].

3 Processing p-Boxes

Some quantities of interest z are described in terms of others: e.g., z = f(x, y). For example, for the car, the
pollution level is determined by several characteristics of the engine and of the filters in the car’s exhaust. In
such situations, it is reasonable to use the information about the quantities x and y to determine information
about z = f(x, y).

In particular, since, as we have mentioned, cdf is a very important piece of information about a physical
quantity, we must be able to find the cdf for z based on the cdfs for x and y. Taking into account that
we usually have only partial information about the probabilities, we can reformulate this question is a more
practically useful terms:

• given p-boxes for x and y,

• find the resulting p-box for z = f(x, y).

4 The Result Depends on Whether the Variables are Independent
or Not

The p-box formed by all possible distributions for z = f(x, y) depends on what we know about the correlation
between x and y:

• In some practical situations, we know that x and y are statistically independent.

• In other practical situations, we have no information about the correlation between x and y:

– it is possible that x and y are independent;

– it is possible that x and y are positively correlated; and

– it is also possible that x and y are negatively correlated.

It is also possible that we have partial information about the correlation between x and y.

5 Addition: An Important Practical Case of Data Processing

In many practical situations, possible changes in x and y are small: there are some nominal values x̃ and ỹ and
the actual values of the quantities x and y are close to these nominal values. In other words, the differences

∆x
def
= x−x̃ and ∆y

def
= y−ỹ are small and therefore, we can expand the expression f(x, y) = f(x̃+∆x, ỹ+∆y)

in Taylor series in ∆x and ∆y and keep only linear terms in this expansion:

z = f(x̃+ ∆x, ỹ + ∆y) ≈ c0 + cx ·∆x+ cy ·∆y, (1)

where

c0
def
= f(x̃, ỹ), cx

def
=

∂f

∂x
, cy

def
=

∂f

∂y
. (2)

It is reasonably easy to transform the cdf (or a p-box) for x into a cdf for ∆x = x − x̃, and it is easy to
transform this cdf (or p-box) for ∆x into a cdf for x′ = cx ·∆x. Similarly, from the known p-box for ∆y, we
can compute the p-boxes for ∆y = y − ỹ and y′ = cy ·∆y.

Thus, the main non-trivial step of computing the p-box for z is computing the p-box for the sum x′ + y′

of the two quantities x′ = cx ·∆x and y′ = cy ·∆y for each of which we know the p-boxes. Thus, addition is,
indeed, a very important practical case of data processing. Addition is what we will study in this paper.



246 J. Busaba, S. Suwan and O. Kosheleva: A Faster Algorithm for Computing the Sum of p-Boxes

Comment. There is an additional reason why addition is important. Often, the actual relation z = f(x, y)
has the form of a product z = x · y. This case can also be reduced to addition Z = X + Y if instead of the
original quantities x, y, and z, we consider their logarithms

Z
def
= ln(z); X

def
= ln(x); Y

def
= ln(y). (3)

6 Formulation of the Resulting Computational Problem

In view of the above, we will consider the following problem:

• we know the p-boxes [F x(x), F x(x)] and [F y(y), F y(y)] for x and y;

• we want to find the p-box [F z(z), F z(z)] corresponding to z = x+ y.

We consider two version of this problem:

• when we know that x and y are independent, and

• when we have no information about the dependence between x and y.

7 The Solution to the Problem is Known

For each of the two versions, the solution to the above problem is known; see, e.g., [3, 4, 6].
For the independent case, the answer can be best described in terms of the probability density functions

ρ
x
(x), ρx(x), ρ

y
(y), ρy(y), ρ

z
(z), and ρz(z) that correspond to the cdfs F x(x), F x(x), F y(y), F y(y), F z(z),

and F z(z):

ρ
z
(z) =

∫
ρ
x
(x) · ρ

y
(y − x) dx; (4)

ρz(z) =

∫
ρx(x) · ρy(y − x) dx. (5)

In computational terms, we only know a finite number of values of the pdfs, with some step δx, so we have
to use the discretized versions of these formulas:

ρ
z
(z) =

∑
x

ρ
x
(x) · ρ

y
(y − x) · δx; (6)

ρz(z) =
∑
x

ρx(x) · ρy(y − x) · δx. (7)

For the possibly dependent case, the answer can be best described in terms of the quantiles. For a given
integer n, the i-th quantile ri is the value for which F (ri) = i/n. When instead of the exact cdf F (x), we
have a p-box [F (x), F (x)], different values F (x) ∈ [F (x), F (x)] lead, in general, to different values of the
quantiles. The smallest possible value ri of the i-th quantile is attained for the largest possible value F (x) of
the cdf, and, vices versa, the largest possible value ri of the i-th quantile is attained for the smallest possible
value F (x) of the cdf. Thus, a p-box [F (x), F (x)] can be described by n+ 1 quantile intervals [ri, ri], where
F (ri) = F (ri) = i/n.

Once we know the quantile intervals [xi, xi] and [y
i
, yi] corresponding to x and y, the quantile intervals

[zi, zi] for x+ y can be obtained by using the following formulas [3, 4, 6]:

zk = max
i

(xi + y
k−i); (8)

zk = min
i

(xi + yk−n+i). (9)

It should be mentioned that once we know the formula for zk (i.e., for F (x)), the formula for zk (i.e., for
F (x)) can be obtained from the fact that

F−x(x0) = Prob(−x ≤ x0) = Prob(x ≥ −x0) = 1− Prob(x ≤ −x0) = 1− Fx(−x0), (10)

and therefore,
F−x = 1− F x(−x0). (11)

In view of this reduction, it is sufficient to be able to efficiently compute the values zk.



Journal of Uncertain Systems, Vol.4, No.4, pp.244-249, 2010 247

8 Computational Complexity of the Above Formulas – When They
are Applied Directly

Let us first consider the case when we simply use the formulas (6), (7), (8), and (9) to directly compute the
p-box for z = x+ y. Let us denote by n the number of known values of x- and y-characteristics.

In this case, each of these formulas requires that for each of n values of the corresponding z-characteristic,
we need to process n values of x- and y-characteristics. For example, to compute each value zk, we need to
process n values xi and y

k−i. Thus, overall, we need O(n2) computational steps.

9 Known Fact: In the Independent Case, Computations Can be
Made Faster

It is known that for independent variables x and y, we can perform computations of the expressions (6) and
(7) faster.

Indeed, from the mathematical viewpoint, the expressions (6) and (7) are convolutions. It is known (see,
e.g., [1, 2]) that convolutions can be computed faster than in the time O(n2) is we use Fourier transforms

f̂(ω)
def
=

1√
2π
·
∫
e−i·ω·x · f(x) dx (12)

of the corresponding functions. Specifically:

• the Fourier transform ĥ(ω) of the convolution

h(z) =

∫
f(x) · g(z − x) dx (13)

of two functions f(x) and g(x) is equal to the product of their Fourier transforms: ĥ(ω) = f̂(ω) · ĝ(ω),
and

• both the Fourier transform itself and the inverse Fourier transform (that transforms the Fourier trans-

form f̂(ω) back into the original functions f(x)) can be computed in time O(n·log(n)); the corresponding
algorithms are called Fast Fourier Transform (FFT, for short).

For the probability density function f(x) = ρ(x), the Fourier transform (12) has a direct statistical
meaning: it is the expected value E[e−i·ω·x] of the quantity e−i·ω·x. This expected value χx(ω) is known as a
characteristic function of the probability distribution, and it is known that the characteristic function of the
sum z = x+y of two independent random variables is equal to the product of the corresponding characteristic
functions: χz(ω) = χx(ω) · χy(ω).

Thus, the pdf ρz(z) can be computed as follows:

• first, we apply FFT to the pdfs ρx(x) and ρy(y) and compute the corresponding characteristic functions
χx(ω) and χy(ω);

• then, we compute the characteristic function χz(ω) as

χz(ω) = χx(ω) · χy(ω); (14)

• finally, we apply the inverse FFT to the function χz(ω) and get the desired pdf ρz(z).

Since both FFT and inverse FFT require time O(n · log(n)), and the point-wise multiplication χz(ω) =
χx(ω) · χy(ω) requires as many computational steps as there are values, i.e., n, overall, we need

O(n · log(n)) +O(n) +O(n · log(n)) = O(n · log(n)) (15)

computational steps – which, for large n, is much smaller than n2 steps for the direct application of the
convolution formula.



248 J. Busaba, S. Suwan and O. Kosheleva: A Faster Algorithm for Computing the Sum of p-Boxes

10 New Idea: For the Possibly Dependent Case, Computations
Can Also be Performed Faster

To compute the formula (8) faster, let us reduce it to computing the convolution; this reduction is similar to
the one described in [5] for a different computational problem – related to processing fuzzy data.

The formula (8) is similar to the convolution formula, but it has two differences:

• first, in the formula (8), we add the values xi and y
k−i, while in the convolution formula, we multiply

the corresponding values;

• second, in the formula (8), we take the maximum of the values corresponding to different i, while in the
convolution formula, we add these values.

The first difference is the easiest to handle: to reduce addition to multiplication, we can use the known fact
that ea+b = ea · eb. Thus, if we take

xi
def
= exi , yi

def
= eyi , zi

def
= ezi , (16)

then the formula (8) takes the multiplicative form

zk = max(xi · yk−i). (17)

In this representation, the values xi = exi and yi = eyi are always positive.
To reduce maximum to the sum, we can take into account that for positive values ai, we have

max(a1, . . . , an) = lim
p→∞

(ap1 + . . .+ apn)1/p (18)

and thus, for sufficiently large p, we have

max(a1, . . . , an) ≈ (ap1 + . . .+ apn)1/p. (19)

Applying this approximate equality to the right-hand side of the formula (17), we conclude that

zk ≈

(∑
i

xpi · y
p
k−i

)1/p

, (20)

i.e., equivalently, that

zpk ≈
∑
i

xpi · y
p
k−i. (21)

So, if we take

Xi
def
= xpi = ep·xi , Yi

def
= ypi = ep·yi , Zi

def
= zi = ep·zi , (22)

we conclude that
Zk ≈

∑
i

Xi · Yk−i, (23)

i.e., that the values Zk are equal to the convolution of the values Xi and Yj .
We already know how to compute the convolution fast. Once we know Zk = ep·zk , we can reconstruct zk

as zk =
1

p
· ln(Zk). Thus, we arrive at the following fast algorithm for computing the sum of the corresponding

p-boxes for the possibly dependent case.

11 Resulting Fast Algorithm for Computing the Sum Z = X+Y of
p-Boxes

Without losing generality, we will only describe how to compute the lower endpoints zk of the quantile intervals
from the corresponding endpoints xi and y

i
. For these computations, we need to select a large integer p. Then:



Journal of Uncertain Systems, Vol.4, No.4, pp.244-249, 2010 249

• first, we compute the values

Xi = xpi = ep·xi , Yi
def
= ypi = ep·yi ; (24)

• then, we apply FFT to the values Xi and to the values Yj , resulting in X̂(ω) and Ŷ (ω);

• we compute Ẑ(ω) = X̂(ω) · Ŷ (ω);

• we apply the inverse FFT to the function Ẑ(ω) and get the Zi;

• finally, we compute zk =
1

p
· ln(Zk).

Here, both FFT and inverse FFT require time O(n · log(n)), and point-wise operations like multiplication or
raising to the power p require as many computational steps as there are values (i.e., n). Thus, overall, we
need

O(n · log(n)) +O(n) +O(n · log(n)) = O(n · log(n)) (25)

computational steps – which, for large n, is much smaller than n2 steps for the direct application of the
formula (8).

Acknowledgments

The authors are thankful to Sa-aat Niwitpong and Vladik Kreinovich for their help.

References

[1] Bracewell, R., The Fourier Transform and Its Applications, McGraw-Hill, 1986.

[2] Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, Cambridge,
Massachisetts, 2001.

[3] Ferson, S., RAMAS Risk Calc 4.0. CRC Press, Boca Raton, Florida, 2002.

[4] Ferson, S., V. Kreinovich, and W.T. Tucker, Untangling equations involving uncertainty: deconvolutions, updates,
and backcalculations, Proceedings of the NSF Workshop on Reliable Engineering Computing, Savannah, Georgia,
September 15–17, 2004.

[5] Kosheleva, O., S.D. Cabrera, G.A. Gibson, and M. Koshelev, Fast implementations of fuzzy arithmetic operations
using fast fourier transform (FFT), Fuzzy Sets and Systems, vol.91, no.2, pp.269–277, 1997.

[6] Williamson, R.C., and T. Downs, Probabilistic arithmetic I: Numerical methods for calculating convolutions and
dependency bounds, International Journal of Approximate Reasoning, vol.4, pp.89–158, 1990.


	jus-4-4-1 Proof.pdf
	Cumulative Distribution Functions: A Natural Tool for Describing Probability Distributions
	p-Boxes: A Natural Tool for Describing Partial Information about Probabilities
	Processing p-Boxes
	The Result Depends on Whether the Variables are Independent or Not
	Addition: An Important Practical Case of Data Processing
	Formulation of the Resulting Computational Problem
	The Solution to the Problem is Known
	Computational Complexity of the Above Formulas � When They are Applied Directly
	Known Fact: In the Independent Case, Computations Can be Made Faster
	New Idea: For the Possibly Dependent Case, Computations Can Also be Performed Faster
	Resulting Fast Algorithm for Computing the Sum Z=X+Y of p-Boxes




