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Abstract

Type-2 (T2) fuzzy variable is an extension of an ordinary fuzzy variable. T2 fuzzy variable is defined as
a measurable map from the universe to the set of real numbers, the possibility of a T2 fuzzy variable takes
on a real number is a regular fuzzy variable (RFV). T2 fuzziness, which is usually used to handle linguistic
uncertainties, can be described as T2 fuzzy variable. To characterize the properties of T2 fuzzy variables
in some aspects, we present a scalar representative value operator for T2 fuzzy variable. Some properties
of the representative value operator are discussed. For discrete T2 fuzzy variable and T2 triangular fuzzy
variable, we obtain the computational formulas of the representative value.
c©2010 World Academic Press, UK. All rights reserved.
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1 Introduction

In a fuzzy decision system, fuzziness can be described as fuzzy sets. However, fuzzy set requires crisp member-
ship function which cannot be obtained in many situations. To overcome this difficulty, in 1975, the concept
of a T2 fuzzy set as an extension of an ordinary fuzzy set was introduced by Zadeh [25]. Since then, Mizumoto
and Tanaka [17] discussed what kinds of algebraic structures the grades of T2 fuzzy sets form under join, meet
and negation, and showed that normal convex fuzzy grades form a distributive lattace under the join and
meet; Nieminen [19] studied on the algebraic structure of T2 fuzzy sets; Dubois and Prade [1] investigated the
operations in a fuzzy-valued logic, and Yager [24] applied the T2 fuzzy set to decision making. A T2 fuzzy
set is characterized by a fuzzy membership function, i.e., the membership grades themselves are fuzzy sets in
[0, 1]. A T2 fuzzy set represents the uncertainty in terms of secondary membership function and footprint of
uncertainty [15]. T2 fuzziness which is usually used to handle linguistic uncertainties, can be described as T2
fuzzy sets. Now, T2 fuzzy sets have been applied successfully to handle linguistic and numerical uncertainties
[4, 5, 14]. Mitchell [16] introduced a similarity measure with which to measure the similarity between two T2
fuzzy sets. He also showed that T2 fuzzy sets provide indeed a natural language for formulating classification
problems in pattern recognition. In pattern recognition, the T2 fuzzy hidden Markov models [27, 28] advanced
the hidden Markov models expressive power for uncertainty by T2 fuzzy set. In addition, T2 fuzzy sets have
found applications in many other fields [2, 3, 7].

In 2009, Liu and Liu [13] presented the fuzzy possibility theory which is a generalization of the usual
possibility theory [6, 18, 20, 22, 23, 26]. In the proposed theory, some fundamental concepts were introduced,
such as fuzzy possibility measure which was defined as a set function from the ample field to a collection of
regular fuzzy variables (RFVs), fuzzy possibility space (FPS), T2 fuzzy variable, T2 possibility distribution
function, secondary possibility distribution function. Liu and Liu [13] also showed that FPS leads to the
definition of a T2 fuzzy set on <m, which have been called a T2 fuzzy vector. In fuzzy possibility theory, a
variable-based approach is adopted to deal with type-2 fuzziness. In this paper, we will present the concept of
the representative value for T2 fuzzy variable as a scalar value and discuss some properties of the representative
value operator.

∗This work is supported by National Natural Science Foundation of China (No.60974134), Natural Science Foundation of
Hebei Province (No.F2010000318), and Scientific Research and Development Program of Baoding (No.10ZR002).
†Corresponding author. Email: yanjuchen@hbu.edu.cn (Y. Chen).
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The paper is organized as follows. In Section 2, we recall several required fundamental concepts. The
purpose of Section 3 is to present the concept of the representative value for T2 fuzzy variable. Some properties
of the representative value operator are also discussed in Section 3. Section 4 gives the computational formulas
of the representative value for discrete T2 fuzzy variable. Section 5 deduces the computational formulas of
the representative value for T2 triangular fuzzy variable. Finally, the main work of this paper is summarized
in Section 6.

2 Preliminaries

Let Γ be a universe of discourse. An ample field A on Γ is a class of subsets of Γ that is closed under arbitrary
unions, intersections and complement in Γ. Let ξ be a fuzzy variable which was defined on the possibility
space (Γ,A,Pos) [23] with possibility distribution function µ : < → [0, 1].

An m-ary regular fuzzy vector ξ = (ξ1, ξ2, . . . , ξm) is defined as a vector from Γ to the set [0, 1]m, i.e., for
any γ ∈ Γ, ξ(γ) = (ξ1(γ), ξ2(γ), . . . , ξm(γ)) ∈ [0, 1]m. As m=1, ξ is called a regular fuzzy variable (RFV). For
example, ξ = (r1, r2, r3) with 0 ≤ r1 < r2 < r3 ≤ 1 is a triangular RFV. A fuzzy variable which only takes
on value 0 with possibility 1 is an RFV, denoted by 0̃. A fuzzy variable which only takes on value 1 with
possibility 1 is an RFV, denoted by 1̃.

In this paper, we denote by R([0, 1]) as the collection of all RFVs on [0, 1].

Definition 1 ([10]) Let ξi, 1 ≤ i ≤ m be mi-ary regular fuzzy vectors defined on a possibility space (Γ,A,Pos),
respectively. They are said to be mutually independent if

Pos{γ ∈ Γ | ξ1(γ) = t1, . . . , ξm(γ) = tm} = min1≤i≤m Pos{γ ∈ Γ | ξi(γ) = ti}

for any ti = (t
(i)
1 , . . . , t

(i)
mi) ∈ [0, 1]mi and i = 1, . . . ,m.

Moreover, a family of regular fuzzy vectors {ξi, i ∈ I} is said to be mutually independent if for each integer
m, and i1 < i2 < · · · < im, the regular fuzzy vectors ξik , k = 1, 2, . . . ,m are mutually independent.

Definition 2 ([13]) Let A be an ample field on the universe Γ, and P̃os : A 7→ R([0, 1]) a set function on A
such that {P̃os(A) | A 3 A atom} is a family of mutually independent RFVs. We call P̃os a fuzzy possibility
measure if it satisfies the following conditions:

Pos1) P̃os(∅) = 0̃;

Pos2) For any subclass {Ai | i ∈ I} of A (finite, countable or uncountable),

P̃os

(⋃
i∈I

Ai

)
= sup

i∈I
P̃os(Ai).

Moreover, if µ
P̃os(Γ)

(1) = 1, then we call P̃os a regular fuzzy possibility measure.

The triplet (Γ,A, P̃os) is referred to as a fuzzy possibility space (FPS).
From the definition, we know that if A ⊂ B, then P̃os(A) ∨ P̃os(B) = P̃os(B).
If the universe Γ is a finite set, then the ample field A on Γ is an algebra containing a finite number of

subsets of Γ. Therefore, the axiom Pos2) in Definition 2 can be replaced by

P̃os

(
n⋃
i=1

Ai

)
= max

1≤i≤n
P̃os(Ai)

for any finite subclass {Ai, i = 1, . . . , n} of A.
If A is the power set of the universe Γ, then the atoms of A are all single point sets {γ}, γ ∈ Γ. Therefore,

in order to define a fuzzy possibility measure on A, it suffices to give the value of P̃os at each single point set.
For the concept of atom, the interested reader may consult the reference [12].
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Definition 3 ([13]) Let (Γ,A, P̃os) be an FPS. A map ξ = (ξ1, ξ2, . . . , ξm) : Γ 7→ <m is called an m-ary T2
fuzzy vector if for any x = (x1, x2, . . . , xm) ∈ <m, the set {γ ∈ Γ | ξ(γ) ≤ x} is an element of A, i.e.,

{γ ∈ Γ | ξ(γ) ≤ x} = {γ ∈ Γ | ξ1(γ) ≤ x1, . . . , ξm(γ) ≤ xm} ∈ A.

As m = 1, the map ξ : Γ 7→ < is called a T2 fuzzy variable.

Definition 4 ([13]) Let ξ = (ξ1, ξ2, . . . , ξm) be a T2 fuzzy vector defined on an FPS (Γ,A, P̃os). The sec-
ondary possibility distribution function of ξ, denoted by µ̃ξ(x), is a map <m 7→ R[0, 1] such that

µ̃ξ(x) = P̃os {γ ∈ Γ | ξ(γ) = x} , x ∈ <m,

while the T2 possibility distribution function of ξ, denoted by µξ(x, u), is a map <m × Jx 7→ [0, 1] such that

µξ(x, u) = Pos
{
µ̃ξ(x) = u

}
, (x, u) ∈ <m × Jx

where Pos is the possibility measure induced by the distribution of µ̃ξ(x), and Jx ⊂ [0, 1] is the support of
µ̃ξ(x), i.e., Jx = {u ∈ [0, 1] | µξ(x, u) > 0}.

Definition 5 ([13]) The support of a T2 fuzzy vector ξ is defined as

supp ξ = {(x, u) ∈ <m × [0, 1] | µξ(x, u) > 0}

where µξ(x, u) is the T2 possibility distribution function of ξ.

A type-2 fuzzy variable ξ is called triangular [21] if its secondary possibility distribution function µ̃ξ(x) is
a triangular RFV (

x−r1
r2−r1 − θl min{ x−r1r2−r1 ,

r2−x
r2−r1 },

x−r1
r2−r1 ,

x−r1
r2−r1 + θr min{ x−r1r2−r1 ,

r2−x
r2−r1 }

)
for x ∈ [r1, r2], and (

r3−x
r3−r2 − θl min{ r3−xr3−r2 ,

x−r2
r3−r2 },

r3−x
r3−r2 ,

r3−x
r3−r2 + θr min{ r3−xr3−r2 ,

x−r2
r3−r2 }

)
for x ∈ [r2, r3], where θl, θr ∈ [0, 1] are two parameters characterizing the degree of uncertainty that ξ takes

on the value x. When x ∈ [r2,
r2+r3

2 ] and u ∈
[
r3−x
r3−r2 ,

r3−x
r3−r2 + θr min{ r3−xr3−r2 ,

x−r2
r3−r2 }

]
, then

µξ(x, u) =
r3−x
r3−r2 + θr

x−r2
r3−r2 − u

θr
x−r2
r3−r2

.

We denote the T2 triangular fuzzy variable ξ with the above distribution by (r̃1, r̃2, r̃3; θl, θr).

3 The Representative Value of T2 Fuzzy Variable

3.1 The Concept of Representative Value

In this section, we first define the representative value of a T2 fuzzy variable.

Definition 6 Let ξ be a T2 fuzzy variable. The representative value of ξ is defined as

R[ξ] =

∫ +∞

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r}

]
dr −

∫ 0

−∞
E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
dr. (1)

When the two integrals are all ∞, the representative value is not defined.
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In Definition 6, E is the expected value operator [11] of a fuzzy variable. For simplicity, we write the
representative value of ξ as

R[ξ] =

∫ +∞

0

E
[
P̃os{ξ ≥ r}

]
dr −

∫ 0

−∞
E
[
P̃os{ξ ≤ r}

]
dr. (2)

It is easy to know that R[ξ] =
∫ +∞

0
E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r}

]
dr when P̃os{ξ ≤ 0} = 0̃. And if P̃os{ξ ≥

0} = 0̃, then R[ξ] = −
∫ 0

−∞E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
dr.

Based on the representative value of a T2 fuzzy variable, we define the representative value of a T2 fuzzy
vector as follows.

Definition 7 Let ξ = (ξ1, ξ2, . . . , ξm) be a T2 fuzzy vector defined on an FPS (Γ,A, P̃os). Then the repre-
sentative value of ξ is defined as

R[ξ] = (R[ξ1], R[ξ2], . . . , R[ξm]).

In the following, we provide one example to illustrate how to calculate the representative value of a T2
fuzzy variable.

Example 1: Let Γ = [−10, 10], and A = P(Γ). Define a set function P̃os : P(Γ) 7→ R([0, 1]) as follows

P̃os{γ} =
(

1− |γ|10 , 1−
|γ|
15 , 1−

|γ|
20

)
, γ ∈ [−10, 10]

and

P̃os(A) = sup
γ∈A

P̃os{γ}

for any A ∈ P(Γ), where {(1− |γ|10 , 1−
|γ|
15 , 1−

|γ|
20 ), γ ∈ [−10, 0)∪ (0, 10]} is supposed to be a family of mutually

independent triangular RFVs. Then P̃os is a fuzzy possibility measure, and the triplet (Γ,P(Γ), P̃os) is an
FPS. Define a function ξ : Γ→ < as follows

ξ(γ) = γ.

Then ξ is a T2 fuzzy variable. The support of ξ is showed in Figure 1.

Since P̃os{γ1} ∨ P̃os{γ2} = P̃os{γ1} for γ1, γ2 ∈ Γ such that |γ1| < |γ2|, we have

sup
−10≤γ≤t≤0

P̃os{γ} = P̃os{t}

and

sup
0≤t≤γ≤10

P̃os{γ} = P̃os{t}.

Moreover, we obtain the representative value of ξ as follows

R[ξ] =

∫ +∞

0

E
[
P̃os{ξ ≥ t}

]
dt−

∫ 0

−∞
E
[
P̃os{ξ ≤ t}

]
dt

=

∫ 10

0

E
[
P̃os{ξ ≥ t}

]
dt−

∫ 0

−10

E
[
P̃os{ξ ≤ t}

]
dt

=

∫ 10

0

E
[
P̃os{t}

]
dt−

∫ 0

−10

E
[
P̃os{t}

]
dt

According to the definition of the expectation [11] of fuzzy variables, if ξ = (r1, r2, r3) is a triangular RFV,
then we have E[ξ] = r1+2r2+r3

4 . Therefore,

E[P̃os{t}] = 1− 17
240 |t| , t ∈ [−10, 0) ∪ (0, 10].

As a consequence of calculation, we have R[ξ] = 0.
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Figure 1: The support of the T2 fuzzy variable ξ defined in Example 1

3.2 The Properties of Representative Value

For the representative value operator of a T2 fuzzy variable, we deduce the following results.

Theorem 1 Let ξ be a T2 fuzzy variable which only takes on value c with possibility 1̃. Then R[ξ] = c.

Proof: For c ≥ 0, one has

R[ξ] =

∫ c

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r}

]
dr =

∫ c

0

E[1̃]dr = c.

Similarly, we have

R[ξ] = −
∫ 0

c

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
dr = −

∫ 0

c

E[1̃]dr = c

for c < 0. The proof of the theorem is complete.

Theorem 2 Let ξ be a T2 fuzzy variable. If R[ξ] exists, then R[aξ] = aR[ξ] for any real number a.

Proof: For a = 0, we have R[aξ] = aR[ξ] = 0. For a < 0, we obtain∫ +∞

0

E
[
P̃os{γ ∈ Γ|(aξ)(γ) ≥ r}

]
dr −

∫ 0

−∞
E
[
P̃os{γ ∈ Γ|(aξ)(γ) ≤ r}

]
dr

= a

∫ +∞

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r

a}
]

d
(
r
a

)
− a

∫ 0

−∞
E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r

a}
]

d
(
r
a

)
= a

∫ −∞
0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ t}

]
dt− a

∫ 0

+∞
E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ t}

]
dt

= a

∫ +∞

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ t}

]
dt− a

∫ 0

−∞
E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ t}

]
dt.

As a consequence, by Definition 6, R[aξ] = aR[ξ] for any real number a < 0.
Similarly, in the case of a > 0, we have R[aξ] = aR[ξ], too.
Therefore, for any real number a, we have R[aξ] = aR[ξ]. The proof of the theorem is complete.

Theorem 3 Let ξ be a T2 fuzzy variable defined on an FPS (Γ,A, P̃os), E[P̃os(Γ)] = M , and a > 0 be a real
number. If R[ξ] exists, then

1) R[ξ + b] = R[ξ] + bM for P̃os{ξ < a} = 0̃ and any real number b > −a;

2) R[ξ + b] = R[ξ] + bM for P̃os{ξ > −a} = 0̃ and any real number b < a.
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Proof: 1) From P̃os{ξ < a} = 0̃ and b > −a, we have P̃os{ξ < −b} = P̃os{ξ < 0} = P̃os{ξ + b < 0} = 0̃.
So, the representative value of ξ + b is

R[ξ + b] =

∫ +∞

0

E
[
P̃os{γ ∈ Γ|(ξ + b)(γ) ≥ r}

]
dr

=

∫ +∞

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r − b}

]
dr

=

∫ +∞

−b
E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ t}

]
dt

=

∫ +∞

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ t}

]
dt+

∫ 0

−b
E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ t}

]
dt

= R[ξ] + bM.

2) From P̃os{ξ > −a} = 0̃ and b < a, we have P̃os{ξ > −b} = P̃os{ξ > 0} = P̃os{ξ + b > 0} = 0̃. So, we
obtain the representative value of ξ + b as follows

R[ξ + b] = −
∫ 0

−∞
E
[
P̃os{γ ∈ Γ|(ξ + b)(γ) ≤ r}

]
dr

= −
∫ 0

−∞
E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r − b}

]
dr

= −
∫ −b
−∞

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ t}

]
dt

= −
∫ 0

−∞
E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ t}

]
dt−

∫ −b
0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ t}

]
dt

= R[ξ] + bM.

The proof of the theorem is complete.

Theorem 4 Let ξ be a T2 fuzzy variable, f : < → < and g : < → < be real-valued continuous functions. If
f ≤ g, then we have R[f(ξ)] ≤ R[g(ξ)].

Proof: Since f ≤ g, we have that f(ξ(γ)) ≤ g(ξ(γ)) for any γ ∈ Γ. So, we can say that

{γ ∈ Γ|f(ξ(γ)) ≥ r} ⊆ {γ ∈ Γ|g(ξ(γ)) ≥ r}, (3)

{γ ∈ Γ|g(ξ(γ)) ≤ r} ⊆ {γ ∈ Γ|f(ξ(γ)) ≤ r}. (4)

From (3), we have

P̃os{γ ∈ Γ|f(ξ(γ)) ≥ r} ∨ P̃os{γ ∈ Γ|g(ξ(γ)) ≥ r} = P̃os{γ ∈ Γ|g(ξ(γ)) ≥ r}.

Moreover, it is easy to know

E
[
P̃os{γ ∈ Γ|f(ξ(γ)) ≥ r}

]
≤ E

[
P̃os{γ ∈ Γ|g(ξ(γ)) ≥ r}

]
.

In the same way, from (4), we have

E
[
P̃os{γ ∈ Γ|g(ξ(γ)) ≤ r}

]
≤ E

[
P̃os{γ ∈ Γ|f(ξ(γ)) ≤ r}

]
.

Therefore, we have∫ +∞

0

E
[
P̃os{γ ∈ Γ|f(ξ(γ)) ≥ r}

]
dr −

∫ 0

−∞
E
[
P̃os{γ ∈ Γ|f(ξ(γ)) ≤ r}

]
dr

≤
∫ +∞

0

E
[
P̃os{γ ∈ Γ|g(ξ(γ)) ≥ r}

]
dr −

∫ 0

−∞
E
[
P̃os{γ ∈ Γ|g(ξ(γ)) ≤ r}

]
dr.

By Definition 6, we know that the inequation R[f(ξ)] ≤ R[g(ξ)] is true. The proof of the theorem is complete.
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Theorem 5 Let ξ be a T2 fuzzy variable, f : < → < be real-valued continuous function. If R[f(ξ)] exists,
then we have |R[f(ξ)]| ≤ R[|f(ξ)|].

Proof: If R[f(ξ)] ≥ 0, with Theorem 4, we have

|R[f(ξ)]| = R[f(ξ)] ≤ R[|f(ξ)|].

If R[f(ξ)] < 0, then by Theorems 2 and 4, one has

|R[f(ξ)]| = −R[f(ξ)] = R[−f(ξ)] ≤ R[|f(ξ)|].

So, we can say that

|R[f(ξ)]| ≤ R[|f(ξ)|].

The proof of the theorem is complete.

4 The Representative Value of Discrete T2 Fuzzy Variable

Let

µ̃ξ(x) =


η1, if x = a1

· · ·
ηi, if x = ai
· · ·
ηn, if x = an,

i.e., ξ takes on crisp value ai(i = 1, 2, . . . , n) with possibility ηi. Suppose that {ηi, i = 1, 2, · · · , n} is a family
of mutually independent RFVs. Then ξ is a discrete T2 fuzzy variable. Without loss of generality, we assume
that a1 ≤ a2 ≤ · · · ≤ an. By Definition 6, we have

Theorem 6 For the above discrete T2 fuzzy variable ξ,

1) if a1 ≥ 0, then

R[ξ] =
n∑
t=1

(at − at−1)pt (5)

where a0 = 0, pt = E

[
max
t≤j≤n

ηj

]
, t = 1, . . . , n;

2) if an ≤ 0, then

R[ξ] =

n∑
t=1

(at+1 − at)pt (6)

where an+1 = 0, pt = −E
[

max
1≤j≤t

ηj

]
, t = 1, . . . , n;

3) if ai ≤ 0 ≤ ai+1, i = 1, 2, . . . , n− 1, then

R[ξ] = ai+1E

[
max

i+1≤j≤n
ηj

]
+ aiE

[
max
1≤j≤i

ηj

]
+

n∑
t=2,t6=i+1

(at − at−1)pt (7)

where

pt = −E
[

max
1≤j≤t−1

ηj

]
, t = 2, . . . , i, pt = E

[
max
t≤j≤n

ηj

]
, t = i+ 2, . . . , n.

Proof: We only prove 3). The rest conclusions can be proved similarly.
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Since ai ≤ 0 ≤ ai+1, i = 1, 2, . . . , n− 1, one has

R[ξ] =

∫ +∞

0

E
[
P̃os{ξ ≥ r}

]
dr −

∫ 0

−∞
E
[
P̃os{ξ ≤ r}

]
dr

=

∫ ai+1

0

E
[
P̃os{ξ ≥ r}

]
dr +

∫ ai+2

ai+1

E
[
P̃os{ξ ≥ r}

]
dr + · · ·+

∫ an

an−1

E
[
P̃os{ξ ≥ r}

]
dr

−
∫ a2

a1

E
[
P̃os{ξ ≤ r}

]
dr − · · · −

∫ ai

ai−1

E
[
P̃os{ξ ≤ r}

]
dr −

∫ 0

ai

E
[
P̃os{ξ ≤ r}

]
dr

=

∫ ai+1

0

E

[
max

i+1≤j≤n
ηj

]
dr +

∫ ai+2

ai+1

E

[
max

i+2≤j≤n
ηj

]
dr + · · ·+

∫ an

an−1

E

[
max
n≤j≤n

ηj

]
dr

−
∫ a2

a1

E

[
max

1≤j≤1
ηj

]
dr − · · · −

∫ ai

ai−1

E

[
max

1≤j≤i−1
ηj

]
dr −

∫ 0

ai

E

[
max
1≤j≤i

ηj

]
dr

= ai+1E

[
max

i+1≤j≤n
ηj

]
+ aiE

[
max
1≤j≤i

ηj

]
+
∑n
t=2,t6=i+1(at − at−1)pt

where

pt = −E
[

max
1≤j≤t−1

ηj

]
, t = 2, . . . , i, pt = E

[
max
t≤j≤n

ηj

]
, t = i+ 2, . . . , n.

The proof of 3) is complete.
It is easy to know that Theorem 6 can be described as the following theorem.

Theorem 7 For the above discrete T2 fuzzy variable ξ,

1) if a1 ≥ 0, then

R[ξ] =

n∑
t=1

atpt (8)

where

pt = E

[
max
t≤j≤n

ηj

]
− E

[
max

t+1≤j≤n
ηj

]
, t = 1, 2, . . . , n− 1, pn = E [ηn] ;

2) if an ≤ 0, then

R[ξ] =

n∑
t=1

atpt (9)

where

p1 = E [η1] , pt = E

[
max

1≤j≤t
ηj

]
− E

[
max

1≤j≤t−1
ηj

]
, t = 2, . . . , n;

3) if ai ≤ 0 ≤ ai+1, i = 1, 2, . . . , n− 1, then

R[ξ] =
n∑
t=1

atpt (10)

where
p1 = E [η1] , pn = E [ηn] ,

pt = E

[
max

1≤j≤t
ηj

]
− E

[
max

1≤j≤t−1
ηj

]
, t = 2, . . . , i,

pt = E

[
max
t≤j≤n

ηj

]
− E

[
max

t+1≤j≤n
ηj

]
, t = i+ 1, . . . , n− 1.

In the following, we provide one example to illustrate Theorems 6 and 7.

Example 2: Let Γ = {γ1, γ2, γ3, γ4, γ5}, and A = P(Γ). Define a set function P̃os : P(Γ) 7→ R([0, 1]) as
follows

P̃os{γi} =
(
0, i10 ,

i
5

)
, i = 1, . . . , 5

and
P̃os(A) = max

γ∈A
P̃os{γ}
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for any subset A of Γ, where
(
0, i10 ,

i
5

)
, i = 1, . . . , 5 are supposed to be mutually independent triangular RFVs.

Then, P̃os is a fuzzy possibility measure on P(Γ), and (Γ,P(Γ), P̃os) is an FPS. Define a function ξ : Γ→ <
as follows

ξ(γi) = 2i.

Then ξ is a T2 fuzzy variable. Since

max
1≤j≤5

P̃os{γj} = max
2≤j≤5

P̃os{γj} = max
3≤j≤5

P̃os{γj} = max
4≤j≤5

P̃os{γj} = P̃os{γ5},

we have

E

[
max

1≤j≤5
P̃os{γj}

]
= E

[
max

2≤j≤5
P̃os{γj}

]
= E

[
max

3≤j≤5
P̃os{γj}

]
= E

[
max

4≤j≤5
P̃os{γj}

]
= E

[
P̃os{γ5}

]
= 0.5.

By (8), we have

R[ξ] = 2× p1 + 4× p2 + 6× p3 + 8× p4 + 10× p5 = 5

where p1 = p2 = p3 = p4 = 0, p5 = 0.5. Also, by (5), we have

R[ξ] = (2− 0)× p1 + (4− 2)× p2 + (6− 4)× p3 + (8− 6)× p4 + (10− 8)× p5 = 5

where p1 = p2 = p3 = p4 = p5 = 0.5.

5 The Representative Value of T2 Triangular Fuzzy Variable

In this section, we deduce the computational formula of the representative value for T2 triangular fuzzy
variable.

Theorem 8 Let ξ = (r̃1, r̃2, r̃3; θl, θr) be a T2 triangular fuzzy variable. The secondary possibility distribution
function of ξ is µ̃ξ(x), x ∈ <, {µ̃ξ(x), x ∈ [r1, r3]} is supposed to be a family of mutually independent RFVs.

1) If r1 ≥ 0, then

R[ξ] = r2+r3
2 + (θr−θl)(r3−r2)

16 ; (11)

2) If r1 ≤ 0 ≤ r1+r2
2 , then

R[ξ] = r2+r3
2 − r21

2(r2−r1) + (θr−θl)(r3−r2)
16 − (θr−θl)r21

8(r2−r1) ; (12)

3) If r1+r2
2 ≤ 0 ≤ r2, then

R[ξ] = r1+r2+r3
2 − r1r2

2(r2−r1) + (θr−θl)(r3+r1)
16 + (θr−θl)r1r2

8(r2−r1) ; (13)

4) If r2 ≤ 0 ≤ r3+r2
2 , then

R[ξ] = r1+r2+r3
2 + r2r3

2(r3−r2) + (θr−θl)(r3+r1)
16 − (θr−θl)r2r3

8(r3−r2) ; (14)

5) If r2+r3
2 ≤ 0 ≤ r3, then

R[ξ] = r1+r2
2 +

r23
2(r3−r2) −

(θr−θl)(r2−r1)
16 +

(θr−θl)r23
8(r3−r2) ; (15)

6) If r3 ≤ 0, then

R[ξ] = r1+r2
2 − (θr−θl)(r2−r1)

16 . (16)



238 Y. Chen and X. Wang: The Possibilistic Representative Value of Type-2 Fuzzy Variable

Proof: We only prove 5). The rest can be proved similarly.
Note that the secondary possibility distribution µ̃ξ(x) of ξ is the following triangular RFV(

x−r1
r2−r1 − θl min{ x−r1r2−r1 ,

r2−x
r2−r1 },

x−r1
r2−r1 ,

x−r1
r2−r1 + θr min{ x−r1r2−r1 ,

r2−x
r2−r1 }

)
for x ∈ [r1, r2], and (

r3−x
r3−r2 − θl min{ r3−xr3−r2 ,

x−r2
r3−r2 },

r3−x
r3−r2 ,

r3−x
r3−r2 + θr min{ r3−xr3−r2 ,

x−r2
r3−r2 }

)
for x ∈ [r2, r3]. Therefore, we have

E[µ̃ξ(x)] =



(4+θr−θl)(x−r1)
4(r2−r1) , if x ∈ [r1,

r1+r2
2 ]

(4−θr+θl)x+(θr−θl)r2−4r1
4(r2−r1) , if x ∈ [ r1+r2

2 , r2]

(−4+θr−θl)x+4r3−(θr−θl)r2
4(r3−r2) , if x ∈ [r2,

r2+r3
2 ]

(4+θr−θl)(r3−x)
4(r3−r2) , if x ∈ [ r2+r3

2 , r3].

By the definition of µ̃ξ(x) and Extension Principle of Zadeh, we have

µ̃ξ(x1) ∨ µ̃ξ(x2) = µ̃ξ(x2), x1 ≤ x2 ≤ r2

and

µ̃ξ(x1) ∨ µ̃ξ(x2) = µ̃ξ(x1), r2 ≤ x1 ≤ x2.

Therefore, we know that

R[ξ] =

∫ +∞

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r}

]
dr −

∫ 0

−∞
E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
dr

=

∫ r3

0

E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r}

]
dr −

∫ r1+r2
2

r1

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
dr

−
∫ r2

r1+r2
2

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
dr −

∫ 0

r2

E
[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
dr

=

∫ r3

0

E
[
P̃os{γ ∈ Γ|ξ(γ) = r}

]
dr −

∫ r1+r2
2

r1

E
[
P̃os{γ ∈ Γ|ξ(γ) = r}

]
dr

−
∫ r2

r1+r2
2

E
[
P̃os{γ ∈ Γ|ξ(γ) = r}

]
dr −

∫ 0

r2

E
[
P̃os{γ ∈ Γ|ξ(γ) = r2}

]
dr

=

∫ r3

0

(4+θr−θl)(r3−x)
4(r3−r2) dr −

∫ r1+r2
2

r1

(4+θr−θl)(x−r1)
4(r2−r1) dr

−
∫ r2

r1+r2
2

(4−θr+θl)x+(θr−θl)r2−4r1
4(r2−r1) dr −

∫ 0

r2

1dr

= r1+r2
2 +

r23
2(r3−r2) −

(θr−θl)(r2−r1)
16 +

(θr−θl)r23
8(r3−r2) .

The proof of assertion 5) is complete.

Example 3: Let ξ = (2̃, 3̃, 4̃; 0.6, 0.8) be a T2 triangular fuzzy variable. The support of ξ is showed in
Figure 2. The secondary possibility distribution function of ξ is µ̃ξ(x), x ∈ <, {µ̃ξ(x), x ∈ [2, 4]} is supposed
to be a family of mutually independent RFVs. Then, by (11), we have

R[ξ] = r2+r3
2 + (θr−θl)(r3−r2)

16 = 3.5125.

Let η = −ξ = (−̃4, −̃3, −̃2; 0.6, 0.8). By (16), we have

R[η] = r1+r2
2 − (θr−θl)(r2−r1)

16 = −3.5125.
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By Theorem 2, we also have
R[η] = R[−ξ] = −R[ξ] = −3.5125.

Let ζ1 = η − 3 = (−̃7, −̃6, −̃5; 0.6, 0.8). By (16), we have

R[ζ1] = r1+r2
2 − (θr−θl)(r2−r1)

16 = −6.5125.

Since E[µ̃η(−3)] = E[1̃] = 1, by Theorem 3, we also have

R[ζ1] = R[η]− 3 = −6.5125.

Let ζ2 = ξ − 2 = (0̃, 1̃, 2̃; 0.6, 0.8). By (11), we have

R[ζ2] = r2+r3
2 + (θr−θl)(r3−r2)

16 = 1.5125.

By Theorem 3, we also have
R[ζ2] = R[ξ]− 2 = 1.5125.

Let ξ1 = ξ − 3 = (−̃1, 0̃, 1̃; 0.6, 0.8). By (14), we have

R[ξ1] = r1+r2+r3
2 + r2r3

2(r3−r2) + (θr−θl)(r3+r1)
16 − (θr−θl)r2r3

8(r3−r2) = 0.

But R[ξ]− 3 = 0.5125. That is to say, R[ξ − 3] 6= R[ξ]− 3. So, in general, R[ξ − c] 6= R[ξ]− c.

Figure 2: The support of the T2 fuzzy variable ξ defined in Example 3

Usually, the analytical expression of the possibility distribution of P̃os(A) can not be obtained easily due to
the complexity of the possibility distributions of P̃os{γ}, γ ∈ Γ. So, in general, the representative value of a T2
fuzzy variable can not be obtained easily. In this case, we may employ the approximation scheme developed

in [8] to estimate E
[
P̃os{γ ∈ Γ|ξ(γ) ≥ r}

]
and E

[
P̃os{γ ∈ Γ|ξ(γ) ≤ r}

]
when the possibility distributions of

P̃os{γ ∈ Γ|ξ(γ) ≥ r} and P̃os{γ ∈ Γ|ξ(γ) ≤ r} have infinite supports. The convergence of the approximation
method has been discussed in [9].

6 Conclusions

In this paper, we introduced the concept of the representative value for T2 fuzzy variable. Based on the
representative value of a T2 fuzzy variable, we also defined the representative value for T2 fuzzy vector. Then
we discussed some properties of the representative value operator for T2 fuzzy variable. For discrete T2
fuzzy variable, we obtained two kinds of computational formula of the representative value. Moreover, for T2
triangular fuzzy variables, we deduced the computational formula of the representative value.
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