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Abstract

This paper presents an original definition of data representativeness. The representativeness of each
datum in a dataset is a meaningful notion quantified by a degree computed by aggregating fuzzy subsets.
These fuzzy subsets are obtained by fuzzifying data in a robust way. We illustrate the usefulness of the
representativeness by presenting applications for statistical location estimation, and for cluster analysis.
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1 Introduction

In the past few years the growing computing capabilities and the improvement of data acquisition have led
to the need for managing new kinds of data. The extraction of information from datasets is a crucial task.
Data-mining and data analysis theories offer methods and techniques that allow exploration, description and
explanation of these datasets.

In the context of statistical theory data sets are generally considered as representative cross-sections of
theoretical populations. More precisely, most of the involved tools consist in estimating the parameters of a
hypothetical underlying distribution of the sample. Classical instances of location estimators are the median
and the mean. The standard deviation is a common dispersion estimator. These tools predominantly study
the probability distributions and are most often based on assumptions about them. We assume that classical
statistics are often not representative of datasets.

The lack of data is another critical point. Data usually contain intrinsic uncertainty or imprecision induced
by the acquisition, the nature of the data etc. In addition, real datasets often contain outliers and noisy data.
Finally, it is usually impossible to make the assumptions on the data distributions needed by classical statistical
and probability tools [5, 17].

To deal with these problems, some efficient concepts can be used. The theory of fuzzy sets and the
possibilistic approach, are common ways to deal with imprecision and uncertainty. As said before, the sensivity
to outliers is an element that often leads the most common statistical methods to fail. The concept of
robustness, inherent to the non-parametric methods, offers “resistance” to outliers. More generally, non-
parametric concepts like ranks and order statistics [19, 35, 38] permit both to beat the curse of outliers and
noisy data, and need no assumption on the data distributions.

Our goal is to propose a method that extracts information from data relatively to the given dataset. The
proposed tool has to be as insensitive as possible to outliers and to deal with lack of data. As an important
constraint, we wanted to develop a non-parametric method needing no assumption on the distribution of data
[10, 17].

To address this question we have defined a new theoretical notion expressing the representativeness of
data, relative to a given dataset. This new notion affects to each datum a quantitative information that
expresses how this datum is representative in the dataset. In other words, it can be viewed as a way to answer
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the question: “How reprentative is one datum in his sample?”. By adapting the semantics, we introduce
different applications of this notion. By searching the “best representant” in a sample we define a new
location estimator of the underlying distribution. By finding some best representant of subgroup, and linking
data with these “centers”, we propose an algorithm for cluster analysis.

How the representativeness is constructed? Our concept of representativeness is defined by using different
efficient and eprouved concepts. The goal of our methodology is to compute a degree of representativeness
for each datum of a dataset. This degree is computed as the aggregation of fuzzy subsets [41] associated to
data. The first step of our method consists in fuzzifying data [7, 42]. This fuzzification is not classical. We
choose a robust technique that uses first a rank transformation (see [23, 30, 36]) of the dissimilarity between
data. This technique makes our method free of assumption about the distribution [10, 17]. This way is really
different from a classical fuzzy ranking or fuzzy ordering approach [1, 16]. The aggregation is then realized
using an OWA operator defined by Yager in [41]. This aggregation operator brings flexibility and permits to
attenuate the effect of outliers. Finally, we obtain for each element of the initial dataset a value that quantifies
how this element is representative in his set. In this approach, the computation of representativeness is made
exclusively on the finite input dataset and not in an hypothetic underlying space. Although we are not
concerned by the problems of sampling, estimation or interpolation.

To illustrate the interest of our contribution we present its use in different theoretical contexts. First
we can use the representativeness as a location estimator. The simulations and the experimentations prove
that our induced statistic is efficient and gives better results than the median and other classical statistics.
Its efficiency with different kind of distributions and in particular with assymetric distributions is presented.
Secondly we illustrate the use of the representativeness for data clustering [22, 27, 32]. Our concept permits
to link data and to define clusters. One advantage of our approach is that the separability between clusters
is not assumed to be linear.

The next section of this paper presents the theoretical basis and definitions of our contribution. In Section
3, we illustrate the use of the notion in two major applications: statistical description of a sample, and data
clustering. Finally we discuss the different choices we made and propose a conclusion for this paper.

2 Theory

We decribe in this section the theoretic basis of our concept which is based on the fuzzy set theory.

The concept of fuzziness was introduced in 1965 [42] to deal with imprecision and vagueness. It allows for
instance to represent and process imprecise statements like “Bob is young”, “Alice is tall”, or rules like “if an
obstacle is close, then brake is immediately”.

In a data analysis problem, the nature of data depends on the domain of application. We have to analyze
financial data, spatial data, or image data for instance. In most of cases there is an intrinsic imprecision
induced by the acquisition technique. For example, in the case of image data, there is an imprecision caused
by the limitations of the captors. According to the resolution of a captor, each pixel of a photography
matches to different area’s size of the captured scene. Therefore, the information contained in each pixel
could be disturbed and photos are sometimes blured or noisy. For each kind of data, it’s necessary to consider
and to manage imprecision and uncertainty. Fuzzy sets and possibiliy theory are a common and efficient way
to deal with this problem.

We introduce in this paper a notion of fuzziness of data relatively to its dataset. This notion allows us to
define a kind of fuzziness for data, depending on the attributes of the dataset. Then this fuzzification step
leads to the definition of data representativeness in a dataset.

2.1 Data as Fuzzy Sets: A Robust Representation

As said before, real data are usually imprecise and the observations in datasets can be subsequently represented
as fuzzy sets.

Let Ω be a dataset formed by n observations, Ω = {x1, x2, . . . , xn}. We decide to represent each xi (for
each i ∈ I = {1..n}) as a fuzzy subset. We note x̃i the corresponding fuzzy set.

The membership function associated to each fuzzy set x̃i is not defined as usual [4, 7]. We chose to
define these membership function with the intention of dealing with outliers and with datasets where data
are distributed according to various and heterogenous underlying probability distributions.
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In clustering problems [11, 20, 27, 28], real datasets contain often outliers and noise. The data clusters are
generally not well separated [15] and the corresponding probability density functions could be very dissimilar
(effectives could be very different and density very dissemblable).

Non paramatric tools are classical to construct more robust methods. Rank transformation of data is one
of these ways [10, 12, 17].

We decided to use this transformation when fuzzifying data. You will note too that our fuzzification is
deeply different from the concept of fuzzy rank statistic [13] despite the fact that the theoretical tools involved
are quite the same. The rank transformation is introduced at the beginning of our method and is used in the
computation of the membership function of each fuzzy subset x̃i.

We suppose that we dispose of a dissimilarty measure on the set on Ω. Let δ denote this dissimilarity
measure. Therefore, we can consider the induced weak orders family (-i)i=1..n such that ∀i ∈ [1..n],-i is
defined by

∀j, k ∈ [1..n], xj -i xk ⇔ δ(xi, xj) ≤ δ(xi, xk).

Note: a relation on a set is called weak order if it is reflexive and transitive.
We can then obtain from this weak orders family the rank table (R(i, j))i,j=1..n defined by

R(i, j) = σ−1
j (i)

where (σi)i=1..n is the permutation family on Ω such as

∀i ∈ [1, n], xσi(1) -i xσi(2) -i . . . -i xσi(n).

In other words, the ith column of R contains the ranks of the elements of Ω when sorting them by ascending
value of dissimilarity measure with xi.

This operation could be seen as a rank transformation that is a common way to make data analysis
procedures more robust. The rank transformation consists in replacing each quantitative value of a variable
in a multivariate dataset by the rank of this value. This transformation is frequently used and classical
techniques like PCA have corresponding induced “nonparametric” methods.

In our case, we consider that the dataset is the given dissimilarity table. Each element is a datum and
each datum is considerd as a descriptor too.

Let we describe this point. Let D = (di,j)i=1..n,j=1..n denote this dissimilarity table of the dataset
(xi)i=1..n. The element of the ith row and the jth column, di,j , is the dissimilarity measure between xi
and xj . Each datum xj induces a set of n real values corresponding to the jth column of D and is viewed as
a variable.

The rank transformation replaces each of these real values by its rank when the set (dk,j), k = 1..n is
ordered.

The first advantage of rank transformation is that the resulting methods are less sensitive to outliers. In
fact one abnormal value generates high distances that could disturb a procedure base on the least square for
instance. The corresponding ranks contain however no extreme values.

The second interest is that we make no assumption (of normality for instance). Ranks are uniformaly
distributed. This point is attrative by notably allowing to deal with initially non symetric distributions.

According to this rank transformation we choose to consider that each datum of the dataset Ω is a fuzzy
set where fuzzy membership function is a discrete function of the ranks of the data. If we consider the fuzzy
set associated to xi ∈ Ω, the degrees of membership to x̃i are defined by

µx̃i
(xj) = g(σi(j)) = g(Rj,i) (1)

where g is a discrete monotonically decreasing function defined on [1, n] and such that 0 ≤ g ≤ 1.
The subsequently particularity of the obtained function is that its evaluation depends on the ranks of data.

Each fuzzy datum x̃i is defined by using the same function on the ranks. We call this function the shadow of
the generated fuzzy subset. If we consider the classical representation of membership function, we can observe
that the shapes of the fuzzy data are however different. The choice of the shadow and his characteristics are
presented in the following.

The shadow of the membership functions has to be choiced at the beginning of the processus. The role of
this function could be compared to the kernel function in functional estimation problems.
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In our context, it can be viewed as a scoring function. For instance, the value of g(Rji) can be considered
as a score assigned by x̃i to xj . This score, assigned by xi to xk, is also a transformation of the rank assigned
by xi to xj . The value of this score is the degree of membership of xj to x̃i.

The constraints on the shadow function g are easy to explain and interpret. For a given fuzzy data x̃i we
want that the higher the rank of an element xj , the smaller its score. In other words, if the rank of xj is
small, its degree of membership to x̃i has to be small. It justifies why g is forced to be decreasing. Therefore,
since the result of g applied to a rank values is a degree of membership, g has to take values in [0, 1].

Let g be the Gaussian function: g(r) = e−
(r−1)2

s2 (where s ∈ R is the standard deviation of the Gaussian
function g). Experimentally, we can affirm that this Gaussian shadow is a satisfying choice by default. Other
choices are proposed in the discussion part.

In this section we have presented our particular data fuzzification procedure where each element of the
dataset is represented as one fuzzy set. We will now introduce a new notion by representing the whole data
set as a fuzzy set itself.

2.2 The Dataset as a Particular Fuzzy Set

In this section we define the whole data set as a fuzzy set computed using the precedent step. This data
set can be viewed as the aggregation of the n fuzzy sets associated to data. After presenting the theoretical
definition we propose an application, and the interpretability of the notions will be exposed.

We define now a membership function of the fuzzy dataset Ω̃ (the so called fuzzified Ω). This func-
tion is evaluated on each datum xi. Let us describe this function evaluated on the datum xi ∈ Ω. Let
(µx̃1(xi), µx̃2(xi), . . . , µx̃n(xi)) and w = (w1, . . . , wn) with each wi ∈ [0, 1] and

∑
wi = 1. We consider an

ordered weighted averaging operator (OWA) [41] of dimension n, Fw:

Fw : Rn → R : (y1, y2, . . . , yn) 7→
n∑
j=1

wj .yj

and we define: ∀i ∈ [1..n],
µΩ̃(xi) = Fw ((µx̃1

(xi), µx̃2
(xi), . . . , µx̃n

(xi))) , (2)

µΩ̃(xi) is the degree of membership of xi in the fuzzy set Ω̃.

2.3 Degree of Representativeness

We have defined a particular way of representing data. It consists in representing each datum as a fuzzy set,
and the whole dataset as another fuzzy set. It allows to represents data individualy and globally using the
relevantness of fuzzy set theory.

We can see the degree of membership to Ω̃ as a notion of representativeness resulting from the given
dissimilarity measure. We can say that the high the degree of membership of one datum to the fuzzy dataset,
the more representative the considered datum. This notion of representativeness is relative to the dataset.

It leads us to define the degree of representativeness.

Definition 1 The degree of representativeness DR of one datum in Ω is defined by

DR(xi) = µΩ̃(xi).

We have exposed bellow a new framework for fuzzifying data. This approach can be relevant in the context
of data analysis and we present in this section an example of application for the problem of unsupervised data
clustering. The use and the interest of the degree of representativeness will be exposed in Section 3.

3 Illustrations

After exposing the theoretical concept of our contribution, we present different kind of use in the field of data
analysis. The first illustration introduce a purpose of representativeness in the problem of location estimation
of a distribution. The second one illustrate the interest of representativeness in clustering problem.
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3.1 The Best Representative: A Robust Location Estimator

Let us consider the problem of location estimation [3, 26]. The goal of location estimation is to extract one
datum or one value from the data sample or data space, that reflects the “location” of the data sample. In
other terms, location estimation consists in finding one observation that is as representative of the sample as
possible. A classical method consists in computing one statistic from the sample [3, 26, 39]. This statistic can
be viewed as the estimation of one parameter of the underlying probability distribution [26]. The well known
mean and median are the probably the most used statistics to achieve it. The median statistic is a robust
location estimator contrary to the mean. It means that in presence of outliers, the mean becomes often non
significative contrary to median that remains efficient. The robustness [39] is an important characteristics
that makes the mean statistic obsolete when working on real data.

3.1.1 The Best Representative of a Sample

We propose to use our representativeness notion as an objective function to be optimized in order to determine
the best representantive of a sample. Trivially, the best representative of a data sample is the element of the
set that is owning the maximum degree of representativeness.

Thus we define the statistic we called best representative as follow.

Definition 2 The best representative of a data sample Ω = {x1, . . . , xn} is the element of Ω whose degree of
representativeness RD(xi) is the highest:

xBR = arg max
xi∈Ω

DR(xi).

Let us illustrate the interest and the characteristics of our statistic in some simulations.

3.1.2 Examples

The first point we want to highlight is the robustness [33] of our the best representative of a sample. To
exhibit it, we simulate a one dimensional data sample composed by one population distributed according
to a non-centred χ2 law (with 4 freedom degrees), and an uniform noise. The noise represent 75% of the
total sample. The Figure 1 shows the distribution of the sample and the values of the best representative
statistic versus the mean and the median statistics. We observe that the best representative lies in the “real”
population contrary to the mean statistic which value shifts to the noise. As it’s well known, the median is
sufficiently robust to “resists” to this kind of noise.

The second characteristic of our statistics is the meaning it keeps when the sample is formed by several
mixed subsamples. In fact, contrary to the mean and the median which only shows the central location of a
sample, our statistic brings additional information. The best representative of a sample enhances the location
information with information of representativeness. The Figures 2 and 3 illustrate this point.

The Figure 2 represents the distribution of a simulated random sample composed of two chi-square dis-
tributed subsamples (χ2(4) and χ2(24)). It shows that the median and the mean of the sample give the central
location of the whole data sample. They do not consider the two different subsamples contrary to the best
representative that is located in the “middle” of one of the two sub-distributions. The best representative
corresponds to one element of the initial data sample that is as more representative as possible.

This result is illustrated in a second example (Figure 3). In this third example, the sample is constitued
of three subsamples that represent respectively 400, 200 and 100 elements of the sample. The median and the
mean represent two elements of the minority subpopulation contrary to the best representative that is chosed
in the majoritary sub-population.

This specificity is a real advantage in many cases. In fact, it permits to take account of the structure of
the data sample. Classical statistics -that only traduce a central tendency of the sample- extract elements
or compute values that are not representative in this given sample. If we consider for example a problem of
consumer behavior, our statistic offers to determine the person which is the most representative in the sample
of studied consumers. The median-people or the average-people are not necesseraly representative (median)
or can be abstract (mean) (note that in the case of the mean, the results could be a “virtual average behavior”
that corresponds to nobody in the sample).

The numerical values of the statistics in these three examples are contained in the Table 1.
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Figure 1: Best representative Vs Median Vs Mean - Data with 75% noise

Table 1: Numerical values of the statistics in the three simulated examples
Statistic Example of Fig. 1 Example of Fig. 2 Example of Fig. 3

Mean −16, 76 10, 19 16, 85
Median −11, 66 4, 99 7, 10

Best representative 0, 44 3, 89 4, 67

3.2 A Data Clustering Procedure Based on Representativeness

We will now describe another application of the representativeness degree in a sample. This application offers
a clustering procedure based on the degree of representativeness seen as an objective function to be optimized.

3.2.1 Principle

The principle lies on a classical approach in data clustering [22, 27]. In the cluster analysis field, we can find
many algorithms based on the probability density function. The idea is to condider the underlying probability
density function of the sample. Most of methods consists in estimating this density function and to associate
each datum to one mode of the estimated function. This association induces a partition of the sample in
clusters. More details about density based clustering algorithms can be find in [9, 11, 25, 34].

The idea of our application is to use the degree of representativeness of the data instead of the values of
the estimated probability density function at these data.

This choice permits to keep the major advantage of these techniques which make no assumption on the
shape of the clusters. That means for instance that it does not suppose that the clusters are spherical (it’s
the case with the k-means algorithm for example).

The second advantage of our technique is its effectiveness with clusters which are distributed according to
various densities and with clusters with different effectives, contrary to the classical techniques cited above.

The procedure we use is described as follow:
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Figure 2: Best representative Vs Median Vs Mean - 2 subsamples

Figure 3: Best representative Vs Median Vs Mean - 3 subsamples
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Algorithm 1 Representativeness Based Clustering Procedure

Require: The data sample {x1, x2, . . . , xn}, ε the radius of a sphere Sε(c) centered in c.
Ensure: The associated mode (AM) of each point of the data sample

for all point xi of the data sample do
AM(xi)← xi
repeat
AM(xi)← arg max

xk∈Sε(AM(xi))

DR(xk)

until stabilization
return AM(xi) the mode associated to the point xi

end for

We will present our proposition in action in the following example.

3.2.2 Example

Let Ω be the two dimensional data sample whose graphical representation is presented in the Figure 4 (Top
left). After computing the representativeness of each datum (represented in the Figure 4 (Top right)), we
use the process described in the Algorithm 1 to affect each datum to one mode of the representativeness
function. At each iteration of the process, we shifts from the current point to the best representative of the
neighborhood. So we obtain for each datum a path to the mode in the data sample. The Figure 4 (Bottom
Left) represents the graph obtained by drawing these pathes on the representation of the representativeness.
The so called graph is composed by two trees which define the data clusters.

In fact, by grouping data which have the same associated mode, we obtain the data clusters. Each final
representative is the best representative of his induced cluster. The Figure 4 (Bottom right) represents the
labelized data according to the obtained clusters.

Despite the simplicity of the procedure, we constate immediately that our method permits to deal with
the non linearity of the separation between clusters.

4 Discussion

We have presented below the theoretical aspects of our contribution, we discuss in this section some critical
points and some choices we made.

4.1 Input Data

The first point we have to discuss is the nature of the input data. Our method to represent data starts with
using dissimilarity between data. The only essential precondition on the dataset is to have a way to compare
data. This not-restrictive background allows our technique to be used with many kind of data and especially
with multivariate data or non numerical data.

Therefore, as said in introduction of this paper, our method works on -and only on- the given data. The
working set is the input dataspace. The computation of the representativeness is not depending on any
visionary or unsupported assumptions about an underlying space of the data. Consequently, the use of this
technique presents some practical interest. In our clustering application for instance, the representatives (the
centers) of the clusters are extracted from the dataset. So they could be considered as “real” epitomes or
“real” prototypes of the clusters, contrary to classical method that provides an imaginary mean representative
(e.g. k-means).

The second point concerns the choice of the function that computes the degrees of membership to data as
fuzzy sets from the ranks. We have called this function the shadow of the membership functions.

4.2 Shadow of Membership Function

The choice of the function is large but can be inspired or leaded from classical kernel functions or classical
fuzzy membership functions (see for instance [8]):

Let r be a rank value Ri,j ,
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• Gaussian shadow:

g(r) = e−
(r−1)2

s2 s ∈ R

• flate shadow:

f(r) =

{
1 if r ≤ k
0 if r > k

k ∈ N∗

• Epanechnikov shadow:

k(x) =

{
k − r2 if r2 ≤ k

0 if r2 > k
k ∈ N∗

Graphic illustrations of each of these shapes are presented in the Table 2. The choice of the shadows is
not so critical. It permits to give more flexibility to procedure for a better adaptability to the nature of data.

Table 2: Shapes examples

Gaussian shape flate shape Epanechnikov shape triangular shape

In our applications, we obtains good results with different shapes. The classical Gaussian function is
usually a good choice and could thus be considered as an interessant choice by default. A different choice
could be made according to the nature of the considered data of for particular applications.

4.3 Weights Vector in OWA

The choice of the weights is very subsequent and could be guided by the input sample. We propose to design
the weighting vector according to the trapezoid profile represented on the Figure 5. Let us explain the way
we choose. We consider that the first weights have to be null (I1 on the Figure 5). This constraint allows to
ignore isolated data or very small group of data, when calculating the degree of membership of this data in
the sample. In other words, it offers to treat the case of outliers. The second parameter permits to define
the threshold of maximal contribution of one datum. So in this interval, the weights are maximum (I2 on the
Figure 5). Finally we consider that after a choosed threshold, the weights are null, i.e., the contribution of
the datum is insignificant. Between these ranges, the weights are linear calculated (I3 on the Figure 5).

After discussing the different possible choices of the methodology, we present a different way of seeing our
theoretical contribution. The idea is to expose another point of view on the defined notions by presenting
these notions as objects in a different framework or context. In fact, our “fuzzy approach” can be expressed
in a social choice theoretic context or in the framework of “preferences”.

4.4 A Different Point of View

The degrees of membership to the sample fuzzy set can be interpreted as global scoring values affected to
each datum by the set of all the others. This global score of one element is the result of the aggregation
of the scores affected by each others. This point of view permits to make a link with the field of the social
choice theory. In fact we can see the degrees of membership to each fuzzy data as the expression of individual
preferences. On the other hand, the degrees of membership to the fuzzy data sample is close to the notions
of collective preference.
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Figure 4: Illustration of using representtivity in a clustering process. Top Left: the two dimensional data
sample. Top Right: 3D representation of the representativeness of each datum of the data sample (represen-
tativeness as elevation). Bottom Left: pathes obtained by iterative association to local best representative.
Bottom Right: clusters obtained after labelization

Figure 5: Construction of weight vectors for OWA procedure



226 F. Blanchard, et al.: Data Representativeness Based on Fuzzy Set Theory

5 Conclusion

We have presented in this paper the notion of representativeness in a data sample. The framework and the
theoretical basis of this concept are the fuzzy set theory and data analysis. Our mathematical definition of
the representativeness of data permits to address to the question “How one datum is representative in its data
sample?”. The most immediate application of this approach is to construct a satistical location estimator
which is robust and which keeps meaning and significance according to the underlying distribution. The use
of representativeness in clustering problem is natural. By associating each datum to one “good representant”,
we create naturally a partition of the data set. Thus the representativeness notion provides a usefull tool for
cluster analysis.

A Notations

Table 3: Notations
Data

Ω the dataset
xi data (Ω = {x1, .., xn})
n number of data (n = Card(Ω))

Rank transformation
-i weak order induced by the dissimilarity with xi
Ri,j Rank of xj according to -i

Fuzzy data
x̃i fuzzyfied data (each x̃i is a fuzzy set)
µx̃i

(xj) membership degree of xj to x̃i
Agregation

w = (w1, . . . , wn) weights vector used in OWA
Fw OWA operator

Fuzzy dataset

Ω̃ fuzzyfied dataset

µΩ̃(xj) membership degree of xj to Ω̃
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