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Abstract 
 

The present paper aims to study solution of fuzzy nonlinear equations, whose some parameters are fuzzy numbers. 
The fuzzy numbers have been presented in parametric form and a general iterative method has been proposed for the 
numerical solution of a system of fuzzy nonlinear equations. The proposed method has also been illustrated by an 
example to show the efficiency of the developed algorithm. 
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1 Introduction 
 
The concept of fuzzy numbers and arithmetic operations on it was introduced by Zadeh [12, 30] which was further 
enriched by Mizumoto and Tanaka [21]. Later on Dubois and Prade [13] made a significant contribution by 
introducing the concept of LR fuzzy numbers and presented a computational formula for operations on fuzzy  
numbers. With the development in the theory of fuzzy numbers, one of the major area emerged for application of 
these fuzzy numbers, is the solution of equations whose parameters are fuzzy numbers. Solution of the system of 
fuzzy equations is required in various areas such as Physics, Chemistry, Economics and many financial systems. 
Buckley and Qu [9] studied the solution of linear and quadratic equations when parameters are either real or complex 
fuzzy numbers. The study used the extension principle approach and envisaged that many simple fuzzy equations 
have no solution. Further, Buckley and Qu [10, 11] addressed this problem and gave a new solution concept for such 
cases.  

Friedman, Ming and Kandel [16] proposed a general model for solving a 𝑛𝑛 × 𝑛𝑛 fuzzy linear system whose 
coefficient matrix is crisp and right side column is an arbitrary fuzzy number vector. Wang, Zhong and Ha[27] also 
proposed an iterative algorithm for solving a system of fuzzy linear equations.  

Allahviranloo [3] presented algorithm for numerical solution of fuzzy system of linear equations based on 
iterative Jacobi and Gauss Siedel methods. Asady, Abbasbandy and Alavi [2] considered the solution of a 𝑚𝑚 ×
𝑛𝑛 fuzzy general linear system for a case when 𝑚𝑚 ≤ 𝑛𝑛. Different approaches to solve fuzzy linear systems have also 
been given by several authors, such as Abbasbandy and Jafarian [4], Abbasbandy, Ezzati and Jafarian [5], Muzzioli 
and Reynaerts [22], Dehghan, Hashemi and Ghatee [15] and Wang and Zheng [28].  

In real life problem fuzzy system of equations also occur in nonlinear forms and are not solved by methods 
commonly used for linear systems, Abbasbandy and Asady [1] considered this problem and presented a Newton’s 
method for solving fuzzy nonlinear equations, which was applied by Kajani, Asady and Venchen [19] for solving a 
dual fuzzy nonlinear systems. Selekwa and Collins [23] considered the numerical solution of systems of qualitative 
nonlinear algebraic equations by fuzzy logic. Ujevic [26] presented a method for solution of nonlinear equations 
based on derived quadrature rules. The solution of fuzzy nonlinear equations by steepest descent method was 
considered by Abbasbany and Jafarian [6], where as Jafari and Varsha [18] presented a revised adomian 
decomposition method. For the purpose, Abbasbandy [7] further proposed  Newton’s method for solving a system of 
fuzzy nonlinear equations, where as Saavedra, Mangueira, Cano and Flores [24] described solution of nonlinear fuzzy 
systems by decomposition of incremental fuzzy numbers. Recently, Shokri [25] proposed an approach of midpoint 
Newton’s method for the solution of system of fuzzy nonlinear equations. Here, the motivation of the present work is 
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to develop a general computational algorithm, which is based on the theory of fixed point iteration, for solutions of 
fuzzy nonlinear equations. 

All the previous works of solving fuzzy system of nonlinear equations have used the Newton’s approach. Here, 
in this paper, we have extended the theory of general iterative method for solving fuzzy nonlinear systems, where 
right hand side of equation was taken to be a fuzzy number. The algorithm for the method has been developed and 
illustrated by numerical example for finding the positive fuzzy real roots of a fuzzy nonlinear system of equations. 
The present work has been organized in the coming section; Section 2 describes and presents fuzzy numbers in 
parametric form and the arithmetic operations on it. Section 3 of the paper describes the method and algorithm to the 
general iteration method for solution fuzzy system of nonlinear equations followed by numerical illustration of the 
method in Section 4 and the conclusion is placed in Section 5. 

 
2  Fuzzy Number and its Parametric Form 
 
In this section, some basics of fuzzy numbers and its parametric representation as presented in [1,12,13,21,30 ] are 
being viewed and some of the needed are being reproduced to make the study self contained. 

Definition 1  A fuzzy number is a fuzzy set, 𝑢𝑢� : ℛ → 𝐼𝐼 = [0,1]  , which satisfies  
1) 𝑢𝑢�   is upper semi-continuous; 
2) There are real numbers  𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑  such that    𝑐𝑐 ≤ 𝑎𝑎 ≤ 𝑏𝑏 ≤ 𝑑𝑑  and 
               𝑢𝑢�(𝑥𝑥)  is monotonically increasing on [𝑐𝑐, 𝑎𝑎], 
               𝑢𝑢�(𝑥𝑥)  is monotonically decreasing on [𝑏𝑏,𝑑𝑑], 
          𝑢𝑢�(𝑥𝑥) = 1, 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏; 
3)    𝑢𝑢�(𝑥𝑥) = 0 , if 𝑥𝑥 lies outside the interval [𝑐𝑐,𝑑𝑑]. 

Definition 2 A fuzzy number 𝑢𝑢�  in parametric form is a pair �𝑢𝑢 ,𝑢𝑢� of function 𝑢𝑢(𝑟𝑟),𝑢𝑢(𝑟𝑟)  0 ≤ 𝑟𝑟 ≤ 1 , which satisfies 
the following conditions 

1) 𝑢𝑢(𝑟𝑟) is a bounded monotonic increasing left continuous function over [0, 1]; 
2) 𝑢𝑢(𝑟𝑟) is a bounded monotonic decreasing left continuous function over [0, 1]; 
3) 𝑢𝑢(𝑟𝑟) ≤  𝑢𝑢(𝑟𝑟), 0 ≤ 𝑟𝑟 ≤ 1. 
 

Trapezoidal Fuzzy Number 
A fuzzy number 𝑢𝑢�  is the trapezoidal fuzzy number defined as 𝑢𝑢� = (𝑥𝑥0,𝑦𝑦0,𝜎𝜎,𝛽𝛽) with interval defuzzifier [𝑥𝑥0,𝑦𝑦0] 

and left fuzziness 𝜎𝜎 and right fuzziness 𝛽𝛽, where the membership function is 

𝑢𝑢�(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

1
𝜎𝜎

 (𝑥𝑥 − 𝑥𝑥0 + 𝜎𝜎)               𝑥𝑥 − 𝑥𝑥0 ≤ 𝑥𝑥 ≤  𝑥𝑥0

1                                                   𝑥𝑥 ∈ [𝑥𝑥0,𝑦𝑦0]
1
𝛽𝛽

 (𝑦𝑦0 − 𝑥𝑥 + 𝛽𝛽)              𝑦𝑦0 ≤ 𝑥𝑥 ≤  𝑦𝑦0 + 𝛽𝛽

0                                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� 

and its parametric form is  

𝑢𝑢(𝑟𝑟) = 𝑥𝑥0 − 𝜎𝜎 + 𝜎𝜎𝜎𝜎  and    𝑢𝑢(𝑟𝑟) = 𝑦𝑦0 + 𝛽𝛽 − 𝛽𝛽𝛽𝛽. 

Further, if  𝑥𝑥0 = 𝑦𝑦0, then 𝑢𝑢� =  (𝑥𝑥0,𝜎𝜎,𝛽𝛽)  is called the triangular fuzzy number. 
 

Arithmetic Operations 
The addition and scalar multiplication of fuzzy numbers in parametric form are defined using the interval 

arithmetic and are presented as following. 
For any two fuzzy numbers 𝑢𝑢� = �𝑢𝑢,𝑢𝑢� and 𝑣𝑣� =  �𝑣𝑣, 𝑣𝑣�, we define addition 𝑢𝑢� + 𝑣𝑣�  and multiplication by scalar 𝑘𝑘 

as 
Addition 

�𝑢𝑢 + 𝑣𝑣�(𝑟𝑟) = 𝑢𝑢(𝑟𝑟) + 𝑣𝑣(𝑟𝑟),                �𝑢𝑢 + 𝑣𝑣�(𝑟𝑟) = 𝑢𝑢(𝑟𝑟) + 𝑣𝑣(𝑟𝑟). 
Scalar Multiplication 

�
�𝑘𝑘𝑘𝑘�(𝑟𝑟) = 𝑘𝑘𝑢𝑢(𝑟𝑟),    �𝑘𝑘𝑘𝑘�(𝑟𝑟) = 𝑘𝑘𝑢𝑢(𝑟𝑟)            for 𝑘𝑘 > 0 
�𝑘𝑘𝑘𝑘�(𝑟𝑟) = 𝑘𝑘𝑢𝑢(𝑟𝑟),    �𝑘𝑘𝑘𝑘�(𝑟𝑟) = 𝑘𝑘𝑢𝑢(𝑟𝑟)            for 𝑘𝑘 < 0.

� 
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Multiplication of Two Fuzzy Numbers 
Multiplication of two fuzzy numbers 𝑢𝑢� = �𝑢𝑢,𝑢𝑢� and 𝑣𝑣� =  �𝑣𝑣, 𝑣𝑣� can be defined in parametric form using interval 

arithmetic as 
𝑢𝑢� ∗ 𝑣𝑣� = �𝑢𝑢(𝑟𝑟),𝑢𝑢(𝑟𝑟)� ∗ �𝑣𝑣(𝑟𝑟), 𝑣𝑣(𝑟𝑟)� = �min�𝑢𝑢𝑣𝑣,𝑢𝑢𝑣𝑣,𝑢𝑢𝑣𝑣,𝑢𝑢𝑣𝑣�, max�𝑢𝑢𝑣𝑣,𝑢𝑢𝑣𝑣,𝑢𝑢𝑣𝑣,𝑢𝑢𝑣𝑣��. 

1) If  𝑢𝑢� > 0 and 𝑣𝑣� > 0, then 

�𝑢𝑢(𝑟𝑟),𝑢𝑢(𝑟𝑟)� ∗ �𝑣𝑣(𝑟𝑟), 𝑣𝑣(𝑟𝑟)� = �𝑢𝑢(𝑟𝑟) 𝑣𝑣(𝑟𝑟),𝑢𝑢(𝑟𝑟) 𝑣𝑣(𝑟𝑟)�; 

2) If 𝑢𝑢� < 0 and 𝑣𝑣� > 0,  then 
𝑢𝑢� = −�−𝑢𝑢(𝑟𝑟),−𝑢𝑢(𝑟𝑟)� 

and  
 𝑢𝑢� ∗ 𝑣𝑣� = −��−𝑢𝑢(𝑟𝑟),−𝑢𝑢(𝑟𝑟)� ∗ �𝑣𝑣(𝑟𝑟), 𝑣𝑣(𝑟𝑟)�� = �𝑢𝑢(𝑟𝑟)𝑣𝑣(𝑟𝑟),𝑢𝑢(𝑟𝑟)𝑣𝑣(𝑟𝑟)�; 

3) If 𝑢𝑢� < 0 and 𝑣𝑣� < 0, then 
𝑢𝑢� = −�−𝑢𝑢(𝑟𝑟),−𝑢𝑢(𝑟𝑟)� and 𝑣𝑣� = −�−𝑣𝑣(𝑟𝑟),−𝑣𝑣(𝑟𝑟)� 

and 
𝑢𝑢� ∗ 𝑣𝑣� = ��𝑢𝑢(𝑟𝑟)𝑣𝑣(𝑟𝑟),𝑢𝑢(𝑟𝑟)𝑣𝑣(𝑟𝑟)��; 

4) If 𝑢𝑢� > 0 and 𝑣𝑣� < 0, then  
𝑣𝑣� = −�−𝑣𝑣(𝑟𝑟),−𝑣𝑣(𝑟𝑟)� 

and 
𝑢𝑢� ∗ 𝑣𝑣� = �𝑢𝑢(𝑟𝑟)𝑣𝑣(𝑟𝑟),𝑢𝑢(𝑟𝑟)𝑣𝑣(𝑟𝑟)�. 

Inverse operation 
Inverse of a fuzzy number 𝑢𝑢�  is defined considering different cases. Here it is to be noted that origin does not 

belong to the 0-cut of 𝑢𝑢�  , i.e.  𝑢𝑢�  is either strictly positive or strictly negative. 

𝑢𝑢� > 0 →  𝑢𝑢(𝑟𝑟) > 0 and 𝑢𝑢(𝑟𝑟)  > 0, 
1
𝑢𝑢�

=  
1

�𝑢𝑢(𝑟𝑟),𝑢𝑢(𝑟𝑟)�
= �

1
𝑢𝑢(𝑟𝑟) ,

1
𝑢𝑢(𝑟𝑟)�. 

And if 𝑢𝑢� < 0 →  𝑢𝑢(𝑟𝑟) < 0 and 𝑢𝑢(𝑟𝑟)  < 0, then 

𝑢𝑢� = −�−𝑢𝑢(𝑟𝑟),−𝑢𝑢(𝑟𝑟)�, 
1
𝑢𝑢�

=  −
1

�−𝑢𝑢(𝑟𝑟),−𝑢𝑢(𝑟𝑟)�
= −�−

1
𝑢𝑢(𝑟𝑟) ,−

1
𝑢𝑢(𝑟𝑟)� = �

1
𝑢𝑢(𝑟𝑟) ,

1
𝑢𝑢(𝑟𝑟) �. 

Division 
Division of a fuzzy number 𝑢𝑢�  by a fuzzy number 𝑣𝑣� can be defined by multiplication of 𝑢𝑢�  with inverse of  𝑣𝑣� as 

discussed above. Here again, origin does not lie in the 0-cut of 𝑣𝑣�. 
𝑢𝑢�
𝑣𝑣�

=  𝑢𝑢� ∗
1
𝑣𝑣�

 

and then considering different possible cases, value of division of 𝑢𝑢�  by 𝑣𝑣�, i.e., 𝑢𝑢�
𝑣𝑣�
  can be calculated. 

 
3 A General Iteration Method 
 
In this section we consider the solution of fuzzy nonlinear system 

                                                     �𝑓𝑓
(𝑥𝑥�,𝑦𝑦�) = 𝑐𝑐1� ,
𝑔𝑔(𝑥𝑥�,𝑦𝑦�) = 𝑐𝑐2� .

�                                                                                        (1) 

First, we rewrite system of equation (1) using parametric representation of fuzzy numbers  𝑥𝑥�,  𝑦𝑦� , 𝑐𝑐1�  and  𝑐𝑐2�  as  

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓𝑓1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑐𝑐1,

𝑓𝑓2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑐𝑐1,

𝑔𝑔1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑐𝑐2,

𝑔𝑔2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑐𝑐2.

�                                                                                 (2)                                                                                           
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Then the system (2) can be equivalently written as 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥𝑥 = 𝐹𝐹1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� ,

𝑦𝑦 = 𝐺𝐺1 �𝑥𝑥,𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� ,

𝑥𝑥 = 𝐹𝐹2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� ,

𝑦𝑦 = 𝐺𝐺2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟�

�                                                                                  (3)                                                                                           

where  

⎩
⎪⎪
⎨

⎪⎪
⎧𝐹𝐹1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑥𝑥 + 𝛼𝛼 �𝑓𝑓1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦� − 𝑐𝑐1� ,

𝐺𝐺1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑦𝑦 + 𝛽𝛽 �𝑔𝑔1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦� − 𝑐𝑐2� ,

𝐹𝐹2 �𝑥𝑥,𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑥𝑥 + 𝛾𝛾 �𝑓𝑓2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦� − 𝑐𝑐1� ,

𝐺𝐺2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑦𝑦 + 𝛿𝛿 �𝑔𝑔2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦� − 𝑐𝑐2� .

�                                                         (4) 

 Let �𝜁𝜁, 𝜂𝜂�� be the exact solution of the above system, where 𝜁𝜁 = �𝜁𝜁, 𝜁𝜁� and 𝜂𝜂� =  �𝜂𝜂, 𝜂𝜂�, then it will satisfy the 
given equations  ∀ 𝑟𝑟 ∈  [0,1], 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜁𝜁 = 𝐹𝐹1 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟� ,

𝜂𝜂 = 𝐺𝐺1 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟� ,

𝜁𝜁 = 𝐹𝐹2 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟� ,

𝜂𝜂 = 𝐺𝐺2 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟� ,

�                                                                                   (5) 

                                                                                                   

and its solution vector can be represented as 

⎣
⎢
⎢
⎢
⎡
𝜁𝜁
𝜂𝜂

𝜁𝜁
𝜂𝜂⎦
⎥
⎥
⎥
⎤
. 

Now, if (𝑥𝑥0� ,𝑦𝑦0�) be a suitable initial approximation to �𝜁𝜁, 𝜂𝜂��, then we study the fixed point iteration as if 𝑘𝑘𝑡𝑡ℎ   
iterate is known, then  (𝑘𝑘 + 1)𝑡𝑡ℎ  iterate can be found as 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥𝑥𝑘𝑘+1 = 𝐹𝐹1 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝑦𝑦𝑘𝑘+1 = 𝐺𝐺1 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝑥𝑥𝑘𝑘+1 = 𝐹𝐹2 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝑦𝑦𝑘𝑘+1 = 𝐺𝐺2 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� .

�                                                                         (6)                                                                              

Using vector notation 𝑋𝑋𝑘𝑘+1 = 𝑔𝑔(𝑋𝑋𝑘𝑘) where  

𝑋𝑋𝑘𝑘 =

⎣
⎢
⎢
⎡
𝑥𝑥𝑘𝑘
𝑦𝑦𝑘𝑘
𝑥𝑥𝑘𝑘
𝑦𝑦𝑘𝑘 ⎦
⎥
⎥
⎤
  and  𝑔𝑔(𝑋𝑋) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐹𝐹1 �𝑥𝑥,𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟�

𝐺𝐺1 �𝑥𝑥,𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟�

𝐹𝐹2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟�

𝐺𝐺2 �𝑥𝑥,𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟�⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

If above iterative method converges, then  

lim𝑘𝑘→∞ 𝑥𝑥𝑘𝑘� =  𝜁𝜁, 
lim𝑘𝑘→∞ 𝑦𝑦𝑘𝑘� =  𝜂𝜂�. 

Now subtracting system of equations (6) from system of equations (5) respectively, we get 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝜁𝜁 − 𝑥𝑥𝑘𝑘+1 = 𝐹𝐹1 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟�−𝐹𝐹1 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝜂𝜂 − 𝑦𝑦𝑘𝑘+1 = 𝐺𝐺1 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟�−𝐺𝐺1 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝜁𝜁 − 𝑥𝑥𝑘𝑘+1 = 𝐹𝐹2 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟� − 𝐹𝐹2 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝜂𝜂 − 𝑦𝑦𝑘𝑘+1 = 𝐺𝐺2 �𝜁𝜁, 𝜁𝜁, 𝜂𝜂, 𝜂𝜂, 𝑟𝑟�−𝐺𝐺2 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� .

�                                       (7) 

Now, let  𝜀𝜀𝑘𝑘 = 𝜁𝜁 − 𝑥𝑥𝑘𝑘 , 𝜀𝜀𝑘𝑘 =  𝜁𝜁 − 𝑥𝑥𝑘𝑘 , 𝛿𝛿𝑘𝑘 = 𝜂𝜂 − 𝑦𝑦𝑘𝑘  and  𝛿𝛿𝑘𝑘 =  𝜂𝜂 − 𝑦𝑦𝑘𝑘  be errors in the kth iterate. Then, 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜀𝜀𝑘𝑘+1 = 𝐹𝐹1 �𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 , 𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 , 𝑟𝑟� −𝐹𝐹1 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝛿𝛿𝑘𝑘+1 = 𝐺𝐺1 �𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 , 𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 , 𝑟𝑟� −𝐺𝐺1 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝜀𝜀𝑘𝑘+1 = 𝐹𝐹2 �𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 , 𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 , 𝑟𝑟� − 𝐹𝐹2 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝛿𝛿𝑘𝑘+1 = 𝐺𝐺2 �𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 , 𝑥𝑥𝑘𝑘 + 𝜀𝜀𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 ,𝑦𝑦𝑘𝑘 + 𝛿𝛿𝑘𝑘 , 𝑟𝑟� −𝐺𝐺2 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� .

�                                (8) 

Further, using Taylor series expansion of 𝐹𝐹1,𝐹𝐹2,𝐺𝐺1 and 𝐺𝐺2 about �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� and neglecting the second and 

higher powers of  𝜀𝜀𝑘𝑘 , 𝜀𝜀𝑘𝑘 ,  𝛿𝛿𝑘𝑘   and  𝛿𝛿𝑘𝑘  , we get,  ∀ 𝑟𝑟 ∈  [0,1], 

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜀𝜀𝑘𝑘+1 = 𝜀𝜀𝑘𝑘𝐹𝐹1𝑥𝑥 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟�+ 𝛿𝛿𝑘𝑘𝐹𝐹1𝑦𝑦 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝜀𝜀𝑘𝑘𝐹𝐹1𝑥𝑥 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟�+ 𝛿𝛿𝑘𝑘𝐹𝐹1𝑦𝑦 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝛿𝛿𝑘𝑘+1 = 𝜀𝜀𝑘𝑘𝐺𝐺1𝑥𝑥 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝛿𝛿𝑘𝑘𝐺𝐺1𝑦𝑦 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝜀𝜀𝑘𝑘𝐺𝐺1𝑥𝑥 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟�+ 𝛿𝛿𝑘𝑘𝐺𝐺1𝑦𝑦 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝜀𝜀𝑘𝑘+1 = 𝜀𝜀𝑘𝑘𝐹𝐹2𝑥𝑥 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝛿𝛿𝑘𝑘𝐹𝐹2𝑦𝑦 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝜀𝜀𝑘𝑘𝐹𝐹2𝑥𝑥 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝛿𝛿𝑘𝑘𝐹𝐹2𝑦𝑦 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

𝛿𝛿𝑘𝑘+1 = 𝜀𝜀𝑘𝑘𝐺𝐺2𝑥𝑥 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝛿𝛿𝑘𝑘𝐺𝐺2𝑦𝑦 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝜀𝜀𝑘𝑘𝐺𝐺2𝑥𝑥 �𝑥𝑥𝑘𝑘 ,𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� + 𝛿𝛿𝑘𝑘𝐺𝐺2𝑦𝑦 �𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑟𝑟� ,

�     (9) 

which can be written in matrix form as  

⎣
⎢
⎢
⎢
⎡
𝜀𝜀𝑘𝑘+1

𝛿𝛿𝑘𝑘+1

𝜀𝜀𝑘𝑘+1

𝛿𝛿𝑘𝑘+1⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝐹1𝑥𝑥      𝐹𝐹1𝑦𝑦    𝐹𝐹1𝑥𝑥     𝐹𝐹1𝑦𝑦

𝐺𝐺1𝑥𝑥     𝐺𝐺1𝑦𝑦     𝐺𝐺1𝑥𝑥     𝐺𝐺1𝑦𝑦

𝐹𝐹2𝑥𝑥    𝐹𝐹2𝑦𝑦    𝐹𝐹2𝑥𝑥      𝐹𝐹2𝑦𝑦

𝐺𝐺2𝑥𝑥     𝐺𝐺2𝑦𝑦     𝐺𝐺2𝑥𝑥     𝐺𝐺2𝑦𝑦 ⎦
⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎡
𝜀𝜀𝑘𝑘
𝛿𝛿𝑘𝑘
𝜀𝜀𝑘𝑘
𝛿𝛿𝑘𝑘⎦
⎥
⎥
⎥
⎤
                                                            (10) 

where the partial derivatives 𝐹𝐹1𝑥𝑥 , 𝐹𝐹1𝑦𝑦 , 𝐹𝐹1𝑥𝑥 , 𝐹𝐹1𝑦𝑦  ,…. are evaluated at 𝑘𝑘𝑡𝑡ℎ  iterate. It can also be written as 

𝑒𝑒(𝑘𝑘+1) = 𝐴𝐴𝑘𝑘  𝑒𝑒(𝑘𝑘) 

where 𝑒𝑒(𝑘𝑘) =  

⎣
⎢
⎢
⎢
⎡
𝜀𝜀𝑘𝑘
𝛿𝛿𝑘𝑘
𝜀𝜀𝑘𝑘
𝛿𝛿𝑘𝑘⎦
⎥
⎥
⎥
⎤
   and the Jacobian matrix is given by 

𝐴𝐴(𝑥𝑥) =

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝐹1𝑥𝑥      𝐹𝐹1𝑦𝑦    𝐹𝐹1𝑥𝑥     𝐹𝐹1𝑦𝑦

𝐺𝐺1𝑥𝑥     𝐺𝐺1𝑦𝑦     𝐺𝐺1𝑥𝑥     𝐺𝐺1𝑦𝑦

𝐹𝐹2𝑥𝑥    𝐹𝐹2𝑦𝑦    𝐹𝐹2𝑥𝑥      𝐹𝐹2𝑦𝑦

𝐺𝐺2𝑥𝑥     𝐺𝐺2𝑦𝑦     𝐺𝐺2𝑥𝑥     𝐺𝐺2𝑦𝑦 ⎦
⎥
⎥
⎥
⎥
⎤

 .                                                                   (11) 

𝐴𝐴𝑘𝑘   is the Jacobian matrix of the iteration functions 𝐹𝐹� and 𝐺𝐺� evaluated at (𝑥𝑥𝑘𝑘� ,𝑦𝑦𝑘𝑘�). 
Now a sufficient condition for convergence of the solution for ∀ 𝑘𝑘 and ∀ 𝑟𝑟 ∈  [0,1]  is ‖𝐴𝐴𝑘𝑘‖ < 1 where ‖. ‖ is 

some suitable norm. 
If we use the maximum absolute row sum norm, we get the conditions 
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⎩
⎪⎪
⎨

⎪⎪
⎧ �𝐹𝐹1𝑥𝑥 � + �𝐹𝐹1𝑦𝑦 � + � 𝐹𝐹1𝑥𝑥 � + �𝐹𝐹1𝑦𝑦 �  < 1,

�𝐺𝐺1𝑥𝑥 � + �𝐺𝐺1𝑦𝑦 � + � 𝐺𝐺1𝑥𝑥 � + �𝐺𝐺1𝑦𝑦 �  < 1,

�𝐹𝐹2𝑥𝑥 � + �𝐹𝐹2𝑦𝑦 � + � 𝐹𝐹2𝑥𝑥 � + �𝐹𝐹2𝑦𝑦 �  < 1,

�𝐺𝐺2𝑥𝑥 � + �𝐺𝐺2𝑦𝑦 � + � 𝐺𝐺2𝑥𝑥 � + �𝐺𝐺2𝑦𝑦 �  < 1

�                                                                  (12) 

and the necessary and sufficient condition for convergence is that for each k, 𝜌𝜌(𝐴𝐴𝑘𝑘)  < 1, where 𝜌𝜌(𝐴𝐴𝑘𝑘)  is the spectral 
radius of the matrix 𝐴𝐴𝑘𝑘 . 

Further, if (𝑥𝑥0�, 𝑦𝑦0�)  is the close approximation of �𝜁𝜁, 𝜂𝜂�� , then we usually test the conditions at the initial 
approximation  (𝑥𝑥0�, 𝑦𝑦0�) only. 

Remark 1: Sequence ��𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛��
𝑛𝑛=0

∞
 and ��𝑦𝑦𝑛𝑛 , 𝑦𝑦𝑛𝑛��

𝑛𝑛=0

∞
 converge to �𝜁𝜁, 𝜁𝜁� and �𝜂𝜂, 𝜂𝜂�  respectively if and only if 

∀ 𝑟𝑟 ∈  [0,1], 

lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 (𝑟𝑟) = 𝜁𝜁(𝑟𝑟), 
lim𝑛𝑛→∞ 𝑥𝑥𝑛𝑛 (𝑟𝑟) = 𝜁𝜁(𝑟𝑟), 
lim𝑛𝑛→∞ 𝑦𝑦𝑛𝑛 (𝑟𝑟) = 𝜂𝜂(𝑟𝑟), 
lim𝑛𝑛→∞ 𝑦𝑦𝑛𝑛 (𝑟𝑟) = 𝜂𝜂(𝑟𝑟). 

Lemma 1 Let �
𝑓𝑓�𝜁𝜁, 𝜂𝜂�� = 0
𝑔𝑔�𝜁𝜁, 𝜂𝜂�� = 0.

� If the sequence of ��𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛��
𝑛𝑛=0

∞
 and ��𝑦𝑦𝑛𝑛 , 𝑦𝑦𝑛𝑛��

𝑛𝑛=0

∞
 converge to �𝜁𝜁, 𝜁𝜁�  and  

�𝜂𝜂, 𝜂𝜂� respectively, then 
lim𝑛𝑛→∞ 𝑃𝑃𝑛𝑛 = 0  

where 𝑃𝑃𝑛𝑛 = sup max0 ≤𝑟𝑟  ≤1 �𝜀𝜀𝑛𝑛(𝑟𝑟) , 𝜀𝜀𝑛𝑛(𝑟𝑟), 𝛿𝛿𝑛𝑛(𝑟𝑟), 𝛿𝛿𝑛𝑛(𝑟𝑟)�. 

Proof:   Proof is obvious, because for all [ ]1,0∈r  in the convergent case 

lim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛(𝑟𝑟) = lim𝑛𝑛→∞ 𝜀𝜀𝑛𝑛(𝑟𝑟) = lim𝑛𝑛→∞ 𝛿𝛿𝑛𝑛(𝑟𝑟) = lim𝑛𝑛→∞ 𝛿𝛿𝑛𝑛(𝑟𝑟) = 0. 

Theorem Let D be a closed, bounded and convex set in the plane. Assume that the components of F and G, i.e. 
𝐹𝐹1,𝐹𝐹2,𝐺𝐺1𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺2, are continuously differentiable with respect to 𝑥𝑥, 𝑥𝑥,𝑦𝑦 and 𝑦𝑦  and further assume that 

1)   𝑔𝑔(𝐷𝐷)  ⊂ 𝐷𝐷; 
2)   𝜆𝜆 ≡ max‖𝐴𝐴(𝑥𝑥)‖∞  < 1. 

Then 
a)  𝑋𝑋 = 𝑔𝑔(𝑋𝑋) has a unique solution 𝛼𝛼 ∈ 𝐷𝐷; 
b) for any initial point 𝑋𝑋0, the iteration will converge in D to 𝛼𝛼; 
c) ‖𝛼𝛼 − 𝑋𝑋𝑛𝑛+1‖∞  ≤  (‖𝐺𝐺(𝛼𝛼)‖∞ + 𝜀𝜀𝑛𝑛) ‖𝛼𝛼 − 𝑋𝑋𝑛𝑛‖∞  with 𝜀𝜀𝑛𝑛  → 0 𝑎𝑎𝑎𝑎 𝑛𝑛 → ∞. 

Proof: See [8]. 
 

4 Numerical Illustration 
 
In this section, we implement the developed algorithm for solution of fuzzy nonlinear equations for positive real roots. 
Consider a fuzzy nonlinear system as  

�𝑥𝑥
2� + 3𝑥𝑥� + 𝑦𝑦� = 5� ,
𝑥𝑥2� + 3𝑦𝑦2� = 4� .    

�                                                                       (13) 

Now assuming the fuzzy numbers 𝑥𝑥� and 𝑦𝑦� be positive fuzzy numbers and are being represented as 𝑥𝑥� = �𝑥𝑥, 𝑥𝑥�   
and 𝑦𝑦� = �𝑦𝑦, 𝑦𝑦� and let fuzzy numbers 4�  and 5�  be written in parametric form as  

4� = (3.5 + 0.5𝑟𝑟, 4.5 − 0.5𝑟𝑟), 
 5� = (4.5 + 0.5𝑟𝑟, 5.5 − 0.5𝑟𝑟).  
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Thus the fuzzy system (13) in fuzzy parametric form be written as  

⎩
⎪
⎨

⎪
⎧𝑥𝑥

2 + 3𝑥𝑥 + 𝑦𝑦 = 4.5 + 0.5𝑟𝑟,
𝑥𝑥2 + 3𝑦𝑦2 = 3.5 + 0.5𝑟𝑟,      

𝑥𝑥2 + 3𝑥𝑥 + 𝑦𝑦 = 5.5 − 0.5𝑟𝑟,
𝑥𝑥2 + 3𝑦𝑦2 = 4.5 − 0.5𝑟𝑟.      

�                                                                 (14) 

It can be suitably rewritten as 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑥𝑥 = 𝐹𝐹1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� ,

𝑦𝑦 = 𝐺𝐺1 �𝑥𝑥,𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� ,

𝑥𝑥 = 𝐹𝐹2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� ,

𝑦𝑦 = 𝐺𝐺2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟�

�                                                                      (15) 

where 
 𝐹𝐹1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑥𝑥 + 𝛼𝛼 �𝑥𝑥2 + 3𝑥𝑥 + 𝑦𝑦 − 4.5 − 0.5𝑟𝑟� ,

𝐺𝐺1 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑦𝑦 + 𝛽𝛽 �𝑥𝑥2 + 3𝑦𝑦2 − 3.5 − 0.5𝑟𝑟�,     

𝐹𝐹2 �𝑥𝑥, 𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑥𝑥 + 𝛾𝛾 �𝑥𝑥2 + 3𝑥𝑥 + 𝑦𝑦 − 5.5 + 0.5𝑟𝑟� ,

𝐺𝐺2 �𝑥𝑥,𝑥𝑥,𝑦𝑦,𝑦𝑦, 𝑟𝑟� = 𝑦𝑦 + 𝛿𝛿 �𝑥𝑥2 + 3𝑦𝑦2 − 4.5 + 0.5𝑟𝑟�,      

                                   (16) 

and the Jacobian matrix  is 

𝐴𝐴𝑘𝑘 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝐹1𝑥𝑥      𝐹𝐹1𝑦𝑦    𝐹𝐹1𝑥𝑥     𝐹𝐹1𝑦𝑦

𝐺𝐺1𝑥𝑥     𝐺𝐺1𝑦𝑦     𝐺𝐺1𝑥𝑥     𝐺𝐺1𝑦𝑦

𝐹𝐹2𝑥𝑥    𝐹𝐹2𝑦𝑦    𝐹𝐹2𝑥𝑥      𝐹𝐹2𝑦𝑦

𝐺𝐺2𝑥𝑥     𝐺𝐺2𝑦𝑦     𝐺𝐺2𝑥𝑥     𝐺𝐺2𝑦𝑦 ⎦
⎥
⎥
⎥
⎥
⎤

𝑎𝑎𝑎𝑎  𝑘𝑘𝑡𝑡ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 .

 =  

⎣
⎢
⎢
⎢
⎢
⎡ 1 + 𝛼𝛼 �2𝑥𝑥𝑘𝑘 + 3�             𝛼𝛼        0            0

𝛽𝛽 �2𝑥𝑥𝑘𝑘�                 1 + 𝛽𝛽 �6𝑦𝑦𝑘𝑘�     0       0
0                  0            1 + 𝛾𝛾(2𝑥𝑥𝑘𝑘 + 3)       𝛾𝛾
0                     0        𝛿𝛿(2𝑥𝑥𝑘𝑘)      1 + 𝛿𝛿(6𝑦𝑦𝑘𝑘)⎦

⎥
⎥
⎥
⎥
⎤

 .                          (17) 

By the necessary condition of convergence of solution, we have 

⎩
⎪
⎨

⎪
⎧�1 + 𝛼𝛼 �2𝑥𝑥𝑘𝑘 + 3�� + |𝛼𝛼|  < 1,     

�𝛽𝛽 �2𝑥𝑥𝑘𝑘�� + �1 + 𝛽𝛽 �6𝑦𝑦𝑘𝑘��  < 1,
| 1 + 𝛾𝛾(2𝑥𝑥𝑘𝑘 + 3)| + | 𝛾𝛾|  < 1,     
| 𝛿𝛿(2𝑥𝑥𝑘𝑘)| + |1 + 𝛿𝛿(6𝑦𝑦𝑘𝑘)|  < 1.   

�                                 (18) 

Now if we choose the initial guess as  

�𝑥𝑥0� = 0.5� = (0.25 + 0.25𝑟𝑟, 0.75 − 0.25𝑟𝑟),
𝑦𝑦0� = 0.5� = (0.25 + 0.25𝑟𝑟, 0.75 − 0.25𝑟𝑟),

�                                               (19) 

then at 𝑟𝑟 = 0, it reduces to 

𝑥𝑥0 = 0.25, 𝑥𝑥0 = 0.75, 𝑦𝑦0 = 0.25, 𝑦𝑦0 = 0.75, 

and the above conditions (18) reduces to  

    �

|1 + 3.5𝛼𝛼| + |𝛼𝛼|  < 1,     
|0.5𝛽𝛽| + |1 + 1.5𝛽𝛽|  < 1,
| 1 + 4.5𝛾𝛾| + | 𝛾𝛾|  < 1,     
| 1.5𝛿𝛿| + |1 + 4.5𝛿𝛿|  < 1.

�                                             (20) 

Now, a choice of  𝛼𝛼 = 𝛾𝛾 = −1/4  and 𝛽𝛽 = 𝛿𝛿 = −1/6, satisfy those conditions in (20). Hence the equations for 
finding successive iterates become 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝑥𝑥𝑘𝑘+1 = − 1

4
�𝑥𝑥𝑘𝑘2 − 𝑥𝑥 + 𝑦𝑦𝑘𝑘 − 4.5 − 0.5𝑟𝑟�,     

𝑦𝑦𝑘𝑘+1 =− 1
6
�𝑥𝑥𝑘𝑘2 + 3𝑦𝑦𝑘𝑘2 − 6𝑦𝑦𝑘𝑘 − 3.5 − 0.5𝑟𝑟� ,

𝑥𝑥𝑘𝑘+1 = − 1
4
�𝑥𝑥𝑘𝑘2 − 𝑥𝑥𝑘𝑘 + 𝑦𝑦𝑘𝑘 − 5.5 + 0.5𝑟𝑟�,     

𝑦𝑦𝑘𝑘+1 = − 1
6
�𝑥𝑥𝑘𝑘2 + 3𝑦𝑦𝑘𝑘2 − 6𝑦𝑦𝑘𝑘 − 4.5 + 0.5𝑟𝑟� .

�                                           (21) 

Computing the solutions only for three iterations by the proposed general iterative method, we obtain the 
solution of  𝑥𝑥�   and  𝑦𝑦� with the maximum error of the order 10−2 and are placed in Table 1. Computations have also 
been carried out by Newton’s iterative method and are placed in Table 1 for comparison with the proposed method. 

  
Table 1: The solution of  𝑥𝑥�   and  𝑦𝑦� 

 Solution by proposed method (3rd iteration) Solution by Newton’s method (3rd iteration) 
𝑟𝑟 𝑥𝑥 𝑦𝑦 𝑥𝑥 𝑦𝑦 
0 0.9340 0.9390 0.8972 1.0080 
0.1 0.9434 0.9476 0.9103 0.9935 
0.2 0.9529 0.9560 0.9222 0.9853 
0.3 0.9624 0.9641 0.9331 0.9814 
0.4 0.9720 0.9721 0.9435 0.9805 
0.5 0.9817 0.9798 0.9534 0.9817 
0.6 0.9914 0.9873 0.9630 0.9842 
0.7 1.0011 0.9946 0.9724 0.9877 
0.8 1.0108 1.0018 0.9816 0.9918 
0.9 1.0206 1.0088 0.9907 0.9963 
1 1.0302 1.0157 0.9998 1.0011 
0.9 1.0399 1.0224 1.0088 1.0060 
0.8 1.0494 1.0290 1.0177 1.0110 
0.7 1.0590 1.0354 1.0266 1.0161 
0.6 1.0684 1.0417 1.0355 1.0212 
0.5 1.0777 1.0478 1.0443 1.0263 
0.4 1.0869 1.0537 1.0532 1.0314 
0.3 1.0960 1.0596 1.0620 1.0364 
0.2 1.1050 1.0652 1.0707 1.0414 
0.1 1.1138 1.0707 1.0795 1.0464 
0 1.1225 1.0760 1.0882 1.0513 

 
The efficiency of the proposed algorithm in comparison with the existing Newton’s algorithm [1, 7] can be 

further visualized in Figure 1 to  Figure 4. 
 

 
Figure 1: Solution for 𝑥𝑥 by proposed method 
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Figure 2: Solution for 𝑦𝑦 by proposed method 

 

 
Figure 3: Solution for 𝑥𝑥 by Newton’s method 

 

 
Figure 4: Solution for y by Newton’s method 

5 Conclusions 
 
Thus this paper describes a procedure for solution of fuzzy nonlinear equations by a general iteration method based 
on fixed point theory. The method may be useful in modeling of nonlinear systems arising in Economics and 
Financial problems, where the parameters have vagueness and some degree of fuzziness. The developed algorithm 
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has been implemented for numerical solution of a fuzzy nonlinear system of equations as an example to illustrate the 
efficiency of the developed algorithm. 
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