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Abstract

In this paper, adaptive control for anticipated function projective synchronization of 2D discrete-time
chaotic systems with uncertain parameters is discussed both theoretically and numerically. On the basis
of the chaotic controlling methods: the backstepping design approach and active control method, adaptive
control for anticipated function projective synchronization scheme is developed to realize the synchroniza-
tion of 2D discrete-time chaotic systems with uncertain parameters. Numerical simulations are used to
verify the effectiveness of the scheme.
c⃝2010 World Academic Press, UK. All rights reserved.
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1 Introduction

Synchronizing and controlling chaotic dynamical systems have recently attracted a great deal of attention
since the early work on the synchronizing of chaos by Pecora and Carroll [24] and on the controlling of chaos
by Ott et al. [22] was published in 1990. Up to now, several synchronization schemes have been proposed
due to their many potential applications in secure communication, biological systems, chemical reactions,
information processing, social science, and many other fields [5].

A significant result is the discovery of different synchronization phenomena [1-3, 6-10, 15-16, 18, 20-21,
23, 25-26, 28-33], such as complete synchronization [20, 23], anti-synchronization [10, 33], projective synchro-
nization [21, 28], lag synchronization [15, 16], anticipated synchronization [7], phase synchronization [2, 25],
generalized synchronization [8, 32], and Q-S synchronization [29, 31]. In the realizing of the synchronization,
an adaptive controller is usually used while the chaotic systems to be synchronized are uncertain. Based on
backstepping design [3, 9, 26, 30] and the function synchronization method [3], adaptive control and function
projective synchronization proposed by us [11-13, 30]. In this paper, we will find that adaptive control for
anticipated function projective synchronization (AAFPS) of 2D discrete-time chaotic systems with uncertain
parameters can alternatively occur under certain conditions.

The rest of this paper is organized as follows. In Section 2, based on the previous work [24, 28, 25, 29,
18-19], we give the definition of adaptive control for anticipated function projective synchronization in 2D
discrete-time chaotic systems with uncertain parameters, and consequently only one controller is obtained.
Then, in Section 3, numerical simulations are given for illustration. Finally, some concluding remarks are
given in Section 4.
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2 Adaptive Control for Anticipated Function Projective Synchro-
nization of 2D Discrete-Time Chaotic Systems with Uncertain
Parameters

In this section, based on the previous synchronization [1, 6, 18] and adaptive control and function projective
synchronization proposed by us [11-13, 30], we will extend to synchronize 2D discrete-time chaotic systems
with uncertain parameters up to a scaling function matrix.

Definition 1 For two discrete-time dynamical systems

(i) x(k + 1) = F (x(k))

and
(ii) y(k + 1) = G(y(k)) + u(x(k), y(k))

where (x(k), y(k)) ∈ Rm+m, k ∈ Z/Z−, and u(x(k), y(k)) ∈ Rm, let

(iii) E(k) = (E1(k), E2(k), · · · , Em(k))

= (x1(k + τ)− f1(x(k + τ))y1(k), x2(k + τ)− f2(x(k + τ))y2(k), ...,

xm(k + τ)− fm(x(k + τ))ym(k))

or
(x1(k + τ)− y1(k), x2(k + τ)− y2(k), · · · , xm(k + τ)− fm(x(k + τ))ym(k))

or
(x1(k + τ)− f1(x(k + τ))y1(k), x2(k + τ)− y2(k), ..., xm(k + τ)− ym(k))

be boundary vector functions, if there exists proper controllers U(x(k+τ), y(k)) = (u1(x(k+τ), y(k)), u2(x(k+
τ), y(k)), ..., um(x(k + τ), y(k)))T such that limk→∞(E(k)) = 0, we say that there exist adaptive control for
anticipated function projective synchronization between the systems (i) and (ii), and we call fm a “scaling
function matrix”.

Consider the drive system in the form of

x(k + 1) = A1x(k) + h1(x(k)), (2.1)

assume that the response system is as follows:

y(k + 1) = A2y(k) + h2(y(k)) + U (2.2)

where (x(k), y(k)) ∈ Rm+m, A1, A2 are m×m constant matrixes, h1, h2 : Rm → Rm are nonlinear function
vectors, and U is a controller to be determined later.

Theorem 1 For an invertible diagonal function matrix f , adaptive control for anticipated function projective
synchronization with uncertain parameters between the two systems (2.1) and (2.2) will occur, if the following
conditions are satisfied:

(i) U = f−1h1(x(k + τ)) + (f−1A1f −A2)y(k) + f−1B(x(k + τ)− fy(k))− h2(y(k)) where B ∈ Rm×m.
(ii) The real parts of all the eigenvalues of (A1 −B) are negative.

Proof: From E(k) = x(k + τ)− fy(k) in definition of AAFPS, one can get

E(k + 1) = x(k + 1 + τ)− fy(k + 1)

= A1x(k + τ) + h1(x(k + τ))− f(A2y(k) + h2(y(k)) + U)

= A1x(k + τ) + h1(x(k + τ))− fA2y(k)− fh2(y(k))− h1(x(k + τ))

−A1fy(k) + fA2y(k)−B(x(k + τ)− fy(k)) + fh2(y(k))

= (A1 −B)e.
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Regards with the Lyapnov stability theory and for a feasible control, the feedback B must be selected such
that all the eigenvalues of (A1 − B) have negative real parts. Thus, if the controllability matrix (A1 − B) is
in full rank, the system E(k + 1) is asymptotically stable at the origin, which implies (2.1) and (2.2) are in
the state of adaptive control for anticipated function projective synchronization.

It is necessary to point out that the scaling function matrix f also has no effect on the eigenvalues of
(A1 − B) like the modified projective synchronization. Thus one can adjust the scaling matrix arbitrarily
during control without worrying about the control robustness. The AAFPS is more general: when f1 =
f2 = · · · = fm = 1, τ = 0, f1 = f2 = · · · = fm = α, τ = 0 and f1 = α1, f2 = α2, · · · , fm = αm, τ = 0,
the complete synchronization, the projective synchronization and the modified projective synchronization will
appear, respectively.

3 AAFPS of Lorenz Discrete-Time System with Uncertain Param-
eters

Consider Lorenz discrete-time system [26]{
x1(k + 1) = (1 + αβ)x1(k)− βx1(k)x2(k),

x2(k + 1) = (1− β)x2(k) + βx1(k)
2

(3.1)

and Lorenz system with controllers u(x, y){
y1(k + 1) = (1 + a(k)b(k))y1(k)− b(k)y1(k)y2(k) + u1(x, y),

y2(k + 1) = (1− b(k))y2(k) + b(k)y1(k)
2 + u2(x, y)

(3.2)

as the drive system and response system, respectively.
In the following, we would like to realize the AAFPS of Lorenz discrete-time system with uncertain

parameters by backstepping design method.

I : Let the error states be

E1(k) = x1(k + τ)− y1(k),

E2(k) = x2(k + τ)−
[
1 +

1

4
cos(x1(k + τ))2

]
y2(k),

E3(k) = a(k)− α,

E4(k) = b(k)− β.

Then from (3.1) and (3.2), we have the discrete-time error dynamical system
E1(k + 1) = x1(k + 1 + τ)− (1 + a(k)b(k))y1(k) + b(k)y1y2(k)− u1(x, y),

E2(k + 1) = x2(k + 1 + τ)− (1 + 1
4 cos(x1(k + 1 + τ)2)

((1− b(k))y2(k) + b(k)y1(k)
2 + u2(x, y)).

(3.3)

Based on the backstepping design and the improved ideas in Refs. [14, 27], we give a systematic and construc-
tive algorithm to derive the controllers u(x, y) step by step such that systems (3.1) and (3.2) are synchronized
together.

Step 1. Let the first partial Lyapunov function be L1(k) = |E1(k)| and the second error variable be

E2(k) = E1(k + 1)− δ11E1(k) (3.4)

where δ11 ∈ R. Then we have the derivative of L1(k)

∆L1(k) = |E1(k + 1)| − |E1(k)| ≤ (|δ11| − 1)|E1(k)|+ |E2(k)|. (3.5)

Step 2. Let the second partial Lyapunov function candidate be L2(k) = L1(k) + c1|E2(k)| and the third
error variable be

E3(k) = E2(k + 1)− δ21E1(k)− δ22E2(k) (3.6)
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where c1 > 1, δ21, δ22 ∈ R. Therefore, from (3.4) and (3.6) we have the derivative L2(k)

∆L2(k) = L2(k + 1)− L2(k)
≤ (c1|δ21|+ |δ11| − 1)|E1(k)|+ (c1|δ22|+ 1− c1)|E2(k)|+ c1|E3(k)|.

(3.7)

Step 3. Let the third partial Lyapunov function candidate be L3(k) = L2(k) + c2|E3(k)| and the fourth
error state be

E4(k) = E3(k + 1)− δ31E1(k)− δ32E2(k)− δ33E3(k) (3.8)

where c2 > c1 > 1, δ31, δ32, δ33 ∈ R. Therefore, from (3.6) and (3.8) we have the derivative L3(k)

∆L3(k) = L3(k + 1)− L3(k)
≤ (c2|δ31|+ c1|δ21|+ |δ11| − 1)|E1(k)|+ (c2|δ32|+ c1(|δ22| − 1) + 1)|E2(k)|
+(c2|δ33|+ c1 − c2)|E3(k)|+ c2|E4(k)|.

(3.9)

Step 4. Let the fourth partial Lyapunov function candidate be L4(k) = L3(k)+ c3|E4(k)| and the fourth
error state be

E4(k + 1)− δ41E1(k)− δ42E2(k)− δ43E3(k)− δ44E4(k) = 0 (3.10)

where c3 > c2 > c1 > 1, δ41, δ42, δ43, δ44 ∈ R. Therefore, from (3.8) and (3.10) we have the derivative L4(k)

∆L4(k) = L4(k + 1)− L4(k)
≤ (c3|δ41|+ c2|δ31|+ c1|δ21|+ |δ11| − 1)|E1(k)|+ (c3|δ42|+ c2|δ32|
+c1(|δ22| − 1) + 1)|E2(k)|+ (c3|δ43|+ c2|δ33|+ c1 − c2)|E3(k)|
+(c3|δ44|+ c2 − c3)|E4(k)|.

(3.11)

From (3.11), we know that the right-hand side of (3.11) is negative definite, if the parameters ci(i =
1, 2, 3, 4) and δij(1 ≤ j ≤ i ≤ 4) satisfy

c1|δ21|+ c2|δ31|+ c3|δ41|+ |δ11| < 1,
c1|δ22|+ c2|δ32|+ c3|δ42| < c1 − 1,
c2|δ33|+ c3|δ43| < c2 − c1,
|δ44| < c3−c2

c3
.

(3.12)

That ∆L(k) is negative definite denotes the resulting close-loop discrete-time system
E1(k + 1)
E2(k + 1)
E3(k + 1)
E4(k + 1)

 =


δ11 1 0 0
δ21 δ22 1 0
δ31 δ32 δ33 0
δ41 δ42 δ43 δ44




E1(k)
E2(k)
E3(k)
E4(k)

 . (3.13)

With the aid of symbolic computation, from the above equations (3.4), (3.6), (3.8) and (3.10) we obtained
the controllers

u1(x, y) = x1(k + 1 + τ)− y1(k)− y1(k)a(k)b(k) + b(k)y1(k)y2(k)
−δ11x1(k + τ) + δ11y1(k)− x2(k + τ)
+y2(k) +

1
4y2(k) cos(x1(k + τ))2,

u2(x, y) = − 1
4+cos(x1(k+1+τ))2

[
− 4x2(k + 1 + τ) + 4y2(k)− 4y2(k)b(k)

+4y21(k)b(k) + cos(x1(k + 1 + τ))2y2(k)− cos(x1(k + 1 + τ))2y2(k)b(k)
+ cos(x1(k + 1 + τ))2y1(k)

2b(k) + 4δ21x1(k + τ)− 4δ21y1(k)
+4δ22x2(k + τ)− 4δ22y2(k)− δ22y2(k) cos(x1(k + τ))2

]
(3.14)

and 
a(k + 1) = α+ δ31x1(k + τ)− δ31y1(k) + δ32x2(k + τ)− δ32y2(k))

− 1
4δ32y2(k) cos(x1(k + τ))2 + δ33a(k)− δ33α+ b(k)− β,

b(k + 1) = β + δ41x1(k + τ)− δ41y1(k) + δ42x2(k + τ)− δ42y2(k))
− 1

4δ42y2(k) cos(x1(k + τ))2 + δ43a(k)− δ43α+ δ44b(k)− δ44β.

(3.15)
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In the following we use numerical simulations to verify the effectiveness of the above-mentioned controllers.
The parameters are chosen as α = −0.1, β = −1.7, δ11 = 0.3, δ21 = 0.02, δ22 = 0.4, δ31 = 0.05, δ32 = 0.1, δ33 =
−0.2, δ41 = 0.01, δ42 = 0.02, δ43 = 0.03, δ44 = 0.04, c1 = 2, c2 = 3, c3 = 5 and the initial values [x1(0) =
0.1, x2(0) = 0.2], [y1(0) = 0.5, y2(0) = 0.2], and a(0) = 0.1, b(0) = 0.1, and the figures of synchronization
errors are displayed in Figure 1 (a)-(b), and simulations of the two parameters a(k), b(k) are displayed in
Figure 2 (A)-(B). Finally the attractors after being synchronized with controllers are displayed in Figure 3.
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Figure 1: The orbits of the error states: (a) E1(k) = x1(k + τ)− y1(k), τ = 1, (b) E2(k) = x2(k + τ)−
[
1 +
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4 cos(x1(k + τ))2
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y2(k), τ = 1

A

0.2

0.4

0.6

0.8

1

1.2

a

0 0.5 1 1.5 2
t

B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b

0 0.5 1 1.5 2
t

Figure 2: The orbits of uncertain parameters

II : Let the error states be

E1(k) = x1(k + τ)−
[
1 + 6sech(x1(k + τ))2

]
y1(k),

E2(k) = x2(k + τ)− y2(k),

E3(k) = a(k)− α,

E4(k) = b(k)− β.
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Figure 3: The two attractors after being synchronized with (f1(x), f2(x)) = (1, 1 + 1
4 cos(x1(k+ τ))2): τ = 1,

the dark one is the response system with the controllers, and the other is the drive system

Similarly, from (3.1) and (3.2), we have the discrete-time error dynamical system
E1(k + 1) = x1(k + 1 + τ)−

[
1 + 6sech(x1(k + 1 + τ)2)

][
(1 + a(k)b(k))y1(k)− b(k)y1y2(k) + u1(x, y)

]
,

E2(k + 1) = x2(k + 1 + τ)−
[
(1− b(k))y2(k)− b(k)y1(k)

2 − u2(x, y)
]
.

(3.16)

Repeat the process in I, we can get the controllers

u1(x, y) = − 1
1+6sech(x1(k+1+τ))2

[
− x1(k + 1 + τ) + y1(k) + y1(k)a(k)b(k)

−b(k)y1(k)y2(k) + 6sech(x1(k + 1 + τ))2y1(k) + δ11x1(k + τ)
+6sech(x1(k + τ))2y1(k)a(k)b(k)− 6sech(x1(k + τ))2y1(k)y2(k)b(k)
−δ11y1(k)− 6δ11sech(x1(k + τ))2y1(k)− x2(k + τ)− y2(k)

]
,

u2(x, y) = x2(k + 1 + τ)− y2(k) + y2(k)b(k)− y1(k)
2b(k)

−δ21x1(k + τ) + δ21y1(k) + 6δ21y1(k)sech(x1(k + τ))2

−δ22x2(k + τ)− δ22y2(k)
]

(3.17)

and 
a(k + 1) = α+ δ31x1(k + τ)− δ31y1(k)− 6δ31y1(k)sech(x1(k + τ))2

+δ32x2(k + τ)− δ32y2(k) + δ33a(k)− δ33α+ b(k)− β,

b(k + 1) = β + δ41x1(k + τ)− δ41y1(k)− 6δ41y1(k)sech(x1(k + τ))2

+δ42x2(k + τ)− δ42y2(k) + δ43a(k)− δ43α+ δ44b(k)− δ44β.

(3.18)

Take the same values of [α, β, δ11, δ21, δ22, δ31, δ32, δ33, δ41, δ42, δ43, δ44, c1, c2, c3] and the same initial values,
we also use numerical simulations to verify the effectiveness of the above-mentioned controllers. The figures of
synchronization errors are displayed in Figure 4 (a)-(b), and simulations of the two parameters a(k), b(k) are
displayed in Figure 5 (A)-(B). Finally the attractors after being synchronized with controllers are displayed
in Figure 6.

III : Let the error states be

E1(k) = x1(k + τ)− 3y1(k),

E2(k) = x2(k + τ)−
[
1 + tanh(x1(k + τ))2

]
y2(k),

E3(k) = a(k)− α,

E4(k) = b(k)− β.
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Figure 4: The orbits of the error states: (a) E1(k) = x1(k + τ) −
[
1 + 6sech(x1(k + τ))2

]
y1(k), τ = 1, (b)
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Figure 5: The orbits of uncertain parameters

Similarly, from (3.1) and (3.2), we have the discrete-time error dynamical system
E1(k + 1) = x1(k + 1 + τ)− 3

[
1 + a(k)b(k)

]
y1(k) + 3b(k)y1y2(k)− 3u1(x, y),

E2(k + 1) = x2(k + 1 + τ)−
[
1 + tanh(x2(k + 1 + τ)2

][
(1− b(k))y2(k) + b(k)y1(k)

2 + u2(x, y)
]
.

(3.19)

Repeat the process in I, we can get the attractors

u1(x, y) =
1
3x1(k + 1 + τ)− y1(k)− y1(k)a(k)b(k) + b(k)y1(k)y2(k)
−1

3δ11x1(k + τ) + δ11y1(k)− 1
3x2(k + τ)

+1
3y2(k) +

1
3y2(k) tanh(x2(k + τ))2,

u2(x, y) = − 1
1+tanh(x2(k+1+τ))2

[
− x2(k + 1 + τ) + y2(k)− y2(k)b(k)

+y21(k)b(k)− tanh(x2(k + 1 + τ))2y2(k)b(k) + tanh(x2(k + 1 + τ))2y21(k)b(k)
+ tanh(x2(k + 1 + τ))2y2(k)

2 + δ21x1(k + τ)− 3δ21y1(k)
+δ22x2(k + τ)− δ22y2(k)− δ22y2(k) tanh(x2(k + τ))2

]
(3.20)
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Figure 6: The two attractors after being synchronized with (f1(x), f2(x)) = (1+6sech(x1(k+ τ))2, 1): τ = 1,
the dark one is the response system with the controllers, and the other is the drive system

and 
a(k + 1) = α+ δ31x1(k + τ)− 3δ31y1(k) + δ32x2(k + τ)− δ32y2(k))

−δ32y2(k) tanh(x1(k + τ))2 + δ33a(k)− δ33α+ b(k)− β,

b(k + 1) = β + δ41x1(k + τ)− 3δ41y1(k) + δ42x2(k + τ)− δ42y2(k))
−δ42y2(k) tanh(x2(k + τ))2 + δ43a(k)− δ43α+ δ44b(k)− δ44β.

(3.21)

[α, β, δ11, δ21, δ22, δ31, δ32, δ33, δ41, δ42, δ43, δ44, c1, c2, c3] and the same initial values, we also use numerical
simulations to verify the effectiveness of the above-mentioned controllers, and the figures of synchronization
errors are displayed in Figure 7 (a)-(b), and simulations of the two parameters a(k), b(k) are displayed in
Figure 8 (A)-(B). Finally the attractors after being synchronized with controllers are displayed in Figure 9.
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Figure 7: The orbits of the error states: (a) E1(k) = x1(k+ τ)− 3y1(k), τ = 1, (b) E2(k) = x2(k+ τ)−
[
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tanh(x1(k + τ))2
]
y2(k), τ = 1
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Figure 8: The orbits of uncertain parameters
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Figure 9: The two attractors after being synchronized with (f1(x), f2(x)) = (3, 1+ tanh(x1(k+ τ))2): τ = 1,
the dark one is the response system with the controllers, and the other is the drive system

4 Summary and Conclusions

In this paper, we define adaptive control for anticipated function projective synchronization in discrete-time
dynamical systems. And then backstepping control method is proposed for achieving adaptive control for
anticipated function projective synchronization in a general class of discrete-time Lorenz chaotic systems.
This control method allows us to arbitrarily amplify or reduce the scale of the dynamics of the respond
system through a control. Numerical simulations are used to verify the effectiveness of the proposed scheme.
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