

A Minkowski Type Inequality for Fuzzy Integrals

Hamzeh Agahi, M.A. Yaghoobi*

Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran

Received 24 December 2008; Revised 8 July 2009

Abstract

One of the famous mathematical inequalities is Minkowski's inequality. It is an important inequality from both mathematical and application points of view. In this paper, a Minkowski type inequality for fuzzy integrals is studied. The established results are based on the classical Minkowski inequality for integrals. Moreover, a generalized Minkowski type inequality for fuzzy integrals is suggested. To illustrate the proposed inequalities some examples are given. ©2010 World Academic Press, UK. All rights reserved.

Keywords: Sugeno integral, fuzzy measure, Monotone function

1 Introduction

Fuzzy measure and fuzzy integrals can be used for modelling problems in non deterministic environment. Since Sugeno [22] initiated research on fuzzy measure and fuzzy integral, these area have been widely developed and a wide variety of topics have been investigated (see, e.g., [7-19] and references therein). Fuzzy integrals or Sugeno integrals have very interesting properties from a mathematical point of view which have been studied by many authors, including Ralescu and Adams [11], Roman-Flores *et al.* [12-19], Wang and Klir [24], among others. Ralescu and Adams [11] studied several equivalent definitions of fuzzy integrals. Román-Flores *et al.* [12, 13] developed the aspects of level-continuity and H-continuity of fuzzy integrals. The fuzzy integral for monotone functions was presented in [15]. A general overview on fuzzy integral measurement and fuzzy integration theory was presented by Wang and Klir [24]. In fact, fuzzy measures and fuzzy integrals are versatile operators which can be used in different areas. They have a broad use in information fusion, electronic auctions, decision making, and etc. Chen *et al.* [1] employed fuzzy integral and fuzzy measure to establish a public attitude analysis model. They applied their model to the gas taxi policy in Taipei City. Chen *et al.* [2] used fuzzy integral for face recognition. Narukawa and Torra [7] explored the use of fuzzy measures and fuzzy integrals to evaluate strategies in games. Fuzzy integral and fuzzy measure were applied to the problem of classifying highly confusable human non-speech sounds by Temko *et al.* [23].

The integral inequalities are useful results in several theoretical and applied fields. For instance, integral inequalities play a major role in the development of a time scales calculus. Özkan *et al.* [10] obtained Hölder's inequality, Minkowski's inequality and Jensen's inequality on time scales. Some famous inequalities have been generalized to fuzzy integral. Román-Flores and Chalco-Cano [14] analyzed an interesting type of geometric inequalities for fuzzy integral with some applications to convex geometry. Román-Flores *et al.* [16, 18] studied a Jensen type inequality and a convolution type inequality for fuzzy integrals. Also, they have investigated a Chebyshev type inequality and a Stolarsky type inequality for fuzzy integrals [3, 17]. In [3], a fuzzy Chebyshev inequality for a special case was obtained which has been generalized by Ouyang *et al.* [9]. Furthermore, Chybyshev type inequalities for fuzzy integral were proposed in a rather general form by Mesiar and Ouyang [5]. Recently, Román-Flores *et al.* [19] proved a Hardy type inequality for fuzzy integrals.

This paper intends to present a Minkowski type inequality for fuzzy integrals. The rest of this paper is organized as follows: in Section 2 some preliminaries and summarization of some previous known results are given. Section 3 proposes a Minkowski type inequality for fuzzy integrals. Section 4 deals with a generalized Minkowski type inequality. Finally, Section 5 contains a short conclusion.

^{*}Corresponding author. Email: yaghoobi@mail.uk.ac.ir (M.A. Yaghoobi); Tel & Fax: +98 341 3220057.

2 Preliminaries

In this section, some definitions and basic properties of the Sugeno integral which will be used in the next sections are presented.

Definition 2.1 ([3, 9]) Let \sum be a σ -algebra of subsets of R and let $\mu : \sum \rightarrow [0, \infty]$ be a nonnegative, extended real valued set function. μ is a fuzzy measure on R if (FM1) $\mu(\emptyset) = 0$; (FM2) $E, F \in \sum$ and $E \subseteq F$ imply $\mu(E) \leq \mu(F)$; (FM3) $\{E_p\} \subseteq \sum, E_1 \subseteq E_2 \subseteq ..., imply \lim_{p \to \infty} \mu(E_p) = \mu\left(\bigcup_{p=1}^{\infty} E_p\right)$; (FM4) $\{E_p\} \subseteq \sum, E_1 \supseteq E_2 \supseteq ..., imply \lim_{p \to \infty} \mu(E_p) = \mu\left(\bigcap_{p=1}^{\infty} E_p\right)$.

When μ is a fuzzy measure, the triple (X, \sum, μ) is called a fuzzy measure space. Let f be a nonnegative real valued function defined on R. An α -level of f (for $\alpha > 0$) is denoted by $L_{\alpha}f = \{x \in R \mid f(x) \geq \alpha\} = \{f \geq \alpha\}$ and $L_0f = \overline{\{x \in R \mid f(x) \geq 0\}}$. L_0f is called the support of f. Note that $\alpha \leq \beta$ implies $L_{\beta}f = \{f \geq \beta\} \subseteq L_{\alpha}f = \{f \geq \alpha\}$. If μ is a fuzzy measure on R, then $\aleph^{\mu}(R)$ is defined as follows

 $\aleph^{\mu}(R) = \{ f : R \to [0, \infty) \mid f \text{ is } \mu - \text{measurable} \}.$

Definition 2.2 ([11, 22]) Let μ be a fuzzy measure on R, $f \in \aleph^{\mu}(R)$, and $A \in \Sigma$, then the Sugeno integral (or fuzzy integral) of f on A, with respect to the fuzzy measure μ , is defined as

$$(S)\int_{A} f d\mu = \bigvee_{\alpha \ge 0} [\alpha \land \mu(A \cap \{f \ge \alpha\})], A \in \sum$$
(1)

where \lor, \land denote the operations sup and inf on $[0, \infty)$, respectively. In particular, if A = R, then

$$(S)\int_R fd\mu = \bigvee_{\alpha\geq 0} [\alpha \wedge \mu\{f\geq \alpha\}]$$

The following properties of the Sugeno integral are well known [11].

Proposition 2.3 ([11]) If μ is a fuzzy measure on R and $f, g \in \aleph^{\mu}(R)$, then (i) (S) $\int_{A} f d\mu \leq \mu(A)$; (ii) If $f \leq g$ on A, then (S) $\int_{A} f d\mu \leq (S) \int_{A} g d\mu$; (iii) (S) $\int_{A} k d\mu = k \wedge \mu(A)$, where k is a nonnegative constant.

Román-Flores *et al.* have studied several fuzzy integral inequalities [14-19]. In particular, the following optimal fuzzy integral inequalities for monotone functions are proved in [15].

Theorem 2.4 Let μ be the Lebesgue measure on R and let $g : [0, \infty] \to [0, \infty]$ be a continuous and strictly increasing function. If $(S) \int_0^a g d\mu = p$, then

$$g(a-p) \ge (S) \int_0^a g d\mu = p, \ \forall \ a \ge 0.$$

$$\tag{2}$$

Moreover, if 0 , then <math>g(a - p) = p.

An analogous result is obtained for the decreasing case.

Theorem 2.5 Let μ be the Lebesgue measure on R and let $g : [0, \infty] \to [0, \infty]$ be a continuous and strictly decreasing function. If $(S) \int_0^a g d\mu = p$, then

$$g(p) \ge (S) \int_0^a g d\mu = p, \quad \forall \ a \ge 0.$$
(3)

Moreover, if 0 , then <math>g(p) = p.

Journal of Uncertain Systems, Vol.4, No.3, pp.187-194, 2010

Ouyang et al. [8] proved the following two theorems which generalized the corresponding results in [15].

Theorem 2.6 Let m be the Lebesgue measure on R and let $g: [0, \infty] \to [0, \infty]$ be a non-decreasing function. If $(S) \int_0^a g dm = p$, then

$$g((a-p)+) \ge (S) \int_0^a g dm = p, \quad \forall \ a \ge 0$$
 (4)

where $g(x+) = \lim_{\varepsilon \to 0^+} g(x+\varepsilon)$. Moreover, if p < a, and g is continuous at a - p, then

$$g((a-p)+) = g(a-p) = p$$

Notice that if m is the Lebesgue measure and g is a non-decreasing function, then $g((a-p)+) \ge p \Longrightarrow (S) \int_0^a g dm \ge p.$

Theorem 2.7 Let *m* be the Lebesgue measure on *R* and let $g : [0, \infty] \to [0, \infty]$ be a non-increasing function. If $(S) \int_0^a g dm = p$, then

$$g(p-) \ge (S) \int_0^a g dm = p, \quad \forall \ a \ge 0$$
(5)

where $g(x-) = \lim_{\varepsilon \to 0^+} g(x-\varepsilon)$. Moreover, if p < a, and g is continuous at p, then

$$g(p-) = g(p) = p$$

Notice that if m is the Lebesgue measure and g is a non-increasing function, then $g(p-) \ge p \Longrightarrow (S) \int_0^a g dm \ge p.$

3 Minkowski's Inequality for Fuzzy Integrals

The classical Minkowski inequality was published by Minkowski [6] in his famous book 'Geometrie der Zahlen'. A proof of Minkowski's inequality as well as several extensions, related results, and interesting geometrical interpretations can be found in [20, 21]. An extension of Minkowski's inequality, which is based on Hölder's inequality, is given in [24, 31-32]. Applications of Minkowski's inequality have been studied by many authors. For example Özkan *et al.* [10] applied Minkowski's inequality, Hölders inequality and Jensen's inequality on time scales. Lu *et al.* [4] used Minkowski's inequality for fast full search in motion estimation.

The classical Minkowski inequality [6] is as follows

$$\left(\int_{0}^{1} \left(f+g\right)^{s} d\mu\right)^{\frac{1}{s}} \leq \left(\int_{0}^{1} f^{s} d\mu\right)^{\frac{1}{s}} + \left(\int_{0}^{1} g^{s} d\mu\right)^{\frac{1}{s}} \tag{6}$$

where $1 \le s < \infty$, and $f, g: [0, 1] \to [0, \infty)$ are two nonnegative functions. The aim of this section is to show the Minkowski inequality for the Sugeno integral.

Theorem 3.1 Let $f, g: [0,1] \to [0,\infty)$ be two real valued functions and let μ be the Lebesgue measure on R. If f, g are both continuous and strictly decreasing functions, then the inequality

$$\left((S)\int_{0}^{1}(f+g)^{s}\,d\mu\right)^{\frac{1}{s}} \leq \left((S)\int_{0}^{1}f^{s}\,d\mu\right)^{\frac{1}{s}} + \left((S)\int_{0}^{1}g^{s}\,d\mu\right)^{\frac{1}{s}} \tag{7}$$

holds for all $1 \leq s < \infty$.

Proof: Let $(S) \int_0^1 (f+g)^s d\mu = r$, $(S) \int_0^1 f^s d\mu = p$ and $(S) \int_0^1 g^s d\mu = q$, where $1 \le s < \infty$. The proof is trivial for p = 1 or p = 0 (q = 1 or q = 0) due to Proposition 2.3(i). Let $p, q \in (0, 1)$. Then, Theorem 2.5 implies that

$$(f+g)^{s}(r) \ge r; \quad f^{s}(p) = p; \quad g^{s}(q) = q.$$
 (8)

Then,

$$(f+g)(r) \ge r^{\frac{1}{s}}; \quad f(p) = p^{\frac{1}{s}}; \quad g(q) = q^{\frac{1}{s}}.$$
 (9)

Now, on the contrary suppose that

$$r^{\frac{1}{s}} > p^{\frac{1}{s}} + q^{\frac{1}{s}}.$$
(10)

H. Agahi and M.A. Yaghoobi: A Minkowski Type Inequality for Fuzzy Integrals

$$r^{\frac{1}{s}} > p^{\frac{1}{s}} + q^{\frac{1}{s}} \Longrightarrow \begin{cases} r^{\frac{1}{s}} > p^{\frac{1}{s}} \implies r > p, \\ \\ r^{\frac{1}{s}} > q^{\frac{1}{s}} \implies r > q. \end{cases}$$
(11)

Since f and g are decreasing functions, (9) and (11) imply that

$$f(r) < f(p) = p^{\frac{1}{s}}$$
 (12)

and

$$g(r) < g(q) = q^{\frac{1}{s}}.$$
(13)

(9), (12) and (13) imply that

$$r^{\frac{1}{s}} \le (f+g)(r) = f(r) + g(r) < p^{\frac{1}{s}} + q^{\frac{1}{s}},$$

which is a contradiction to (10). Hence $r^{\frac{1}{s}} \leq p^{\frac{1}{s}} + q^{\frac{1}{s}}$ and the proof is completed.

Example 1: Let f and g be two real valued functions defined as f(x) = 1 - x and $g(x) = 1 - x^2$ where $x \in [0,1]$. Both f and g are strictly decreasing functions. In (7), let s = 1. A straightforward calculus shows that c1

$$(i) (S) \int_{0}^{1} f(x)d\mu = \bigvee_{\alpha \in [0,1]} [\alpha \land \mu(\{1 - x \ge \alpha\})] = \bigvee_{\alpha \in [0,1]} [\alpha \land (1 - \alpha)] = 0.5,$$

$$(ii) (S) \int_{0}^{1} g(x)d\mu = \bigvee_{\alpha \in [0,1]} [\alpha \land \mu(\{1 - x^{2} \ge \alpha\})] = \bigvee_{\alpha \in [0,1]} [\alpha \land (\sqrt{1 - \alpha})] = 0.618\,03$$

$$(iii) (S) \int_{0}^{1} (f + g)(x)d\mu = \bigvee_{\alpha \in [0,2]} [\alpha \land \mu(\{-x^{2} - x + 2 \ge \alpha\})]$$

$$= \bigvee_{\alpha \in [0,2]} \left[\alpha \land \left(-\frac{1}{2} + \frac{1}{2}\sqrt{(9 - 4\alpha)}\right)\right] = 0.732\,05.$$

Therefore,

$$0.73205 = (S)\int_0^1 (f+g)\,d\mu \le \left((S)\int_0^1 f\,d\mu\right) + \left((S)\int_0^1 g\,d\mu\right) = 0.5 + 0.61803 = 1.118.$$

Theorem 3.2 Let $f, g: [0,1] \to [0,\infty)$ be two real valued functions and let μ be the Lebesgue measure on R. If f, g are both continuous and strictly increasing functions, then the inequality

$$\left((S) \int_{0}^{1} (f+g)^{s} d\mu \right)^{\frac{1}{s}} \leq \left((S) \int_{0}^{1} f^{s} d\mu \right)^{\frac{1}{s}} + \left((S) \int_{0}^{1} g^{s} d\mu \right)^{\frac{1}{s}}$$
(14)

holds for all $1 \leq s < \infty$.

Proof: The proof is similar to that of Theorem 3.1.

Remark 1: Note that the inequalities (7) and (14) do not hold when f and g have different monotony. This matter is illustrated by the next example.

Example 2: Let X = [0, 1], $f(x) = x^2$, $g(x) = 1 - x^2$, s = 1 and $\mu(X) = m^2(X)$ where *m* is the Lebesgue measure on R. A straightforward calculus shows that

$$(S)\int (f+g)\,d\mu = 1,$$

$$(S)\int fd\mu = \bigvee_{\alpha\in[0,1]} \left[\alpha\wedge\left(1-\sqrt{\alpha}\right)^2\right] = \frac{1}{4}, (S)\int gd\mu = \bigvee_{\alpha\in[0,1]} \left[\alpha\wedge(1-\alpha)\right] = \frac{1}{2},$$

$$1 = \left((S)\int (f+g)\,dm\right) > \left((S)\int fdm\right) + \left((S)\int gdm\right) = \frac{3}{4},$$

but

$$1 = \left((S) \int (f+g) \, dm \right) > \left((S) \int f dm \right) + \left((S) \int g dm \right) = \frac{3}{4},$$

which violates (7) and (14).

190

4 A Generalized Minkowski's Inequality for Fuzzy Integrals

In this section, the inequalities (7) and (14) are generalized. In fact, the restrictions of continuous and strictly increasing (decreasing) are changed to a more general case as non-decreasing (non-increasing). Furthermore, $(S) \int_0^1 (.) d\mu$ is changed to the general form of $(S) \int_0^a (.) d\mu$, where $a \ge 1$. To prove the generalized inequalities the following lemma is needed.

Lemma 4.1 ([9]) Let $(S) \int_A f d\mu = p < \infty$. Then $\forall r \ge p$, $(S) \int_A f d\mu = (S) \int_0^r \mu(A \cap \{f \ge \alpha\}) dm$, where m is the Lebesgue measure.

Theorem 4.2 Let μ be an arbitrary fuzzy measure on [0, a] and let $f, g : [0, a] \to R^+$ be two real valued measurable functions such that $(S) \int_0^a (f+g)^s d\mu \leq 1$. If f, g are both non-decreasing functions, then the inequality

$$\left((S) \int_{0}^{a} (f+g)^{s} d\mu \right)^{\frac{1}{s}} \leq \left((S) \int_{0}^{a} f^{s} d\mu \right)^{\frac{1}{s}} + \left((S) \int_{0}^{a} g^{s} d\mu \right)^{\frac{1}{s}}$$
(15)

holds for all $1 \leq s < \infty$.

Proof: Denote $A(\alpha) = \mu([0, a] \cap \{f^s \ge \alpha\}), B(\alpha) = \mu([0, a] \cap \{g^s \ge \alpha\}), \text{ and } C(\alpha) = \mu([0, a] \cap \{(f + g)^s \ge \alpha\})$. By Lemma 4.1, $(S) \int_0^a (f + g)^s d\mu = (S) \int_0^1 C(\alpha) dm$. Therefore, it suffices to prove

$$\left((S)\int_0^1 C(\alpha)dm\right)^{\frac{1}{s}} \le \left((S)\int_0^1 A(\alpha)dm\right)^{\frac{1}{s}} + \left((S)\int_0^1 B(\alpha)dm\right)^{\frac{1}{s}}.$$

Let $(S) \int_0^1 C(\alpha) dm = r$, $p = (S) \int_0^1 A(\alpha) dm$, and $q = (S) \int_0^1 B(\alpha) dm$. The proof is trivial for p = 1 or p = 0 (q = 1 or q = 0) due to Proposition 2.3(i). Let $p, q \in (0, 1)$. Since $A(\alpha)$, $B(\alpha)$ and $C(\alpha)$ are non-increasing with respect to α and m is a Lebesgue measure. Theorem 2.7 implies that A(p-) = p, B(q-) = q, and $C(r-) \ge r$. Now, on the contrary suppose that

$$r^{\frac{1}{s}} > p^{\frac{1}{s}} + q^{\frac{1}{s}}.$$
(16)

Since $(p+q)^{\frac{1}{s}} \leq p^{\frac{1}{s}} + q^{\frac{1}{s}}$ where $s \geq 1$, then

$$r^{\frac{1}{s}} > (p+q)^{\frac{1}{s}} \implies r > (p+q),$$

and

$$r^{\frac{1}{s}} > p^{\frac{1}{s}} + q^{\frac{1}{s}} \implies r > \left(p^{\frac{1}{s}} + q^{\frac{1}{s}}\right)^{s}.$$

Thus

$$\begin{split} \left\{ \left(f+g\right)^s \geq r \right\} &\subset \quad \left\{ \left(f+g\right)^s \geq \left(p^{\frac{1}{s}}+q^{\frac{1}{s}}\right)^s \right\} = \left\{ \left(f+g\right) \geq \left(p^{\frac{1}{s}}+q^{\frac{1}{s}}\right) \right\} \\ &\subset \quad \left\{ f \geq p^{\frac{1}{s}} \right\} \cup \left\{ g \geq q^{\frac{1}{s}} \right\} = \left\{ f^s \geq p \right\} \cup \left\{ g^s \geq q \right\}. \end{split}$$

Also

$$\begin{array}{rcl} r & \leq & C\left(r-\right) = \lim_{\varepsilon \longrightarrow 0^+} \mu\left([0,a] \cap \{(f+g)^s \geq r-\varepsilon\}\right) \\ & \leq & \lim_{\varepsilon \longrightarrow 0^+} \mu\left([0,a] \cap [\{f^s \geq p-\varepsilon\} \cup \{g^s \geq q-\varepsilon\}]\right) \\ & \leq & \lim_{\varepsilon \longrightarrow 0^+} \mu\left([0,a] \cap \{f^s \geq p-\varepsilon\}\right) + \lim_{\varepsilon \longrightarrow 0^+} \mu\left([0,a] \cap \{g^s \geq q-\varepsilon\}\right) = A(p-) + B(q-) = p+q, \end{array}$$

which is a contradiction to (16). Hence $r^{\frac{1}{s}} \leq p^{\frac{1}{s}} + q^{\frac{1}{s}}$ and the proof is completed.

Example 3: Let A = [0,5] and m be the Lebesgue measure. Let f and g be two real valued functions defined as $f(x) = \begin{cases} \frac{x}{16} & x \in [0, \frac{9}{2}) \\ \frac{2}{5} & x \in [\frac{9}{2}, 5] \end{cases}$ and $g(x) = \frac{\sqrt{x}}{4}$. Both f and g are non-decreasing functions. In (15), let

s = 2. A straightforward calculus shows that

$$= 0.63268 \lor 0.82913 = 0.82913$$

Therefore,

$$0.91057 = \left((S) \int_0^5 (f+g)^2 \, dm \right)^{\frac{1}{2}} \le \left((S) \int_0^5 f^2 \, dm \right)^{\frac{1}{2}} + \left((S) \int_0^5 g^2 \, dm \right)^{\frac{1}{2}} = 0.94233.$$

Theorem 4.3 Let μ be an arbitrary fuzzy measure on [0, a] and let $f, g : [0, a] \to R^+$ be two real valued measurable functions such that $(S) \int_0^a (f+g)^s d\mu \leq 1$. If f, g are both non-increasing functions, then the inequality

$$\left((S)\int_{0}^{a}(f+g)^{s}\,d\mu\right)^{\frac{1}{s}} \leq \left((S)\int_{0}^{a}f^{s}\,d\mu\right)^{\frac{1}{s}} + \left((S)\int_{0}^{a}g^{s}\,d\mu\right)^{\frac{1}{s}} \tag{17}$$

holds for all $1 \leq s < \infty$.

Proof: The proof is similar to that of Theorem 4.2.

Example 4: Let A = [0,2] and m be the Lebesgue measure. Let f and g be two real valued functions defined as $f(x) = \frac{1}{x+3}$ and $g(x) = \begin{cases} 1-x & x \in [0, \frac{1}{2}) \\ \frac{1}{10} & x \in [\frac{1}{2}, 2]. \end{cases}$ let s = 1. A straightforward calculus shows that Both f and g are non-increasing functions. In (17),

$$(i) (S) \int_0^2 f dm = \bigvee_{\alpha \in [0,0.33333]} \left[\alpha \wedge \mu \left(\left\{ \frac{1}{x+3} \ge \alpha \right\} \right) \right] = \bigvee_{\alpha \in [0,0.33333]} \left[\alpha \wedge \left(\frac{1-3\alpha}{\alpha} \right) \right]$$
$$= 0.30278,$$

Journal of Uncertain Systems, Vol.4, No.3, pp.187-194, 2010

$$\bigvee \left(\bigvee_{\alpha \in (0.38571, 1.3333]} \left[\alpha \land \mu \left(\left\{ \left(\frac{1}{x+3} + 1 - x \right) \ge \alpha \right\} \right) \right] \right)$$

= $\left(\bigvee_{\alpha \in [0, 0.38571]} \left[\alpha \land \left(\frac{3-2\alpha}{2\alpha-1} \right) \right] \right)$
 $\bigvee \left(\bigvee_{\alpha \in (0.38571, 1.3333]} \left[\alpha \land \left(-1 - \frac{1}{2}\alpha + \frac{1}{2}\sqrt{(20 - 8\alpha + \alpha^2)} \right) \right] \right)$
= $0.39459 \lor 0.63746 = 0.63746.$

Therefore,

$$0.63746 = \left((S) \int_0^2 (f+g) \, dm \right) \le \left((S) \int_0^2 f \, dm \right) + \left((S) \int_0^2 g \, dm \right) = 0.80278.$$

5 Conclusion

The classical Minkowski inequality is an important result in theoretical and applied fields. This paper proposed a Minkowski type inequality for fuzzy integrals based on the classical one. Moreover, a generalized Minkowski's inequality for fuzzy integrals is introduced. To illustrate the proposed inequalities some examples are solved.

Acknowledgments

This paper has been partially supported by the Research Group of Dynamical Systems, Shahid Bahonar University of Kerman, Iran.

References

- [1] Chen, T.Y., H.L. Chang, and G.H. Tzeng, Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy, *European Journal of Operational Research*, vol.137, pp.145–161, 2002.
- [2] Chen, X., Z. Jing, and G. Xiao, Nonlinear fusion for recognition using fuzzy integral, Communication in Nonlinear Science and Numerical Simulation, vol.12, pp.823–831, 2007.
- [3] Flores-Franulič, A., and H. Román-Flores, A Chebyshev type inequality for fuzzy integrals, Applied Mathematics and Computation, vol.190, pp.1178–1184, 2007.
- [4] Lu, J.-Y., K.-S. Wu, and J.-C. Lin, Fast full search in motion estimation by hierarchical use of Minkowski's inequality, *Pattern Recognition*, vol.31, pp.945–952, 1998.
- [5] Mesiar, R., and Y. Ouyang, general Chebyshev type inequalities for Sugeno integrals, *Fuzzy Sets and Systems*, vol.160, pp.58–64, 2009.

- [6] Minkowski, H., Geometrie der Zahlen, Teubner, Leipzig, 1910.
- [7] Narukawa, Y., and V. Torra, Fuzzy measures and integrals in evaluation of strategies, *Information Sciences*, vol.177, pp.4686–4695, 2007.
- [8] Ouyang, Y., and J. Fang, Sugeno integral of monotone functions based on Lebesgue measure, Computers and Mathematics with Applications, vol.56, pp.367–374, 2008.
- [9] Ouyang, Y., J. Fang, and L. Wang, Fuzzy Chebyshev type inequality, Internatinal Journal of Approximate Reasoning, vol.48, pp.829–835, 2008.
- [10] Özkan, U.M., M.Z. Sarikaya, and H. Yildirim, Extensions of certain integral inequalities on time scales, Applied Mathematics Letters, vol.21, pp.993–1000, 2008.
- [11] Ralescu, D., and G. Adams, The fuzzy integral, Journal of Mathematical Analysis and Applications, vol.75, pp.562–570, 1980.
- [12] Román-Flores, H., A. Flores-Franulič, R. Bassanezi, and M. Rojas-Medar, On the level-continuity of fuzzy integrals, *Fuzzy Sets and Systems*, vol.80, pp.339–344, 1996.
- [13] Román-Flores, H., and Y. Chalco-Cano, H-continuity of fuzzy measures and set defuzzifincation, Fuzzy Sets and Systtems, vol.157, pp.230–242, 2006.
- [14] Román-Flores, H., and Y. Chalco-Cano, Sugeno integral and geometric inequalities, International Journal of Uncertainity, Fuzziness and Knowledge-Based System, vol.15, pp.1–11, 2007.
- [15] Román-Flores, H., A. Flores-Franulič, and Y. Chalco-Cano, The fuzzy integral for monotone functions, Applied Mathematics and Computation, vol.185, pp.492–498, 2007.
- [16] Román-Flores, H., A. Flores-Franulič, and Y. Chalco-Cano, A Jensen type inequality for fuzzy integrals, *Infor-mation Sciences*, vol.177, pp.3192–3201, 2007.
- [17] Román-Flores, H., A. Flores-Franulič, and Y. Chalco-Cano, A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation, vol.196, pp.55–59, 2008.
- [18] Román-Flores, H., A. Flores-Franulič, and Y. Chalco-Cano, A convolution type inequality for fuzzy integrals, *Applied Mathematics and Computation*, vol.195, pp.94–99, 2008.
- [19] Román-Flores, H., A. Flores-Franulič, and Y. Chalco-Cano, A hardy-type inequality for fuzzy integrals, Applied Mathematics and Computation, vol.204, pp.178–183, 2008.
- [20] Rudin, W., Principles of Mathematical Analysis, 3rd Edition, McGraw-Hill, New York, 1976.
- [21] Rudin, W., Real and Complex Analysis, 3rd Edition, McGraw-Hill, New York, 1987.
- [22] Sugeno, M., Theory of fuzzy integrals and its applications, Ph.D. Thesis, Tokyo Institute of Technology, 1974.
- [23] Temko, A., D. Macho, and C. Nadeu, Fuzzy integral based information fusion for classification of highly confusable non-speech sounds, *Pattern Recognition*, vol.41, pp.1814–1823, 2008.
- [24] Wang, Z., and G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.