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Abstract

One of the famous mathematical inequalities is Minkowski’s inequality. It is an important inequality
from both mathematical and application points of view. In this paper, a Minkowski type inequality for
fuzzy integrals is studied. The established results are based on the classical Minkowski inequality for
integrals. Moreover, a generalized Minkowski type inequality for fuzzy integrals is suggested. To illustrate
the proposed inequalities some examples are given.
c⃝2010 World Academic Press, UK. All rights reserved.
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1 Introduction

Fuzzy measure and fuzzy integrals can be used for modelling problems in non deterministic environment. Since
Sugeno [22] initiated research on fuzzy measure and fuzzy integral, these area have been widely developed
and a wide variety of topics have been investigated (see, e.g., [7-19] and references therein). Fuzzy integrals
or Sugeno integrals have very interesting properties from a mathematical point of view which have been
studied by many authors, including Ralescu and Adams [11], Roman-Flores et al. [12-19], Wang and Klir
[24], among others. Ralescu and Adams [11] studied several equivalent definitions of fuzzy integrals. Román-
Flores et al. [12, 13] developed the aspects of level-continuity and H-continuity of fuzzy integrals. The fuzzy
integral for monotone functions was presented in [15]. A general overview on fuzzy integral measurement and
fuzzy integration theory was presented by Wang and Klir [24]. In fact, fuzzy measures and fuzzy integrals
are versatile operators which can be used in different areas. They have a broad use in information fusion,
electronic auctions, decision making, and etc. Chen et al. [1] employed fuzzy integral and fuzzy measure to
establish a public attitude analysis model. They applied their model to the gas taxi policy in Taipei City.
Chen et al. [2] used fuzzy integral for face recognition. Narukawa and Torra [7] explored the use of fuzzy
measures and fuzzy integrals to evaluate strategies in games. Fuzzy integral and fuzzy measure were applied
to the problem of classifying highly confusable human non-speech sounds by Temko et al. [23].

The integral inequalities are useful results in several theoretical and applied fields. For instance, integral
inequalities play a major role in the development of a time scales calculus. Özkan et al. [10] obtained Hölder’s
inequality, Minkowski’s inequality and Jensen’s inequality on time scales. Some famous inequalities have been
generalized to fuzzy integral. Román-Flores and Chalco-Cano [14] analyzed an interesting type of geometric
inequalities for fuzzy integral with some applications to convex geometry. Román-Flores et al. [16, 18] studied
a Jensen type inequality and a convolution type inequality for fuzzy integrals. Also, they have investigated a
Chebyshev type inequality and a Stolarsky type inequality for fuzzy integrals [3, 17]. In [3], a fuzzy Chebyshev
inequality for a special case was obtained which has been generalized by Ouyang et al. [9]. Furthermore,
Chybyshev type inequalities for fuzzy integral were proposed in a rather general form by Mesiar and Ouyang
[5]. Recently, Román-Flores et al. [19] proved a Hardy type inequality for fuzzy integrals.

This paper intends to present a Minkowski type inequality for fuzzy integrals. The rest of this paper is
organized as follows: in Section 2 some preliminaries and summarization of some previous known results are
given. Section 3 proposes a Minkowski type inequality for fuzzy integrals. Section 4 deals with a generalized
Minkowski type inequality. Finally, Section 5 contains a short conclusion.
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2 Preliminaries

In this section, some definitions and basic properties of the Sugeno integral which will be used in the next
sections are presented.

Definition 2.1 ([3, 9]) Let
∑

be a σ−algebra of subsets of R and let µ :
∑

→ [0,∞] be a nonnegative,
extended real valued set function. µ is a fuzzy measure on R if
(FM1) µ(∅) = 0;
(FM2) E,F ∈

∑
and E ⊆ F imply µ(E) ≤ µ(F );

(FM3) {Ep} ⊆
∑

, E1 ⊆ E2 ⊆ ..., imply limp→ ∞µ(Ep) = µ
(∪∞

p=1 Ep

)
;

(FM4) {Ep} ⊆
∑

, E1 ⊇ E2 ⊇ ..., imply limp→ ∞µ(Ep) = µ
(∩∞

p=1 Ep

)
.

When µ is a fuzzy measure, the triple (X,
∑

, µ) is called a fuzzy measure space. Let f be a nonnegative
real valued function defined on R. An α − level of f (for α > 0) is denoted by Lαf = {x ∈ R | f(x) ≥
α} = {f ≥ α} and L0f = {x ∈ R | f(x) ≥ 0}. L0f is called the support of f . Note that α ≤ β implies
Lβf = {f ≥ β} ⊆ Lαf = {f ≥ α}. If µ is a fuzzy measure on R, then ℵµ(R) is defined as follows

ℵµ(R) = {f : R → [0,∞) | f is µ−measurable}.

Definition 2.2 ([11, 22]) Let µ be a fuzzy measure on R, f ∈ ℵµ(R), and A ∈
∑

, then the Sugeno integral
(or fuzzy integral) of f on A, with respect to the fuzzy measure µ, is defined as

(S)

∫
A

fdµ =
∨
α≥0

[α ∧ µ(A ∩ {f ≥ α})] , A ∈
∑

(1)

where ∨,∧ denote the operations sup and inf on [0,∞), respectively. In particular, if A = R, then

(S)

∫
R

fdµ =
∨
α≥0

[α ∧ µ{f ≥ α}].

The following properties of the Sugeno integral are well known [11].

Proposition 2.3 ([11]) If µ is a fuzzy measure on R and f, g ∈ ℵµ(R), then
(i) (S)

∫
A
fdµ ≤ µ(A);

(ii) If f ≤ g on A, then (S)
∫
A
fdµ ≤ (S)

∫
A
gdµ;

(iii) (S)
∫
A
kdµ = k ∧ µ(A), where k is a nonnegative constant.

Román-Flores et al. have studied several fuzzy integral inequalities [14-19]. In particular, the following
optimal fuzzy integral inequalities for monotone functions are proved in [15].

Theorem 2.4 Let µ be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a continuous and strictly
increasing function. If (S)

∫ a

0
gdµ = p, then

g(a− p) ≥ (S)

∫ a

0

gdµ = p, ∀ a ≥ 0. (2)

Moreover, if 0 < p < a, then g(a− p) = p.

An analogous result is obtained for the decreasing case.

Theorem 2.5 Let µ be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a continuous and strictly
decreasing function. If (S)

∫ a

0
gdµ = p, then

g(p) ≥ (S)

∫ a

0

gdµ = p, ∀ a ≥ 0. (3)

Moreover, if 0 < p < a, then g(p) = p.
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Ouyang et al. [8] proved the following two theorems which generalized the corresponding results in [15].

Theorem 2.6 Let m be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a non-decreasing function.
If (S)

∫ a

0
gdm = p, then

g((a− p)+) ≥ (S)

∫ a

0

gdm = p, ∀ a ≥ 0 (4)

where g(x+) = lim
ε−→0+

g(x+ ε). Moreover, if p < a, and g is continuous at a− p, then

g((a− p)+) = g(a− p) = p.

Notice that if m is the Lebesgue measure and g is a non-decreasing function, then
g((a− p)+) ≥ p =⇒ (S)

∫ a

0
gdm ≥ p.

Theorem 2.7 Let m be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a non-increasing function.
If (S)

∫ a

0
gdm = p, then

g(p−) ≥ (S)

∫ a

0

gdm = p, ∀ a ≥ 0 (5)

where g(x−) = lim
ε−→0+

g(x− ε). Moreover, if p < a, and g is continuous at p, then

g(p−) = g(p) = p.

Notice that if m is the Lebesgue measure and g is a non-increasing function, then
g(p−) ≥ p =⇒ (S)

∫ a

0
gdm ≥ p.

3 Minkowski’s Inequality for Fuzzy Integrals

The classical Minkowski inequality was published by Minkowski [6] in his famous book ‘Geometrie der Zahlen’.
A proof of Minkowski’s inequality as well as several extensions, related results, and interesting geometrical
interpretations can be found in [20, 21]. An extension of Minkowski’s inequality, which is based on Hölder’s
inequality, is given in [24, 31-32]. Applications of Minkowski’s inequality have been studied by many authors.
For example Özkan et al. [10] applied Minkowski’s inequality, Hölders inequality and Jensen’s inequality on
time scales. Lu et al. [4] used Minkowski’s inequality for fast full search in motion estimation.

The classical Minkowski inequality [6] is as follows(∫ 1

0

(f + g)
s
dµ

) 1
s

≤
(∫ 1

0

fsdµ

) 1
s

+

(∫ 1

0

gsdµ

) 1
s

(6)

where 1 ≤ s < ∞, and f, g : [0, 1] → [0,∞) are two nonnegative functions. The aim of this section is to show
the Minkowski inequality for the Sugeno integral.

Theorem 3.1 Let f, g : [0, 1] → [0,∞) be two real valued functions and let µ be the Lebesgue measure on R.
If f, g are both continuous and strictly decreasing functions, then the inequality(

(S)

∫ 1

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ 1

0

fsdµ

) 1
s

+

(
(S)

∫ 1

0

gsdµ

) 1
s

(7)

holds for all 1 ≤ s < ∞.

Proof: Let (S)
∫ 1

0
(f + g)

s
dµ = r, (S)

∫ 1

0
fsdµ = p and (S)

∫ 1

0
gsdµ = q, where 1 ≤ s < ∞. The proof is

trivial for p = 1 or p = 0 (q = 1 or q = 0) due to Proposition 2.3(i). Let p, q ∈ (0, 1). Then, Theorem 2.5
implies that

(f + g)
s
(r) ≥ r; fs(p) = p; gs(q) = q. (8)

Then,
(f + g) (r) ≥ r

1
s ; f(p) = p

1
s ; g(q) = q

1
s . (9)

Now, on the contrary suppose that
r

1
s > p

1
s + q

1
s . (10)
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r
1
s > p

1
s + q

1
s =⇒

 r
1
s > p

1
s =⇒ r > p,

r
1
s > q

1
s =⇒ r > q.

(11)

Since f and g are decreasing functions, (9) and (11) imply that

f(r) < f(p) = p
1
s (12)

and
g(r) < g(q) = q

1
s . (13)

(9), (12) and (13) imply that

r
1
s ≤ (f + g) (r) = f(r) + g(r) < p

1
s + q

1
s ,

which is a contradiction to (10). Hence r
1
s ≤ p

1
s + q

1
s and the proof is completed.

Example 1: Let f and g be two real valued functions defined as f(x) = 1 − x and g(x) = 1 − x2

where x ∈ [0, 1]. Both f and g are strictly decreasing functions. In (7), let s = 1. A straightforward calculus
shows that

(i) (S)

∫ 1

0

f(x)dµ =
∨

α∈[0,1]

[α ∧ µ({1− x ≥ α})] =
∨

α∈[0,1]

[α ∧ (1− α)] = 0.5,

(ii) (S)

∫ 1

0

g(x)dµ =
∨

α∈[0,1]

[α ∧ µ({1− x2 ≥ α})] =
∨

α∈[0,1]

[
α ∧

(√
1− α

)]
= 0.618 03,

(iii) (S)

∫ 1

0

(f + g)(x)dµ =
∨

α∈[0,2]

[α ∧ µ({−x2 − x+ 2 ≥ α})]

=
∨

α∈[0,2]

[
α ∧

(
−1

2
+

1

2

√
(9− 4α)

)]
= 0. 732 05.

Therefore,

0. 732 05 = (S)

∫ 1

0

(f + g) dµ ≤
(
(S)

∫ 1

0

fdµ

)
+

(
(S)

∫ 1

0

gdµ

)
= 0.5 + 0.618 03 = 1. 118.

Theorem 3.2 Let f, g : [0, 1] → [0,∞) be two real valued functions and let µ be the Lebesgue measure on R.
If f, g are both continuous and strictly increasing functions, then the inequality(

(S)

∫ 1

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ 1

0

fsdµ

) 1
s

+

(
(S)

∫ 1

0

gsdµ

) 1
s

(14)

holds for all 1 ≤ s < ∞.

Proof: The proof is similar to that of Theorem 3.1.

Remark 1: Note that the inequalities (7) and (14) do not hold when f and g have different monotony. This
matter is illustrated by the next example.

Example 2: Let X = [0, 1], f(x) = x2, g(x) = 1− x2, s = 1 and µ(X) = m2(X) where m is the Lebesgue
measure on R. A straightforward calculus shows that

(S)

∫
(f + g) dµ = 1,

(S)

∫
fdµ =

∨
α∈[0,1]

[
α ∧

(
1−

√
α
)2]

=
1

4
, (S)

∫
gdµ =

∨
α∈[0,1]

[α ∧ (1− α)] =
1

2
,

but

1 =

(
(S)

∫
(f + g) dm

)
>

(
(S)

∫
fdm

)
+

(
(S)

∫
gdm

)
=

3

4
,

which violates (7) and (14).
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4 A Generalized Minkowski’s Inequality for Fuzzy Integrals

In this section, the inequalities (7) and (14) are generalized. In fact, the restrictions of continuous and strictly
increasing (decreasing) are changed to a more general case as non-decreasing (non-increasing). Furthermore,

(S)
∫ 1

0
(.)dµ is changed to the general form of (S)

∫ a

0
(.)dµ, where a ≥ 1. To prove the generalized inequalities

the following lemma is needed.

Lemma 4.1 ([9]) Let (S)
∫
A
fdµ = p < ∞. Then ∀r ≥ p, (S)

∫
A
fdµ = (S)

∫ r

0
µ(A ∩ {f ≥ α})dm, where m

is the Lebesgue measure.

Theorem 4.2 Let µ be an arbitrary fuzzy measure on [0, a] and let f, g : [0, a] → R+ be two real valued
measurable functions such that (S)

∫ a

0
(f + g)

s
dµ ≤ 1. If f, g are both non-decreasing functions, then the

inequality (
(S)

∫ a

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ a

0

fsdµ

) 1
s

+

(
(S)

∫ a

0

gsdµ

) 1
s

(15)

holds for all 1 ≤ s < ∞.

Proof: Denote A(α) = µ([0, a]∩ {fs ≥ α}), B(α) = µ([0, a] ∩ {gs ≥ α}), and C(α) = µ([0, a]∩ {(f + g)
s ≥

α}). By Lemma 4.1, (S)
∫ a

0
(f + g)

s
dµ = (S)

∫ 1

0
C(α)dm. Therefore, it suffices to prove

(
(S)

∫ 1

0

C(α)dm

) 1
s

≤
(
(S)

∫ 1

0

A(α)dm

) 1
s

+

(
(S)

∫ 1

0

B(α)dm

) 1
s

.

Let (S)
∫ 1

0
C(α)dm = r, p = (S)

∫ 1

0
A(α)dm, and q = (S)

∫ 1

0
B(α)dm. The proof is trivial for p = 1 or p = 0

(q = 1 or q = 0) due to Proposition 2.3(i). Let p, q ∈ (0, 1). Since A(α), B(α) and C(α) are non-increasing
with respect to α and m is a Lebesgue measure, Theorem 2.7 implies that A(p−) = p, B(q−) = q, and
C(r−) ≥ r. Now, on the contrary suppose that

r
1
s > p

1
s + q

1
s . (16)

Since (p+ q)
1
s ≤ p

1
s + q

1
s where s ≥ 1, then

r
1
s > (p+ q)

1
s =⇒ r > (p+ q) ,

and

r
1
s > p

1
s + q

1
s =⇒ r >

(
p

1
s + q

1
s

)s
.

Thus

{(f + g)
s ≥ r} ⊂

{
(f + g)

s ≥
(
p

1
s + q

1
s

)s}
=
{
(f + g) ≥

(
p

1
s + q

1
s

)}
⊂

{
f ≥ p

1
s

}
∪
{
g ≥ q

1
s

}
= {fs ≥ p} ∪ {gs ≥ q} .

Also

r ≤ C (r−) = lim
ε−→0+

µ ([0, a] ∩ {(f + g)s ≥ r − ε})

≤ lim
ε−→0+

µ ([0, a] ∩ [{fs ≥ p− ε} ∪ {gs ≥ q − ε}])

≤ lim
ε−→0+

µ ([0, a] ∩ {fs ≥ p− ε}) + lim
ε−→0+

µ ([0, a] ∩ {gs ≥ q − ε}) = A(p−) +B(q−) = p+ q,

which is a contradiction to (16). Hence r
1
s ≤ p

1
s + q

1
s and the proof is completed.

Example 3: Let A = [0, 5] and m be the Lebesgue measure. Let f and g be two real valued functions

defined as f(x) =

{
x
16 x ∈ [0, 9

2 )
2
5 x ∈ [92 , 5]

and g(x) =
√
x
4 . Both f and g are non-decreasing functions. In (15), let
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s = 2. A straightforward calculus shows that

(i) (S)

∫ 5

0

f2dm =

 ∨
α∈[0,7. 910 2×10−2)

[
α ∧ µ

({( x

16

)2
≥ α

})] 
∨ ∨

α∈[7. 910 2×10−2,. 16]

[
α ∧ µ

({(
2

5

)2

≥ α

})]
=

 ∨
α∈[0,7. 910 2×10−2)

[α ∧
(
5− 16

√
α
)
]

∨ ∨
α∈[7. 910 2×10−2,. 16]

[α ∧ 0.5]


= 7. 910 2× 10−2 ∨ 0.16 = 0.16,

(ii) (S)

∫ 5

0

g2dm =
∨

α∈[0, 5
16 ]

[
α ∧ µ

({(√
x

4

)2

≥ α

})]
=

∨
α∈[0, 5

16 ]

[α ∧ (5− 16α)] = 0. 294 12,

(iii) (S)

∫ 5

0

(f + g)
2
dm =

 ∨
α∈[0,. 658 66)

[
α ∧ µ

({(
x

16
+

√
x

4

)2

≥ α

})]
∨ ∨

α∈[. 658 66,. 919 71]

[
α ∧ µ

({(
2

5
+

√
x

4

)2

≥ α

})]
=

∨
α∈[0,. 658 66]

[
α ∧

(
5−

(
8− 8

√(
1 + 4

√
α
)
+ 16

√
α

))]
∨ ∨

α∈[. 658 66,. 919 71]

[
α ∧

(
5−

(
64

25
− 64

5

√
α+ 16α

))]
= 0. 632 68 ∨ 0. 829 13 = 0. 829 13.

Therefore,

0. 910 57 =

(
(S)

∫ 5

0

(f + g)
2
dm

) 1
2

≤
(
(S)

∫ 5

0

f2dm

) 1
2

+

(
(S)

∫ 5

0

g2dm

) 1
2

= 0. 942 33.

Theorem 4.3 Let µ be an arbitrary fuzzy measure on [0, a] and let f, g : [0, a] → R+ be two real valued
measurable functions such that (S)

∫ a

0
(f + g)

s
dµ ≤ 1. If f, g are both non-increasing functions, then the

inequality (
(S)

∫ a

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ a

0

fsdµ

) 1
s

+

(
(S)

∫ a

0

gsdµ

) 1
s

(17)

holds for all 1 ≤ s < ∞.

Proof: The proof is similar to that of Theorem 4.2.

Example 4: Let A = [0, 2] and m be the Lebesgue measure. Let f and g be two real valued functions

defined as f(x) = 1
x+3 and g(x) =

{
1− x x ∈ [0, 1

2 )
1
10 x ∈ [12 , 2].

Both f and g are non-increasing functions. In (17),

let s = 1. A straightforward calculus shows that

(i) (S)

∫ 2

0

fdm =
∨

α∈[0,0. 333 33]

[
α ∧ µ

({
1

x+ 3
≥ α

})]
=

∨
α∈[0,0. 333 33]

[
α ∧

(
1− 3α

α

)]
= 0. 302 78,
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(ii) (S)

∫ 2

0

gdm =

 ∨
α∈[0,0.1]

[
α ∧ µ

({
1

10
≥ α

})]∨ ∨
α∈(0.1,1]

[α ∧ µ ({1− x ≥ α})]


 ∨

α∈[0,0.1)

[α ∧ 1.5]

∨ ∨
α∈[0.1,1]

[α ∧ (1− α)]


= 0.1 ∨ 0.5 = 0.5,

(iii) (S)

∫ 2

0

(f + g) dm =

 ∨
α∈[0,0. 385 71]

[
α ∧ µ

({(
1

x+ 3
+

1

10

)
≥ α

})]
∨ ∨

α∈(0. 385 71, 1. 333 3]

[
α ∧ µ

({(
1

x+ 3
+ 1− x

)
≥ α

})]
=

 ∨
α∈[0,0. 385 71]

[
α ∧

(
3− 2α

2α− 1

)]
∨ ∨

α∈(0. 385 71, 1. 333 3]

[
α ∧

(
−1− 1

2
α+

1

2

√
(20− 8α+ α2)

)]
= 0. 394 59 ∨ 0. 637 46 = 0. 637 46.

Therefore,

0. 637 46 =

(
(S)

∫ 2

0

(f + g) dm

)
≤
(
(S)

∫ 2

0

fdm

)
+

(
(S)

∫ 2

0

gdm

)
= 0. 802 78.

5 Conclusion

The classical Minkowski inequality is an important result in theoretical and applied fields. This paper proposed
a Minkowski type inequality for fuzzy integrals based on the classical one. Moreover, a generalized Minkowski’s
inequality for fuzzy integrals is introduced. To illustrate the proposed inequalities some examples are solved.
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