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Abstract

One of the famous mathematical inequalities is Minkowski’s inequality. It is an important inequality
from both mathematical and application points of view. In this paper, a Minkowski type inequality for
fuzzy integrals is studied. The established results are based on the classical Minkowski inequality for
integrals. Moreover, a generalized Minkowski type inequality for fuzzy integrals is suggested. To illustrate
the proposed inequalities some examples are given.
c⃝2010 World Academic Press, UK. All rights reserved.
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1 Introduction

Fuzzy measure and fuzzy integrals can be used for modelling problems in non deterministic environment. Since
Sugeno [22] initiated research on fuzzy measure and fuzzy integral, these area have been widely developed
and a wide variety of topics have been investigated (see, e.g., [7-19] and references therein). Fuzzy integrals
or Sugeno integrals have very interesting properties from a mathematical point of view which have been
studied by many authors, including Ralescu and Adams [11], Roman-Flores et al. [12-19], Wang and Klir
[24], among others. Ralescu and Adams [11] studied several equivalent definitions of fuzzy integrals. Román-
Flores et al. [12, 13] developed the aspects of level-continuity and H-continuity of fuzzy integrals. The fuzzy
integral for monotone functions was presented in [15]. A general overview on fuzzy integral measurement and
fuzzy integration theory was presented by Wang and Klir [24]. In fact, fuzzy measures and fuzzy integrals
are versatile operators which can be used in different areas. They have a broad use in information fusion,
electronic auctions, decision making, and etc. Chen et al. [1] employed fuzzy integral and fuzzy measure to
establish a public attitude analysis model. They applied their model to the gas taxi policy in Taipei City.
Chen et al. [2] used fuzzy integral for face recognition. Narukawa and Torra [7] explored the use of fuzzy
measures and fuzzy integrals to evaluate strategies in games. Fuzzy integral and fuzzy measure were applied
to the problem of classifying highly confusable human non-speech sounds by Temko et al. [23].

The integral inequalities are useful results in several theoretical and applied fields. For instance, integral
inequalities play a major role in the development of a time scales calculus. Özkan et al. [10] obtained Hölder’s
inequality, Minkowski’s inequality and Jensen’s inequality on time scales. Some famous inequalities have been
generalized to fuzzy integral. Román-Flores and Chalco-Cano [14] analyzed an interesting type of geometric
inequalities for fuzzy integral with some applications to convex geometry. Román-Flores et al. [16, 18] studied
a Jensen type inequality and a convolution type inequality for fuzzy integrals. Also, they have investigated a
Chebyshev type inequality and a Stolarsky type inequality for fuzzy integrals [3, 17]. In [3], a fuzzy Chebyshev
inequality for a special case was obtained which has been generalized by Ouyang et al. [9]. Furthermore,
Chybyshev type inequalities for fuzzy integral were proposed in a rather general form by Mesiar and Ouyang
[5]. Recently, Román-Flores et al. [19] proved a Hardy type inequality for fuzzy integrals.

This paper intends to present a Minkowski type inequality for fuzzy integrals. The rest of this paper is
organized as follows: in Section 2 some preliminaries and summarization of some previous known results are
given. Section 3 proposes a Minkowski type inequality for fuzzy integrals. Section 4 deals with a generalized
Minkowski type inequality. Finally, Section 5 contains a short conclusion.
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2 Preliminaries

In this section, some definitions and basic properties of the Sugeno integral which will be used in the next
sections are presented.

Definition 2.1 ([3, 9]) Let
∑

be a σ−algebra of subsets of R and let µ :
∑

→ [0,∞] be a nonnegative,
extended real valued set function. µ is a fuzzy measure on R if
(FM1) µ(∅) = 0;
(FM2) E,F ∈

∑
and E ⊆ F imply µ(E) ≤ µ(F );

(FM3) {Ep} ⊆
∑

, E1 ⊆ E2 ⊆ ..., imply limp→ ∞µ(Ep) = µ
(∪∞

p=1 Ep

)
;

(FM4) {Ep} ⊆
∑

, E1 ⊇ E2 ⊇ ..., imply limp→ ∞µ(Ep) = µ
(∩∞

p=1 Ep

)
.

When µ is a fuzzy measure, the triple (X,
∑

, µ) is called a fuzzy measure space. Let f be a nonnegative
real valued function defined on R. An α − level of f (for α > 0) is denoted by Lαf = {x ∈ R | f(x) ≥
α} = {f ≥ α} and L0f = {x ∈ R | f(x) ≥ 0}. L0f is called the support of f . Note that α ≤ β implies
Lβf = {f ≥ β} ⊆ Lαf = {f ≥ α}. If µ is a fuzzy measure on R, then ℵµ(R) is defined as follows

ℵµ(R) = {f : R → [0,∞) | f is µ−measurable}.

Definition 2.2 ([11, 22]) Let µ be a fuzzy measure on R, f ∈ ℵµ(R), and A ∈
∑

, then the Sugeno integral
(or fuzzy integral) of f on A, with respect to the fuzzy measure µ, is defined as

(S)

∫
A

fdµ =
∨
α≥0

[α ∧ µ(A ∩ {f ≥ α})] , A ∈
∑

(1)

where ∨,∧ denote the operations sup and inf on [0,∞), respectively. In particular, if A = R, then

(S)

∫
R

fdµ =
∨
α≥0

[α ∧ µ{f ≥ α}].

The following properties of the Sugeno integral are well known [11].

Proposition 2.3 ([11]) If µ is a fuzzy measure on R and f, g ∈ ℵµ(R), then
(i) (S)

∫
A
fdµ ≤ µ(A);

(ii) If f ≤ g on A, then (S)
∫
A
fdµ ≤ (S)

∫
A
gdµ;

(iii) (S)
∫
A
kdµ = k ∧ µ(A), where k is a nonnegative constant.

Román-Flores et al. have studied several fuzzy integral inequalities [14-19]. In particular, the following
optimal fuzzy integral inequalities for monotone functions are proved in [15].

Theorem 2.4 Let µ be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a continuous and strictly
increasing function. If (S)

∫ a

0
gdµ = p, then

g(a− p) ≥ (S)

∫ a

0

gdµ = p, ∀ a ≥ 0. (2)

Moreover, if 0 < p < a, then g(a− p) = p.

An analogous result is obtained for the decreasing case.

Theorem 2.5 Let µ be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a continuous and strictly
decreasing function. If (S)

∫ a

0
gdµ = p, then

g(p) ≥ (S)

∫ a

0

gdµ = p, ∀ a ≥ 0. (3)

Moreover, if 0 < p < a, then g(p) = p.
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Ouyang et al. [8] proved the following two theorems which generalized the corresponding results in [15].

Theorem 2.6 Let m be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a non-decreasing function.
If (S)

∫ a

0
gdm = p, then

g((a− p)+) ≥ (S)

∫ a

0

gdm = p, ∀ a ≥ 0 (4)

where g(x+) = lim
ε−→0+

g(x+ ε). Moreover, if p < a, and g is continuous at a− p, then

g((a− p)+) = g(a− p) = p.

Notice that if m is the Lebesgue measure and g is a non-decreasing function, then
g((a− p)+) ≥ p =⇒ (S)

∫ a

0
gdm ≥ p.

Theorem 2.7 Let m be the Lebesgue measure on R and let g : [0,∞] → [0,∞] be a non-increasing function.
If (S)

∫ a

0
gdm = p, then

g(p−) ≥ (S)

∫ a

0

gdm = p, ∀ a ≥ 0 (5)

where g(x−) = lim
ε−→0+

g(x− ε). Moreover, if p < a, and g is continuous at p, then

g(p−) = g(p) = p.

Notice that if m is the Lebesgue measure and g is a non-increasing function, then
g(p−) ≥ p =⇒ (S)

∫ a

0
gdm ≥ p.

3 Minkowski’s Inequality for Fuzzy Integrals

The classical Minkowski inequality was published by Minkowski [6] in his famous book ‘Geometrie der Zahlen’.
A proof of Minkowski’s inequality as well as several extensions, related results, and interesting geometrical
interpretations can be found in [20, 21]. An extension of Minkowski’s inequality, which is based on Hölder’s
inequality, is given in [24, 31-32]. Applications of Minkowski’s inequality have been studied by many authors.
For example Özkan et al. [10] applied Minkowski’s inequality, Hölders inequality and Jensen’s inequality on
time scales. Lu et al. [4] used Minkowski’s inequality for fast full search in motion estimation.

The classical Minkowski inequality [6] is as follows(∫ 1

0

(f + g)
s
dµ

) 1
s

≤
(∫ 1

0

fsdµ

) 1
s

+

(∫ 1

0

gsdµ

) 1
s

(6)

where 1 ≤ s < ∞, and f, g : [0, 1] → [0,∞) are two nonnegative functions. The aim of this section is to show
the Minkowski inequality for the Sugeno integral.

Theorem 3.1 Let f, g : [0, 1] → [0,∞) be two real valued functions and let µ be the Lebesgue measure on R.
If f, g are both continuous and strictly decreasing functions, then the inequality(

(S)

∫ 1

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ 1

0

fsdµ

) 1
s

+

(
(S)

∫ 1

0

gsdµ

) 1
s

(7)

holds for all 1 ≤ s < ∞.

Proof: Let (S)
∫ 1

0
(f + g)

s
dµ = r, (S)

∫ 1

0
fsdµ = p and (S)

∫ 1

0
gsdµ = q, where 1 ≤ s < ∞. The proof is

trivial for p = 1 or p = 0 (q = 1 or q = 0) due to Proposition 2.3(i). Let p, q ∈ (0, 1). Then, Theorem 2.5
implies that

(f + g)
s
(r) ≥ r; fs(p) = p; gs(q) = q. (8)

Then,
(f + g) (r) ≥ r

1
s ; f(p) = p

1
s ; g(q) = q

1
s . (9)

Now, on the contrary suppose that
r

1
s > p

1
s + q

1
s . (10)
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r
1
s > p

1
s + q

1
s =⇒

 r
1
s > p

1
s =⇒ r > p,

r
1
s > q

1
s =⇒ r > q.

(11)

Since f and g are decreasing functions, (9) and (11) imply that

f(r) < f(p) = p
1
s (12)

and
g(r) < g(q) = q

1
s . (13)

(9), (12) and (13) imply that

r
1
s ≤ (f + g) (r) = f(r) + g(r) < p

1
s + q

1
s ,

which is a contradiction to (10). Hence r
1
s ≤ p

1
s + q

1
s and the proof is completed.

Example 1: Let f and g be two real valued functions defined as f(x) = 1 − x and g(x) = 1 − x2

where x ∈ [0, 1]. Both f and g are strictly decreasing functions. In (7), let s = 1. A straightforward calculus
shows that

(i) (S)

∫ 1

0

f(x)dµ =
∨

α∈[0,1]

[α ∧ µ({1− x ≥ α})] =
∨

α∈[0,1]

[α ∧ (1− α)] = 0.5,

(ii) (S)

∫ 1

0

g(x)dµ =
∨

α∈[0,1]

[α ∧ µ({1− x2 ≥ α})] =
∨

α∈[0,1]

[
α ∧

(√
1− α

)]
= 0.618 03,

(iii) (S)

∫ 1

0

(f + g)(x)dµ =
∨

α∈[0,2]

[α ∧ µ({−x2 − x+ 2 ≥ α})]

=
∨

α∈[0,2]

[
α ∧

(
−1

2
+

1

2

√
(9− 4α)

)]
= 0. 732 05.

Therefore,

0. 732 05 = (S)

∫ 1

0

(f + g) dµ ≤
(
(S)

∫ 1

0

fdµ

)
+

(
(S)

∫ 1

0

gdµ

)
= 0.5 + 0.618 03 = 1. 118.

Theorem 3.2 Let f, g : [0, 1] → [0,∞) be two real valued functions and let µ be the Lebesgue measure on R.
If f, g are both continuous and strictly increasing functions, then the inequality(

(S)

∫ 1

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ 1

0

fsdµ

) 1
s

+

(
(S)

∫ 1

0

gsdµ

) 1
s

(14)

holds for all 1 ≤ s < ∞.

Proof: The proof is similar to that of Theorem 3.1.

Remark 1: Note that the inequalities (7) and (14) do not hold when f and g have different monotony. This
matter is illustrated by the next example.

Example 2: Let X = [0, 1], f(x) = x2, g(x) = 1− x2, s = 1 and µ(X) = m2(X) where m is the Lebesgue
measure on R. A straightforward calculus shows that

(S)

∫
(f + g) dµ = 1,

(S)

∫
fdµ =

∨
α∈[0,1]

[
α ∧

(
1−

√
α
)2]

=
1

4
, (S)

∫
gdµ =

∨
α∈[0,1]

[α ∧ (1− α)] =
1

2
,

but

1 =

(
(S)

∫
(f + g) dm

)
>

(
(S)

∫
fdm

)
+

(
(S)

∫
gdm

)
=

3

4
,

which violates (7) and (14).
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4 A Generalized Minkowski’s Inequality for Fuzzy Integrals

In this section, the inequalities (7) and (14) are generalized. In fact, the restrictions of continuous and strictly
increasing (decreasing) are changed to a more general case as non-decreasing (non-increasing). Furthermore,

(S)
∫ 1

0
(.)dµ is changed to the general form of (S)

∫ a

0
(.)dµ, where a ≥ 1. To prove the generalized inequalities

the following lemma is needed.

Lemma 4.1 ([9]) Let (S)
∫
A
fdµ = p < ∞. Then ∀r ≥ p, (S)

∫
A
fdµ = (S)

∫ r

0
µ(A ∩ {f ≥ α})dm, where m

is the Lebesgue measure.

Theorem 4.2 Let µ be an arbitrary fuzzy measure on [0, a] and let f, g : [0, a] → R+ be two real valued
measurable functions such that (S)

∫ a

0
(f + g)

s
dµ ≤ 1. If f, g are both non-decreasing functions, then the

inequality (
(S)

∫ a

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ a

0

fsdµ

) 1
s

+

(
(S)

∫ a

0

gsdµ

) 1
s

(15)

holds for all 1 ≤ s < ∞.

Proof: Denote A(α) = µ([0, a]∩ {fs ≥ α}), B(α) = µ([0, a] ∩ {gs ≥ α}), and C(α) = µ([0, a]∩ {(f + g)
s ≥

α}). By Lemma 4.1, (S)
∫ a

0
(f + g)

s
dµ = (S)

∫ 1

0
C(α)dm. Therefore, it suffices to prove

(
(S)

∫ 1

0

C(α)dm

) 1
s

≤
(
(S)

∫ 1

0

A(α)dm

) 1
s

+

(
(S)

∫ 1

0

B(α)dm

) 1
s

.

Let (S)
∫ 1

0
C(α)dm = r, p = (S)

∫ 1

0
A(α)dm, and q = (S)

∫ 1

0
B(α)dm. The proof is trivial for p = 1 or p = 0

(q = 1 or q = 0) due to Proposition 2.3(i). Let p, q ∈ (0, 1). Since A(α), B(α) and C(α) are non-increasing
with respect to α and m is a Lebesgue measure, Theorem 2.7 implies that A(p−) = p, B(q−) = q, and
C(r−) ≥ r. Now, on the contrary suppose that

r
1
s > p

1
s + q

1
s . (16)

Since (p+ q)
1
s ≤ p

1
s + q

1
s where s ≥ 1, then

r
1
s > (p+ q)

1
s =⇒ r > (p+ q) ,

and

r
1
s > p

1
s + q

1
s =⇒ r >

(
p

1
s + q

1
s

)s
.

Thus

{(f + g)
s ≥ r} ⊂

{
(f + g)

s ≥
(
p

1
s + q

1
s

)s}
=
{
(f + g) ≥

(
p

1
s + q

1
s

)}
⊂

{
f ≥ p

1
s

}
∪
{
g ≥ q

1
s

}
= {fs ≥ p} ∪ {gs ≥ q} .

Also

r ≤ C (r−) = lim
ε−→0+

µ ([0, a] ∩ {(f + g)s ≥ r − ε})

≤ lim
ε−→0+

µ ([0, a] ∩ [{fs ≥ p− ε} ∪ {gs ≥ q − ε}])

≤ lim
ε−→0+

µ ([0, a] ∩ {fs ≥ p− ε}) + lim
ε−→0+

µ ([0, a] ∩ {gs ≥ q − ε}) = A(p−) +B(q−) = p+ q,

which is a contradiction to (16). Hence r
1
s ≤ p

1
s + q

1
s and the proof is completed.

Example 3: Let A = [0, 5] and m be the Lebesgue measure. Let f and g be two real valued functions

defined as f(x) =

{
x
16 x ∈ [0, 9

2 )
2
5 x ∈ [92 , 5]

and g(x) =
√
x
4 . Both f and g are non-decreasing functions. In (15), let
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s = 2. A straightforward calculus shows that

(i) (S)

∫ 5

0

f2dm =

 ∨
α∈[0,7. 910 2×10−2)

[
α ∧ µ

({( x

16

)2
≥ α

})] 
∨ ∨

α∈[7. 910 2×10−2,. 16]

[
α ∧ µ

({(
2

5

)2

≥ α

})]
=

 ∨
α∈[0,7. 910 2×10−2)

[α ∧
(
5− 16

√
α
)
]

∨ ∨
α∈[7. 910 2×10−2,. 16]

[α ∧ 0.5]


= 7. 910 2× 10−2 ∨ 0.16 = 0.16,

(ii) (S)

∫ 5

0

g2dm =
∨

α∈[0, 5
16 ]

[
α ∧ µ

({(√
x

4

)2

≥ α

})]
=

∨
α∈[0, 5

16 ]

[α ∧ (5− 16α)] = 0. 294 12,

(iii) (S)

∫ 5

0

(f + g)
2
dm =

 ∨
α∈[0,. 658 66)

[
α ∧ µ

({(
x

16
+

√
x

4

)2

≥ α

})]
∨ ∨

α∈[. 658 66,. 919 71]

[
α ∧ µ

({(
2

5
+

√
x

4

)2

≥ α

})]
=

∨
α∈[0,. 658 66]

[
α ∧

(
5−

(
8− 8

√(
1 + 4

√
α
)
+ 16

√
α

))]
∨ ∨

α∈[. 658 66,. 919 71]

[
α ∧

(
5−

(
64

25
− 64

5

√
α+ 16α

))]
= 0. 632 68 ∨ 0. 829 13 = 0. 829 13.

Therefore,

0. 910 57 =

(
(S)

∫ 5

0

(f + g)
2
dm

) 1
2

≤
(
(S)

∫ 5

0

f2dm

) 1
2

+

(
(S)

∫ 5

0

g2dm

) 1
2

= 0. 942 33.

Theorem 4.3 Let µ be an arbitrary fuzzy measure on [0, a] and let f, g : [0, a] → R+ be two real valued
measurable functions such that (S)

∫ a

0
(f + g)

s
dµ ≤ 1. If f, g are both non-increasing functions, then the

inequality (
(S)

∫ a

0

(f + g)
s
dµ

) 1
s

≤
(
(S)

∫ a

0

fsdµ

) 1
s

+

(
(S)

∫ a

0

gsdµ

) 1
s

(17)

holds for all 1 ≤ s < ∞.

Proof: The proof is similar to that of Theorem 4.2.

Example 4: Let A = [0, 2] and m be the Lebesgue measure. Let f and g be two real valued functions

defined as f(x) = 1
x+3 and g(x) =

{
1− x x ∈ [0, 1

2 )
1
10 x ∈ [12 , 2].

Both f and g are non-increasing functions. In (17),

let s = 1. A straightforward calculus shows that

(i) (S)

∫ 2

0

fdm =
∨

α∈[0,0. 333 33]

[
α ∧ µ

({
1

x+ 3
≥ α

})]
=

∨
α∈[0,0. 333 33]

[
α ∧

(
1− 3α

α

)]
= 0. 302 78,
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(ii) (S)

∫ 2

0

gdm =

 ∨
α∈[0,0.1]

[
α ∧ µ

({
1

10
≥ α

})]∨ ∨
α∈(0.1,1]

[α ∧ µ ({1− x ≥ α})]


 ∨

α∈[0,0.1)

[α ∧ 1.5]

∨ ∨
α∈[0.1,1]

[α ∧ (1− α)]


= 0.1 ∨ 0.5 = 0.5,

(iii) (S)

∫ 2

0

(f + g) dm =

 ∨
α∈[0,0. 385 71]

[
α ∧ µ

({(
1

x+ 3
+

1

10

)
≥ α

})]
∨ ∨

α∈(0. 385 71, 1. 333 3]

[
α ∧ µ

({(
1

x+ 3
+ 1− x

)
≥ α

})]
=

 ∨
α∈[0,0. 385 71]

[
α ∧

(
3− 2α

2α− 1

)]
∨ ∨

α∈(0. 385 71, 1. 333 3]

[
α ∧

(
−1− 1

2
α+

1

2

√
(20− 8α+ α2)

)]
= 0. 394 59 ∨ 0. 637 46 = 0. 637 46.

Therefore,

0. 637 46 =

(
(S)

∫ 2

0

(f + g) dm

)
≤
(
(S)

∫ 2

0

fdm

)
+

(
(S)

∫ 2

0

gdm

)
= 0. 802 78.

5 Conclusion

The classical Minkowski inequality is an important result in theoretical and applied fields. This paper proposed
a Minkowski type inequality for fuzzy integrals based on the classical one. Moreover, a generalized Minkowski’s
inequality for fuzzy integrals is introduced. To illustrate the proposed inequalities some examples are solved.

Acknowledgments

This paper has been partially supported by the Research Group of Dynamical Systems, Shahid Bahonar
University of Kerman, Iran.

References

[1] Chen, T.Y., H.L. Chang, and G.H. Tzeng, Using fuzzy measures and habitual domains to analyze the public
attitude and apply to the gas taxi policy, European Journal of Operational Research, vol.137, pp.145–161, 2002.

[2] Chen, X., Z. Jing, and G. Xiao, Nonlinear fusion for recognition using fuzzy integral, Communication in Nonlinear
Science and Numerical Simulation, vol.12, pp.823–831, 2007.
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