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Abstract

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable
subadditivity, and product measure axioms. Different from randomness and fuzziness, uncertainty theory
provides a new mathematical model for uncertain phenomena. A key concept to describe uncertain
quantity is uncertain variable, and expected value operator provides an average value of uncertain variable
in the sense of uncertain measure. This paper will prove that the expected value of monotone function
of uncertain variable is just a Lebesgue-Stieltjes integral of the function with respect to its uncertainty
distribution, and give some useful expressions of expected value of function of uncertain variables.
(©2010 World Academic Press, UK. All rights reserved.
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1 Introduction

When uncertainty behaves neither randomness nor fuzziness, we cannot deal with this type of uncertainty
by probability theory or fuzzy set theory. In order to deal with uncertainty in human systems, Liu [5]
founded an uncertainty theory in 2007 that is a branch of mathematics based on normality, monotonicity,
self-duality,countable subadditivity, and product measure axioms. In order to describe uncertain variable,
Liu [10] suggested the concept of first identification function and Liu [11] proposed the concept of second
identification function. Gao [2] gave some mathematical properties of uncertain measure. You [14] proved
some convergence theorems of uncertain sequence. The uncertainty theory has become a new tool to describe
subjective uncertainty and has a wide application both in theory and engineering. For the detailed expositions,
the interested reader may consult the book [10].

As an application of uncertainty theory, Liu [8] presented uncertain programming which is a type of
mathematical programming involving uncertain variables, and applied uncertain programming to system
reliability design, facility location problem, vehicle routing problem, project scheduling problem, finance,
control and soon. In addition, uncertain process was defined by Liu [6] as a sequence of uncertain variables
indexed by time or space. Furthermore, Liu [7] proposed uncertain calculus that is a branch of mathematics
for modelling uncertain processes through integral or differential equations involving uncertain variables. Li
and Liu [3] proposed uncertain logic and defined the truth value as the uncertain measure that the uncertain
proposition is true. After that, uncertain entailment was developed by Liu [9] as a methodology for calculating
the truth value of an uncertain formula via the maximum uncertainty principle when the truth values of other
uncertain formulas are given. Furthermore, Liu [7] proposed uncertain inference that is a process of deriving
consequences from uncertain knowledge or evidence via the tool of conditional uncertainty.

Expected value operator for uncertain variables has become an important role in both theory and practice.
This paper will discuss the expected value of function of uncertain variables, and prove that the expected value
of monotone function of uncertain variable is just a Lebesgue-Stieltjes integral of the function with respect
to its uncertainty distribution. This paper also gives some useful expressions of expected value of function of
uncertain variables via the inverse uncertainty distributions.
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2 Preliminary

Different from probability measure, capacity [1], fuzzy measure [12], possibility measure [15] and credibility
measure [4], Liu [5] proposed a concept of uncertain measure as follows.

Definition 1 (/5]) Let ' be a nonempty set, and let L be a o-algebra over I'. Each element A € L is called
an event. A set function M : L — [0,1] is called an uncertain measure if (i) M{T'} = 1; (it) M{A1} < M{A3}
whenever Ay C Ag; (1ii) M{A} + M{A°} = 1; (iv) M{U;2; Ai} < 52, M{A;}.

Definition 2 (/5]) An uncertain variable is a measurable function from an uncertainty space (I'y L, M) to the
set of real numbers, i.e., for any Borel set B of real numbers, the set

{¢eBy={yeTl|&(n)eB} (1)
18 an event.

The uncertainty distribution ®(z) : 8 — [0, 1] of an uncertain variable ¢ is defined by

O(x) =M{y €T | £() < o} (2)

An uncertainty distribution @ is said to be regular if its inverse function ®~!(«) exists and is unique for each
a € (0,1).

Definition 3 (/5]) Let & be an uncertain variable. Then the expected value of & is defined by

—+oo

0
Bl = [ g = rjar - / M{e < r}dr 3)

provided that at least one of the two integrals is finite.

Theorem 1 (/5]) Let & be an uncertain variable with uncertainty distribution ®. If the expected value E[€]

exists, then
—+o0

Blgl = [ ado) (1)

—0oQ

Theorem 2 ([10]) Let £ be an uncertain variable with regular uncertainty distribution ®. If the expected
value E[€] exists, then

Bl = [ o7 (a)de. (5)

3 Function of Single Uncertain Variable

It is well known that the expected value of function of random variable is just the Lebesgue-Stieltjes integral
of the function with respect to its probability distribution. For fuzzy variables, Zhu and Ji [16] and Xue et.
al. [13] proved the analogous result when the function is monotone. This paper will show that the expected
value of monotone function of uncertain variable is just the Lebesgue-Stieltjes integral of the function with
respect to its uncertainty distribution.

Theorem 3 Let £ be an uncertain variable with uncertainty distribution ®. If f(x) is a monotone function
such that the the expected value E[f(£)] exists, then

+o0
B = [ ). ©)

Proof: We first suppose that f(z) is a monotone increasing function. Since the expected value E[f(£)] is
finite, we immediately have

lim M{E = y}f(y) = Tim (1- 8(1)/() =0, (")

+oo
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lim M{& <y}f(y) = lim @(y)f(y) =0. (8)
Y——00 Y——00
Assume that a and b are two real numbers such that a < 0 < b. The integration by parts produces

b b FHo)
/ M{F(€) > r}dr — / M > £~ (r)}dr = / M{e > y}df(y)
0 0 £1(0)
£71(b)
=MUE 2 OO - [ ez y)
f=1(0)
f71(b)
—M{E > SO0 + / F(5)dd(y).
f=1(0)
Using (7) and letting b — +00, we obtain

“+oo +oo

M{F(E) > ridr = / F(5)dd(y). (9)

0 £=1(0)

In addition,

£710)

0 0
/ M{F(E) < rdr = / M{e < f(r))dr = / M{E < y}df(y)
a a f

~*(a)

)

= M{E < FHQM (M @) - / F(y)AM{E < )
f=a)
)
= M{E < F V(M a) - / F(y)dD(y).
f=1(a)
Using (8) and letting a — —oo, we obtain
0 F71(0)
[ M{F() < r}dr = — / F(y)dB(y). (10)

It follows from (9) and (10) that

— 00 0 —+oo
Elf(€)] = / M{F(©) > r}dr / M{F(E) < r}dr = / F(y)dB(y).

If f(z) is a monotone decreasing function, then — f(x) is a monotone increasing function. Hence

+oo +oo
Bl (€)] = —E[- (&) = - / — f(x)dD(x) = / F(5)dd(y).

The theorem is verified.

Example 1: Let £ be a positive linear uncertain variable £(a,b). Then its uncertainty distribution is
O(z) = (x—a)/(b—a) on [a,b]. Thus

b 2, 32
El€?] :/ 224 () = %—i—ab.

Example 2: Let £ be a positive linear uncertain variable £(a,b). Then

b ex —expla
Elexp(£)] = / exp(w)d®(w):%'
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Theorem 4 Assume £ is an uncertain variable with reqular uncertainty distribution ®. If f(x) is a strictly
monotone function such that the expected value E[f(§)] exists, then

Blf(€)] = / F(@ (@) do (11)

Proof: Suppose that f is a strictly increasing function. It follows that the uncertainty distribution of f(&) is
described by

T a) = f(@ ' (a)).

By using Theorem 2, the equation(11) is proved. When f is a strictly decreasing function, it follows that the
uncertainty distribution of f(€) is described by

Ul a) = f(@7H(1 —a)).

By using Theorem 2 and the change of variable of integral, we obtain the equation (11). The theorem is
verified.

Example 3: Let £ be a nonnegative uncertain variable with regular uncertainty distribution ®. Then

E[V/E = /0 Vo 1(a)da. (12)

Example 4: Let & be a positive uncertain variable with regular uncertainty distribution ®. Then

o[ - [ [ s -

4 Function of Multiple Uncertain Variables

Now we assume that &1,&, -+ ,&, are uncertain variables and f is a measurable function. What is the
expected value of f(&1,&2, -+ ,&,)? In order to answer this question, let us introduce a lemma.
Lemma 1 ([10]) Let &1,&2, -+ , &, be independent uncertain variables with reqular uncertainty distributions
Dy, Do, -+, Dy, respectively. If f: R — R is a strictly increasing function, then
ng(£17§2a"'7£n) (14)
s an uncertain variable with uncertainty distribution
U(x) = sup min ®;(z;), xRN (15)
fla1,@2, an)=a 1SIS0
whose inverse function is
T Ha) = f(@7 (), 25 (@), -+, 0, (@), O0<a<l. (16)
Theorem 5 Assume £1,&2,- -+, &, are independent uncertain variables with reqular uncertainty distributions
Dy, Do, -+, Dy, respectively. If f : R — R is a strictly monotone function, then the uncertain variable

&= f(&,8&, - ,&n) has an expected value

1
Bl = / F@7H0), 51 (a), - B3 (0))da (17)

provided that the expected value E[€] exists.
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Proof: Suppose that f is a strictly increasing function. It follows from Lemma 1 that the uncertainty
distribution of ¢ is described by

U a) = f(@7 (), @3 (), @5 ().

Since the expected value E[€] exists, it follows from Theorem 2 that

1 1
Bl = [ v iada= [ F@7 @), 8" @) 8 (@)da
0 0
which is just (17). When f is a strictly decreasing function, the uncertainty distribution of £ is described by
\I/_l(a) = f(q>1_1(1 - a)7‘1)2_1(1 - Oé), o v(I);l(l - Oé))

Since the expected value E[€] exists, it follows from Theorem 2 and the change of variable of integral that
(17) holds. The theorem is proved.

Example 5: Let £ and n be independent and nonnegative uncertain variables with regular uncertainty
distributions ® and W, respectively. Then

1
Bign) = [ 7@ (@)da. (18)
0
Lemma 2 ([10]) Let &,&a,- - , &, be independent uncertain variables with reqular uncertainty distributions
Oy, Dy, -, D, respectively. If the function f(x1,x2, - , &) is strictly increasing with respect to x1, T2, , Tm
and strictly decreasing with Tp,41,Tm12, "+ , Ty, then &€ = f(&1,&2, -+ ,&,) is an uncertain variable with un-
certainty distribution
U(x) = in ®;(x; i 1—®&;(a;
() f(ml,mf,l.l.P,rn) ) (12%1;” () A mﬂ%?gn( z(xz))) , TER

whose inverse function is

\I/_l(a):f(q);l(a),...’Q) ( ) cbmh—l( a),...7q>;1(1_a))7 0<ac<l

Theorem 6 Assume £1,&2,--- ,&, are independent uncertain variables with regular uncertainty distribu-
tions @1, Dy, -+, D, respectively. If the function f(x1,2a, - - ,x,) is strictly increasing with respect to
X1,To, Ty and strictly decreasing with Tpyy41, Tmio, - ,Tn, then & = f(&1,&,--+ ,&,) has an expected
value,
1
—1 — _

0= [ F@7 ) B0, 07k, (1= 0. 87 (1 —a))da (19)
provided that the expected value E[€] exists.
Proof: Since the function f(z1,z2,---,2,) is strictly increasing with respect to 1, xs,- -+ , 2, and strictly
decreasing with 41, Tm+2, - , Tn, it follows from Lemma 2 that the uncertainty distribution of £ is described
by

U a) = f(@7(a), -, @50 (@), 2L (1 —a), -, @M (1 — a)).

By the existence of expected value FE[¢] and Theorem 2, we get
Bl = [ 9 e = [ JOT @), 05 ), 8k - ) 7 @)

The theorem is proved.

Example 6: Let £ and 1 be two independent positive uncertain variables with regular uncertainty distribu-
tions ® and W, respectively. It follows from Theorem 6 that

o[- [ e
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5 Conclusion

This paper proved that the expected value of monotone function of single uncertain variable is just a Lebesgue-
Stieltjes integral of the function with respect to its uncertainty distribution. This paper also gave some useful
expressions of expected value of function of multiple uncertain variables via inverse uncertainty distributions.
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