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Abstract 

 
 By normalizing the values of its pixels with respect to the length of the gray scale used, a monochromatic image is 

interpreted as a fuzzy relation R. We find the GEFS (resp. SEFS) of R, that is the greatest (resp. smallest) eigen fuzzy 
set with respect to the max-min (resp. min-max) operator. The reconstruction of R is achieved via a genetic algorithm 
whose initial population of chromosomes is formed by random gray images. The fitness function is based on the GEFS 
and SEFS of R and of each  image-chromosome: the reconstructed image is the image-chromosome with the highest 
fitness v alue. I n o ur tests w e h ave u sed 3 50 i mages o f s izes 2 56 × 256 ex tracted f rom t he S IDBA i mage d ataset 
consisting of 10000 images (www.cs.cmu.edu/~cil/ vision.html). 
© 2010 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
It is well known in literature the usage of fuzzy relation calculus for image processing  [3, 4, 5, 8, 9, 10, 11]. Indeed a 
monochromatic image R of s izes N×N can be interpreted as a fuzzy relation R : (x,y)∈{1,…,N}× {1,…,N}→[0,1], 
R(x,y)=P(x,y)/L being the normalized value of the pixel P(x,y) with respect to the length L of the gray scale used. 

The concept of eigen fuzzy set has been widely dealt in l iterature [1, 2 , 5 , 13, 14, 17, 18]. The greatest eigen 
fuzzy set (for short, GEFS) of R with respect to the max-min operator [1, 15, 16] and the smallest eigen fuzzy set (for 
short, SEFS) of R with respect to the min-max operator have been applied to problems of image information retrieval 
[3] and image reconstruction [8, 9]. 

It i s kno wn the u sage o f genetic a lgorithms for fuzzy coding [14]. We r econstruct a monochromatic image o f 
sizes N × N by using its GEFS and SEFS. In [8] the authors adopt essentially two methods: the first one use a convex 
combination o f max-min and min-max operators and the second one uses permutation fuzzy matrices. The authors 
prove that the first method is more efficient than the second one and a high number of eigen fuzzy sets obtained after 
many iterations are involved as well. In our study we reconstruct a monochromatic image of sizes N×N by using a 
genetic algorithm whose chromosomes are random monochromatic images of sizes N×N. We calculate the GEFS and 
SEFS of the original image and of each image-chromosome, afterwards we define the fitness function as the inverse 
of the sum o f the quadratic differences of the membership values of both GEFS and SEFS and cl early we choose 
image-chromosome with the greatest fitness value. 

This paper is organized as follows: in Section 2 we show how to calculate GEFS and SEFS of a square fuzzy 
relation, in Section 3 we describe the genetic algorithm used in the image reconstruction, in Section 4 we describe the 
main tool of [8], in Section 5 we discuss the results on two sample gray images of 256×256 sizes and a comparison 
with the method  of  Section 4  is also presented. Section 6 contains concluding comments. 
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2 Eigen Fuzzy Sets of a Fuzzy Relation 
 
Let R be a fuzzy relation defined on a finite referential set X, that is R∈F(X × X) = {S :X×X→[0,1]}, and A be a 
fuzzy set of X, that is A∈F(X)={B:X→ [0,1]}, such that 

R ο A = A (1) 

where “ο” s tands for the max-min operator and A is said an eigen fuzzy set of R with respect to such operator. In 
terms of membership functions, the Equation (1) is read as 

A(y) = max x∈X {min{A(x),R(x,y)}} 
(2) 

for all x,y∈X. Let Ai∈F(X), i=1,2,… be defined recursively by 

A1(z) = max x∈X R(x,z)  ∀z∈X,  A2= R ο A1,…, An+1 = R ο An,…. 
(3) 

In accordance to the known literature (e.g., [1], [15], [16]), then there exists an integer p∈{1,…,cardX} such that 
Ap+1 = R ο Ap = Ap, further Ap(x) ≥ A(x) for all x∈X and  A∈F(X) satisfying Equation (1), that is Ap is the GEFS of R. 
We can also consider the following equation, dual of (1), defined as 

R • A = A (4) 

where “ •” d enotes t he min-max ope rator. B y du alizing t he E quation ( 2), i n t erms of  membership f unctions, t he 
Equation (4)  is read as 

A(y) = min x∈X {max{A(x),R(x,y)}} 
(5) 

for all x,y∈X and A is defined to be an eigen fuzzy set of R with respect to the min-max operator. Let Bi∈F(X), 
i=1,2,… be defined recursively by 

                             B1(z) = min x∈X R(x,z)  ∀z∈X,  B2= R • B1,…, Bn+1 = R • Bn,….                                           (6) 

By duality, it is  easily seen that there exists an integer q∈{1,…,card X} such that B q+1 = R • Bq = Bq, further 
Bq(x) ≤ A(x) for all x∈X and A∈F(X) satisfying Equation (4), that is Bq is the SEFS of R. The following illustrative 
example makes clear the above concepts. 

 
Example:  Let cardX = 8 and R∈F(X×X) be the following fuzzy relation: 
 

0.6 0.7 0.4 0.3 0.5 0.6 0.3 0.6

0.8 1.0 0.3 0.5 0.2 0.8 0.0 0.3

0.7 0.8 0.2 0.4 0.6 0.4 0.4 0.2

1.0 0.5 0.2 0.3 0.6 1.0 0.1 0.1

0.4 0.9 0.4 0.5 0.1 0.9 0.2 0.5

0.9 0.6 0.2 0.2 0.4 0.7 0.3 0.4

0.5 0.5 0.2 0.3 0.3 0.5 0.2 0.3

0.4 0.6 0.3 0.2 0.1 0.2 0.1 0.1

R =















 
 
 
 
 
  



. 

 
     

 
By using the sequence (3), we have that A2 is the GEFS of R since 

A1 = (1.0, 1.0, 0.4, 0.5, 0.6, 1.0, 0.4, 0.6),  

A2 = (0.8, 1.0, 0.4, 0.5, 0.5, 0.8, 0.4, 0.6), 

A3 = R ο A2 = A2. 

By using the sequence (6), we have that  B1 is the SEFS of R since 

B1 = (0.4,0.5,0.2,0.2,0.1,0.2,0.1,0.1), B2 = R • B1 = B1. 
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3 The Genetic Algorithm and its Application to Image Reconstruction 
 
A genetic a lgorithm (for short, GA)  is generally used to  approximate global solutions of an optimization problem. 
The genetic algorithms are a p articular class of evolutionary algorithms that simulate techniques based on biological  
evolution t heory such a s inheritance, mutation, selection and crossover. In a G A we c onsider a  po pulation of  
candidate solutions called individuals or phenotypes, that evolve toward the best solution of an optimization problem. 
The basic chromosome representing an individual is formed from a binary string, however it is possible to use other 
encodings. The initial population of chromosomes is  generated r andomly a nd a  fitness value i s calculated i n each 
generation for each individual of the population. By basing on this fitness value, multiple individuals are 
stochastically selected from the current population and modified with the crossover and mutation operators and thus 
they form a new population, which in turn is used in the next iteration of the algorithm. Generally speaking, the GA 
terminates when either a maximum number of generations has been produced or a satisfactory fitness level has been 
reached for the population. In a GA the main step is the definition of a solution encoding, that is a chromosome must 
contain information about the solution that it represents. The encoding  (binary strings, integers, real numbers, parsing 
trees, etc.) depends mainly on the problem under study.     

In our method the population of chromosomes is formed by random images and the gene of a chromosome is a 
pixel, which assumes a value belonging to the set {0,1,…,L} (in our tests we assume L = 255).  The comparison of 
the original image R with the k-th image-chromosome Rk is made with the following distance: 

( )2 2
k k

x X
( , )    (A(x)-A (x)) (B(x)-B (x))kd R R

∈

= +∑  (7) 

where X ={1,2,…,N}, k∈{1,…, M}, being M the cardinality of the initial population of the image-chromosomes, A 
and  B (resp. Ak and Bk) are the GEFS and SEFS of the fuzzy relation R (resp. Rk) obtained by normalizing the pixels 
of the original image (resp. the k-th image-chromosome Rk of the population). We applied the distance (7) to derive 
the following fitness function F: Rk  [0,∞), k∈{1,…, M}, defined as   

k
1(R )  

( , )k

F
d R R

= . (8) 

In the population of the mating pool we have used the roulette-wheel selection method: the probability PS(Rk) of 
the k-th image-chromosome Rk is given by 

  

1

( )
( )

( )

k
s k M

j
j

F R
P R

F R
=

=

∑
. 

(9) 

Afterwards the crossover operator is applied to the population of the mating pool for the generation of a child 
from t wo pa rent c hromosomes with pr obability p cross. Figure 1 s hows how we ap ply the single p oint fixed-lenght 
bidimensional array crossover operator to two image-chromosomes in the mating pool. 

                           
 
 

Figure 1: The single point fixed-length bidimensional array crossover operator 
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Successively we ap ply a mutation flip o perator t o each  ch romosome with probability p mut, such ope rator 
performs t he r andom c hange o f t wo ge nes i n a  c hromosome. During t he s election p rocess, we ch oose t he 
chromosomes with the hi ghest f itness value (8) i n the mating pool. The f itness, selection, c rossover a nd mutation 
operators ar e i terated u ntil th e n umber “ Iter” o f ite rations is  e qual to  a  g iven maximum v alue “I(Max)”. The 
procedure is presented in Figure 2 and is given in the following pseudocode: 

Calculate GEFS and SEFS of the fuzzy relation R (input image)  
Create the initial population of chromosomes Rk, k=1,…, M 
While Iter = Number of Iterations ≤ I(Max) = Max Number of Iterations 

For each Rk in the population: 
 - Calculate GEFS and SEFS of the fuzzy relation Rk 

- Calculate the fitness value F(Rk) 
- Calculate the selection probability value PS(Rk) 

Next 
- Populate the mating pool 
- In the mating pool apply the bidimensional array crossover operator with  
   probability pcross  to each couple (Rk,Rh) 
- In the mating pool apply the mutation flip operator with probability pmut to each Rk 

 End while 
 

G
E
F
S

S
E
F
S

Original image Initial population of Image-Chromosomes
G
E
F
S

S
E
F
S

Selection

Calculate Fitness

Crossover

Mutation

Iter
<I(Max)

StopYes No

 
Figure 2: Design of the image reconstruction process 

 
Now we consider the computational complexity of our GA: if the image to be reconstructed has sizes N × N and 

we ar e f aced with a i nitial p opulation o f M i mage-chromosomes, we have a co mputational co mplexity eq ual t o 
O(Iter×M×N×N) after a number Iter (≤ I(Max)) of iterations.  

 
4 A Convex Combination of Max-min and Min-max Operators 
 
For sake of completeness, here we describe the main tool of [8]. Indeed, let X be a finite referential set, R∈F(X × X), 
A∈F(X) and  λ∈[0,1] such that 

                                                        λ·(R ο A) + (1 - λ)·(R • A) = A,                                                                     (10) 
that is we consider a convex combination of max-min and min-max operators and A is said to be an eigen fuzzy set of  
R with respect to such convex combination. Note that if λ = 0 (resp. λ = 1), Equation (10) becomes Equation (1) (resp. 
Equation (4)). For R given, we a ssume A as unknown in Equation (10). Then Theorem 4 of  [8] a ssures that t here 
exists the smallest eigen fuzzy set A with respect to the above convex combination defined pointwise as  

                                                     )(lim)( xAxA nn ∞→=                                                               (11) 
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for all x∈X, where the sequence of fuzzy sets {An : n = 0,1,2…} is defined from the following recursive formula: 
                                 A0(x) = 0 for all x∈X, An+1 = λ·(R ο An) + (1 - λ)·(R •An)   for  n = 0,1,2,….                   (12) 
Dually one can obtain the greatest eigen fuzzy set with respect to the above convex combination. Let R be a 

fuzzy relation representing an original image and suppose that A is a known eigen fuzzy set of R with respect to the 
convex co mbination ( 10). T he i mage r econstruction co nsists t heoretically i n t he es timation o f a fuzzy r elation 
S∈F(X×X) satisfying the Equation (10). Unfortunately Theorem 4 of [8] is not constructive, that is it guarantees only 
the existence of such eigen fuzzy set A and does not give a way how to find A starting from R. Then the authors of [8] 
assume that R satisfies the following system of equations  

                                                An = λn·(R ο An) + (1 - λn)·(R • An)     for  n = 0,1,2…,t                                      (13) 
where λn∈[0,1] is assigned and An  is defined from formula (12) for n = 0,1,2…,t. If S∈F(X × X) is an initial random 
fuzzy relation, then one can see to minimize the following cost function 

          ( ) ( )( ) ( ) ( )( ){ }
2

n
1

( ) oA 1
t

n n n n
n x X

Q S A x S x S A xλ λ
= ∈

  = − ⋅ + − ⋅ •∑ ∑                     (14) 

by means of the gradient method. Indeed the following iterative formulas are useful: 

          ( ) ( ) ( )
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                           (15) 

where 'x , y∈X, Q(i) =Q(S(i)), “i” is the parameter which denotes the number of iterations, α is a learning rate and  
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              (16) 

Furthermore the first partial derivative at second member of (16) is given from 
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         (17) 

where the functions φ and ψ are defined, for all a,b∈[0,1], as φ(a,b)=1 if a ≥ b, φ(a,b)= 0 if a < b and ψ(a,b)=1 if a ≤ b, 
ψ(a,b)=0 if a > b. Dually one can establish a s imilar formula for the second partial derivative at second member of 
(16). Of course the process is performed until the inequality │Q (j+1)  - Q(j) │< ε is satisfied for some index j, ε being an 
assigned threshold. The best results are obtained by setting t=16 or t=8 for a monochromatic image of sizes 256×256. 
In [8] the authors define also another method based on permutation fuzzy matrices, which is less efficient with respect 
to the above method and hence here not presented.  

 
5 Results of the Experiments 
 
We h ave used 3 50 images of  s izes 256× 256 e xtracted f rom the well known S IDBA i mage d ataset 
(http://www.cs.cmu.edu/~cil/vision.htm ) consisting o f 10000 i mages. For our e xperiments we have i mplemented a  
C++ project with the C++ library class GALIB (

l
http://lancet.mit.edu/ga/dist/). For brevity, we show our results only 

for the two  images “Lena” and  “Bird”. In our experiments we put pcross = 0.6 and  pmut =  0.01; furthermore we utilize 
several values of M and I(Max). For the reconstructed image S (= Rk for some k∈{1,2,…,M}), we give the classical 
Peak Signal to Noise Ratio (PSNR), calculated with respect to the original image R, as 

10
255( , ) 20log

( , )
PSNR R S

MSE R S

 
=   

 
  (18) 

where MSE(R,S) is the Mean Square Error defined as 

[ ]2( , ) ( , )
( , )

256 256
x X y X

R x y S x y
MSE R S ∈ ∈

−
=

×

∑ ∑
 

(19) 

being x,y∈X={1,2,…,256}. In Table 1 we show the MSE(R,S) and PSNR(R,S) obtained for the gray image “Lena” 
with values of M=10, 40, 100 image-chromosomes and  I(Max)=103, 5×103, 104, 5×104, 105. 
 

http://www.cs.cmu.edu/~cil/vision.html�
http://lancet.mit.edu/ga/dist/�
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Table 1:  The values of MSE(R,S) and PSNR(R,S) obtained for “Lena” 

 M=10 M=40 M=100 
I(Max) MSE(R,S) PSNR(R,S) MSE(R,S) PSNR(R,S) MSE(R,S) PSNR(R,S) 

103 6808.95 9.80 6347.44 10.10 5878.32 10.43 
5×103 6046.78 10.32 5411.31 10.80 3287.01 12.96 

104 5401.91 10.81 4909.99 11.22 1521.46 16.31 
5×104 3788.76 12.34 3006.63 13.35 1098.43 17.72 

105 2347.88 14.42 1675.90 15.89 751.76 19.37 

 
Figure 3a i s the o riginal i mage “Lena”. T he Figures 3 b, 3c, 3 d, 3 e s how t he r ecostructed i mages S for t he 

respective v alues o f  M =10 an d I (Max)=103, M= 40 an d I (Max)=104, M =40 an d I (Max)=5×104, M =100 a nd 
I(Max)=105. 

 

                                                    
           

           Figure 3a: Lena                          Figure 3b: M=10, I(Max)=103                Figure 3c: M=40, I(Max)=104 
 

                                    
      

        Figure 3d: M=40, I(Max)=5×104                      Figure 3e: M=100, I(Max)=105 
 

 
Figure 4: Plots of MSE(R,S) for M=10, 40, 100 under our GA and the method of [8] (Lena) 

      



Journal of Uncertain Systems, Vol.4, No.3, pp.171-180, 2010                                                                                                           

 

177 

      For several values of M, Figure 4 shows the trend of the MSE(R,S) obtained with respect to the iteration number 
Iter. For comparison, the MSE(R,S) obtained with the method of Section 4 is also plotted, in which we have assumed 
the same parameters of [8], that is λn = n/(t-1) for n=0,1,…,t-1,  t=16, α = 0.005 and ε = 10-8. By using an i teration 
number Iter ≥ 6×104 and M=100, in our GA we have an MSE(R,S) smaller than 103 while the method of Section 4 
gives an MSE(R,S) greater than 103.  Figure 5 (resp. Figure 6) contains the graphs of the GEFS (resp. SEFS) obtained 
for the original R of Figure 3a and for the reconstructed image S of Figure 3e. The distance is calculated with (7) and 
we have that d(R,S) = 0.987. 

 

 
                          Figure 5: Plots of GEFS A for “Lena” (cfr. Figure 3a) and GEFS Ak for the recon-structed  

                                  image S=Rk under  M=100 and I(Max)=105 (cfr. Figure 3e) 
 

 
Figure 6: Plots of SEFS B for “Lena” (cfr. Figure 3a) and SEFS Bk for the reconstructed  

                                   image S=Rk under  M=100 and I(Max)=105 (cfr. Figure 3e) 
 
In Table 2 we show the MSE(R,S) and PSNR(R,S) obtained for the gray image “Bird” with values of M=10, 40, 

100 i mage-chromosomes an d I (Max)=103, 5 ×103, 104, 5 ×103, 105. I n corrispondence of t he value M  o f th e in itial 
population, Figure 8 shows the trend of the MSE(R,S) obtained with respect to the iteration number I(Max).  

Figure 7a i s t he o riginal i mage “Bird”. T he F igures 7 b, 7 c, 7 d, 7 e s how t he r ecostructed i mages S f or t he 
respective values o f M =10 an d I (Max)=103, M =40 an d I (Max)=104, M =40 an d I (Max)=5×104, M =100 an d 
I(Max)=105. Under t he s ame p arameters u sed f or designing F igure 4, Fi gure 8 s hows t hat t he M SE(R,S) i n o ur 
method is always smaller than that one calculated with the method of Section 4, in particular we have that MSE(R,S) 
≤ 500 if I(Max)≥105. Figure 9 (resp. Figure 10) gives the related plots of GEFS (resp. SEFS) of the original image R 
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of  F igure 7a  an d of the reconstructed image S of  F igure 7e. The distance is calculated with (7) and we have that  
d(R,S) = 0.570. 

 
Table 2: The values of MSE(R,S) and PSNR(R,S) obtained for “Bird” 

 M=10 M=40 M=100 
I(Max) MSE(R,S) PSNR(R,S) MSE(R,S) PSNR(R,S) MSE(R,S) PSNR(R,S) 

103 6999.71 9.68 6454.91 10.03 5992.36 10.35 
5×103 6189.77 10.21 5781.24 10.51 3678.47 12.47 

104 5744.85 10.54 5249.05 10.93 1521.46 16.31 
5×104 3468.44 12.73 2648.12 13.90 879.14 18.69 

105 2169.70 14.77 1291.95 17.02 469.98 21.41 
 
 

                                                  
             

            Figure 7a: Bird                           Figure 7b: M=10, I(Max) =103                Figure 7c: M=40, I(Max)=104 

 

                                      
 

Figure 7d: M=40, I(Max)=5×104                                       Figure 7e: M=100, I(Max)=105 
 
 

 
Figure 8: Plots of  MSE(R,S) for M=10, 40, 100 under our GA and the method of [8] (Bird) 
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Figure 9: Plots of GEFS A for “Bird” (cfr. Figure 7a) and of GEFS Ak for the reconstructed image S=Rk under  

M=100 and I(Max)=105 (cfr. Figure 7e) 
 

 
Figure 10: Plots of SEFS A for “Bird” (cfr. Figure 7a) and of SEFS Ak for the reconstructed image S=Rk under  

M=100 and I(Max)=105 (cfr. Figure 7e) 
 

 
Figure 11: Plot of  MSE(R,S) with respect to the distance d(R,S) for the 350 reconstructed images S  by 

assuming  M=100 and  I(Max) =105 
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By using a  sample of  350 i mages of sizes 256×256 extracted from SIDBA image dataset, we ha ve p lotted i n 
Figure 11 the v alue o f t he MS E(R,S) with r espect t o t he d istance d (R,S) under t he a ssumptions M =100 a nd  
I(Max)=105. We o bserve t hat MS E(R,S) i ncreases i f the d istance d(R,S) i ncreases by resulting M SE(R,S) ≤ 103. 
Therefore we obtain better results than those ones presented in [8] by using in our GA a initial population of 100 
image-chromosomes and 105 iterations, with a computational complexity equal to O(105 × 100 × 256 × 256). 

 
6   Conclusions 
 
We have experimented a GA over 350 gray images of sizes 256 × 256 extracted from the well known SIDBA image 
dataset. Two types of eigen fuzzy sets (GEFS and SEFS) with respect to the max-min and the min-max operators are 
used for the calculation of the fitness value in the GA. We have used several values of the initial population of image-
chromosoms and we have assumed as reconstructed image that  image-chromosome with the greatest fitness value. In 
other words, we take the image-chromosome with its GEFS and SEFS very close to those ones of the original image.  
Our method gives better results with respect to the other method [8] based on a c ombination convex of both GEFS 
and SEFS. Other applications of the concepts here presented shall be made in future papers.  
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