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Abstract

Uncertainty theory is a branch of axiomatic mathematics for modeling human uncertainty. This paper
assumes that a system contains uncertain elements in the sense of uncertainty theory, and defines the risk
as the “accidental loss” plus “uncertain measure of such loss”. Uncertain risk analysis is also presented as
a tool to quantify risk via uncertainty theory. Finally, this paper discusses the tool of uncertain reliability
analysis.
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1 Introduction

Some information and knowledge are usually represented by human language like “about 100km”, “approx-
imately 39 ◦C”, “roughly 80kg”, “low speed”, “middle age”, and “big size”. How do we understand them?
How do we model them? Perhaps some people think that they are subjective probability or they are fuzzy
concepts. However, a lot of surveys showed that those imprecise quantities behave neither like randomness
nor like fuzziness. This fact provides a motivation to invent uncertainty theory that was founded by Liu [6]
in 2007 and refined by Liu [12] in 2010. In addition, Liu [8], Gao [3], You [15], Liu and Ha [13], and Peng
and Iwamura [14] also made significant contributions to this research area. Nowadays uncertainty theory has
become a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and
product measure axioms.

As an application of uncertainty theory, uncertain programming was proposed by Liu [10] in 2009. Some
scholars have applied uncertain programming to operations research, industrial engineering and management
science successfully.

An uncertain process is essentially a sequence of uncertain variables indexed by time or space. The study
of uncertain process was started by Liu [7] in 2008. Elementary renewal theorem and renewal reward theorem
were proved by Liu [12] in 2010. Canonical process, proposed by Liu [8] in 2009, is a Lipschitz continuous
uncertain process that has stationary and independent increments and every increment is a normal uncertain
variable. Uncertain calculus was then developed as a branch of mathematics that deals with differentiation
and integration of function of uncertain processes. Uncertain differential equation was proposed by Liu [7] in
2008 as a type of differential equation driven by canonical process. After that, an existence and uniqueness
theorem of solution of uncertain differential equation was proved by Chen and Liu [2] in 2010. Uncertainty
differential equations were also applied to finance, including uncertain stock models and uncertain insurance
models. In addition, Zhu [16] derived an optimal control policy when the system is characterized by an
uncertain differential equation.

Uncertain logic is a generalization of mathematical logic for dealing with uncertain knowledge via uncer-
tainty theory. The basic model is uncertain propositional logic designed by Li and Liu [5] in which the truth
value of an uncertain proposition is defined as the uncertain measure that the proposition is true. In addition,
uncertain entailment, developed by Liu [9] in 2009, is a methodology for calculating the truth value of an
uncertain formula via the maximum uncertainty principle when the truth values of other uncertain formulas
are given.
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Uncertain set theory was proposed by Liu [11] in 2010 as a generalization of uncertainty theory to the
domain of uncertain sets. Uncertain inference is a process of deriving consequences from uncertain knowledge
or evidence via the tool of conditional uncertain set. The first inference rule was proposed by Liu [11] in 2010.
Then Gao, Gao and Ralescu [4] extended the inference rule to the case with multiple antecedents and with
multiple if-then rules.

Uncertain statistics is a methodology for collecting and interpreting expert’s experimental data by un-
certainty theory. The study of uncertain statistics was started by Liu [12] in 2010 in which a questionnaire
survey for collecting expert’s experimental data was designed and a principle of least squares for estimating
uncertainty distributions was suggested.

Risk analysis and reliability analysis have been discussed widely in literature, for example, Bedford and
Cooke [1]. In this paper, the risk is defined as the “accidental loss” plus “uncertain measure of such loss”.
This paper will introduce a definition of risk index and provide some useful formulas for calculating risk index,
thus producing an uncertain risk analysis that is a tool to quantify risk via uncertainty theory. Uncertain
reliability analysis will be also presented as a tool to deal with system reliability via uncertainty theory.

2 Risk Index

A system usually contains uncertain factors, for example, lifetime, demand, production rate, cost, profit, and
resource. Risk index is defined as the uncertain measure that some specified loss occurs.

Definition 1 Assume a system contains uncertain variables ξ1, ξ2, . . ., ξn, and there is a loss function L such
that some specified loss occurs if and only if L(ξ1, ξ2, . . . , ξn) ≤ 0. Then the risk index is

Risk = M{L(ξ1, ξ2, . . . , ξn) ≤ 0}. (1)

Example 1: Consider a series system in which there are n elements whose lifetimes are independent uncertain
variables ξ1, ξ2, . . . , ξn with uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. Such a system fails if any
one element does not work. Thus the system lifetime

ξ = ξ1 ∧ ξ2 ∧ · · · ∧ ξn (2)

is an uncertain variable with uncertainty distribution

Ψ(x) = Φ1(x) ∨ Φ2(x) ∨ · · · ∨ Φn(x). (3)

If the loss is understood as the case that the system fails before time T , i.e.,

L(ξ1, ξ2, . . . , ξn) = ξ1 ∧ ξ2 ∧ · · · ∧ ξn − T, (4)

then the risk index is

Risk = M{L(ξ1, ξ2, . . . , ξn) ≤ 0} = M{ξ1 ∧ ξ2 ∧ · · · ∧ ξn ≤ T} = Φ1(T ) ∨ Φ2(T ) ∨ · · · ∨ Φn(T ). (5)

Example 2: Consider a parallel system in which there are n elements whose lifetimes are independent
uncertain variables ξ1, ξ2, . . . , ξn with uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. Such a system
fails if all elements do not work. Thus the system lifetime

ξ = ξ1 ∨ ξ2 ∨ · · · ∨ ξn (6)

is an uncertain variable with uncertainty distribution

Ψ(x) = Φ1(x) ∧ Φ2(x) ∧ · · · ∧ Φn(x). (7)

If the loss is understood as the case that the system fails before time T , i.e.,

L(ξ1, ξ2, . . . , ξn) = ξ1 ∨ ξ2 ∨ · · · ∨ ξn − T, (8)

then the risk index is

Risk = M{L(ξ1, ξ2, . . . , ξn) ≤ 0} = M{ξ1 ∨ ξ2 ∨ · · · ∨ ξn ≤ T} = Φ1(T ) ∧ Φ2(T ) ∧ · · · ∧ Φn(T ). (9)



Journal of Uncertain Systems, Vol.4, No.3, pp.163-170, 2010 165

Theorem 1 (Risk Index Theorem) Assume that ξ1, ξ2, . . . , ξn are independent uncertain variables with un-
certainty distributions Φ1,Φ2, . . ., Φn, respectively, and L is a strictly increasing function. If some specified
loss occurs if and only if L(ξ1, ξ2, . . . , ξn) ≤ 0, then the risk index is

Risk = α (10)

where α is the root of

L(Φ−1
1 (α),Φ−1

2 (α), . . . ,Φ−1
n (α)) = 0. (11)

Proof: It follows from the operational law that L(ξ1, ξ2, . . . , ξn) is an uncertain variable whose inverse
uncertainty distribution is

Ψ−1(α) = L(Φ−1
1 (α),Φ−1

2 (α), . . . ,Φ−1
n (α)).

Since Risk = M{L(ξ1, ξ2, . . . , ξn) ≤ 0} = Ψ(0), we get (10).

Theorem 2 (Risk Index Theorem) Assume that ξ1, ξ2, . . . , ξn are independent uncertain variables with un-
certainty distributions Φ1,Φ2, . . ., Φn, respectively, and L is a strictly decreasing function. If some specified
loss occurs if and only if L(ξ1, ξ2, . . . , ξn) ≤ 0, then the risk index is

Risk = α (12)

where α is the root of

L(Φ−1
1 (1− α),Φ−1

2 (1− α), . . . ,Φ−1
n (1− α)) = 0. (13)

Proof: It follows from the operational law that L(ξ1, ξ2, . . . , ξn) is an uncertain variable whose inverse
uncertainty distribution is

Ψ−1(α) = L(Φ−1
1 (1− α),Φ−1

2 (1− α), . . . ,Φ−1
n (1− α)).

Since Risk = M{L(ξ1, ξ2, . . . , ξn) ≤ 0} = Ψ(0), we get (12).

Theorem 3 (Risk Index Theorem) Assume that ξ1, ξ2, . . . , ξn are independent uncertain variables with un-
certainty distributions Φ1,Φ2, . . ., Φn, respectively, and the function L(x1, x2, . . . , xn) is strictly increasing
with respect to x1, x2, . . . , xm and strictly decreasing with respect to xm+1, xm+2, . . . , xn. If some specified
loss occurs if and only if L(ξ1, ξ2, . . . , ξn) ≤ 0, then the risk index is

Risk = α (14)

where α is the root of

L(Φ−1
1 (α), . . . ,Φ−1

m (α),Φ−1
m+1(1− α), . . . ,Φ−1

n (1− α)) = 0. (15)

Proof: It follows from the operational law that L(ξ1, ξ2, . . . , ξn) is an uncertain variable whose inverse
uncertainty distribution is

Ψ−1(α) = L(Φ−1
1 (α), . . . ,Φ−1

m (α),Φ−1
m+1(1− α), . . . ,Φ−1

n (1− α)).

Since Risk = M{L(ξ1, ξ2, . . . , ξn) ≤ 0} = Ψ(0), we get (14).

3 Hazard Distribution

Suppose that ξ is the lifetime of some system/element. Here we assume it is an uncertain variable with a
prior uncertainty distribution. At some time t, it is observed that the system/element is working. What is
the residual lifetime of the system/element? The following definition answers this question.
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Definition 2 Let ξ be a nonnegative uncertain variable representing lifetime of some system/element. If ξ
has a prior uncertainty distribution Φ, then the hazard distribution (or failure distribution) at time t is

Φ(x|t) =



0, if Φ(x) ≤ Φ(t)

Φ(x)

1− Φ(t)
∧ 0.5, if Φ(t) < Φ(x) ≤ (1 + Φ(t))/2

Φ(x)− Φ(t)

1− Φ(t)
, if (1 + Φ(t))/2 ≤ Φ(x),

(16)

that is just the conditional uncertainty distribution of ξ given ξ > t.

The hazard distribution is essentially the posterior uncertainty distribution just after time t given that it
is working at time t.

Theorem 4 (Conditional Risk Index Theorem) Consider a system that contains n elements whose uncertain
lifetimes ξ1, ξ2, . . . , ξn are independent and have uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. Assume
L is a strictly increasing function, and some specified loss occurs if and only if L(ξ1, ξ2, . . . , ξn) ≤ 0. If it is
observed that all elements are working at some time t, then the risk index is

Risk = α (17)

where α is the root of
L(Φ−1

1 (α|t),Φ−1
2 (α|t), . . . ,Φ−1

n (α|t)) = 0 (18)

where Φi(x|t) are hazard distributions determined by

Φi(x|t) =



0, if Φi(x) ≤ Φi(t)

Φi(x)

1− Φi(t)
∧ 0.5, if Φi(t) < Φi(x) ≤ (1 + Φi(t))/2

Φi(x)− Φi(t)

1− Φi(t)
, if (1 + Φi(t))/2 ≤ Φi(x)

(19)

for i = 1, 2, . . . , n.

Proof: It follows from Definition 2 that each hazard distribution of element is determined by (19). Thus the
conditional risk index is obtained by Theorem 1 immediately.

Theorem 5 (Conditional Risk Index Theorem) Consider a system that contains n elements whose uncertain
lifetimes ξ1, ξ2, . . . , ξn are independent and have uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. Assume
L is a strictly decreasing function, and some specified loss occurs if and only if L(ξ1, ξ2, . . . , ξn) ≤ 0. If it is
observed that all elements are working at some time t, then the risk index is

Risk = α (20)

where α is the root of
L(Φ−1

1 (1− α|t),Φ−1
2 (1− α|t), . . . ,Φ−1

n (1− α|t)) = 0 (21)

where Φi(x|t) are hazard distributions determined by (19) for i = 1, 2, . . . , n.

Proof: It follows from Definition 2 that each hazard distribution of element is determined by (19). Thus the
conditional risk index is obtained by Theorem 2 immediately.

Theorem 6 (Conditional Risk Index Theorem) Consider a system that contains n elements whose uncertain
lifetimes ξ1, ξ2, . . . , ξn are independent and have uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. Assume
L(x1, x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect to
xm+1, xm+2, . . . , xn, and some specified loss occurs if and only if L(ξ1, ξ2, . . . , ξn) ≤ 0. If it is observed that
all elements are working at some time t, then the risk index is

Risk = α (22)
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where α is the root of

L(Φ−1
1 (α|t), . . . ,Φ−1

m (α|t),Φ−1
m+1(1− α|t), . . . ,Φ−1

n (1− α|t)) = 0 (23)

where Φi(x|t) are hazard distributions determined by (19) for i = 1, 2, . . . , n.

Proof: It follows from Definition 2 that each hazard distribution of element is determined by (19). Thus the
conditional risk index is obtained by Theorem 3 immediately.

4 Boolean System

Many real systems may be simplified to a Boolean system in which each element (including the system itself)
has two states: working and failure. This section provides a risk index theorem for such a system.

We use ξ to express an element and use a to express its reliability in uncertain measure. Then the element
ξ is essentially an uncertain variable

ξ =

{
1 with uncertain measure a

0 with uncertain measure 1− a
(24)

where ξ = 1 means the element is in working state and ξ = 0 means ξ is in failure state.
Assume that X is a Boolean system containing elements ξ1, ξ2, . . . , ξn. Usually there is a function f :

{0, 1}n → {0, 1} such that
X = 0 if and only if f(ξ1, ξ2, . . . , ξn) = 0, (25)

X = 1 if and only if f(ξ1, ξ2, . . . , ξn) = 1. (26)

Such a Boolean function f is called the truth function of X.

Example 3: For a series system, the truth function is a mapping from {0, 1}n to {0, 1}, i.e.,

f(x1, x2, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn. (27)

Example 4: For a parallel system, the truth function is a mapping from {0, 1}n to {0, 1}, i.e.,

f(x1, x2, . . . , xn) = x1 ∨ x2 ∨ · · · ∨ xn. (28)

Example 5: For a k-out-of-n system, the truth function is a mapping from {0, 1}n to {0, 1}, i.e.,

f(x1, x2, . . . , xn) =

{
1, if x1 + x2 + · · ·+ xn ≥ k

0, if x1 + x2 + · · ·+ xn < k.
(29)

For any system with truth function f , if the loss is understood as the system failure, i.e., X = 0, then the
risk index is

Risk = M{f(ξ1, ξ2, . . . , ξn) = 0}. (30)

Theorem 7 (Risk Index Theorem for Boolean System) Assume that ξ1, ξ2, . . . , ξn are independent elements
with reliabilities a1, a2, . . . , an, respectively. If a system contains ξ1, ξ2, . . . , ξn and has truth function f , then
the risk index is

Risk =


sup

f(x1,x2,...,xn)=0

min
1≤i≤n

νi(xi), if sup
f(x1,x2,...,xn)=0

min
1≤i≤n

νi(xi) < 0.5

1− sup
f(x1,x2,...,xn)=1

min
1≤i≤n

νi(xi), if sup
f(x1,x2,...,xn)=0

min
1≤i≤n

νi(xi) ≥ 0.5
(31)

where xi take values either 0 or 1, and νi are defined by

νi(xi) =

{
ai, if xi = 1

1− ai, if xi = 0
(32)

for i = 1, 2, . . . , n, respectively.
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Proof: Since ξ1, ξ2, . . . , ξn are Boolean uncertain variables and f is a Boolean function, the equation (31)
follows from Risk = M{f(ξ1, ξ2, . . . , ξn) = 0} immediately.

Example 6: Consider a series system having uncertain elements ξ1, ξ2, . . . , ξn with reliabilities a1, a2, . . . , an,
respectively. Note that the truth function is

f(x1, x2, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn. (33)

It follows from the risk index theorem that the risk index is

Risk = (1− a1) ∨ (1− a2) ∨ · · · ∨ (1− an). (34)

Example 7: Consider a parallel system having uncertain elements ξ1, ξ2, . . . , ξn with reliabilities a1, a2, . . . , an,
respectively. Note that the truth function is

f(x1, x2, . . . , xn) = x1 ∨ x2 ∨ · · · ∨ xn. (35)

It follows from the risk index theorem that the risk index is

Risk = (1− a1) ∧ (1− a2) ∧ · · · ∧ (1− an). (36)

Example 8: Consider a k-out-of-n system having ξ1, ξ2, . . . , ξn with reliabilities a1, a2, . . . , an, respectively.
Note that the truth function is

f(x1, x2, . . . , xn) =

{
1, if x1 + x2 + · · ·+ xn ≥ k

0, if x1 + x2 + · · ·+ xn < k.
(37)

It follows from the risk index theorem that the risk index is

Risk = “the kth smallest value of 1− a1, 1− a2, . . . , 1− an”. (38)

5 Uncertain Reliability Analysis

Uncertain reliability analysis is a tool to deal with system reliability via uncertainty theory. Note that uncer-
tain reliability analysis and uncertain risk analysis have the same root in mathematics. They are separately
treated for application convenience in practice rather than theoretical demand.

Definition 3 Assume a system contains uncertain variables ξ1, ξ2, . . . , ξn, and there is a function R such
that the system is working if and only if R(ξ1, ξ2, . . . , ξn) ≥ 0. Then the reliability index is

Reliability = M{R(ξ1, ξ2, . . . , ξn) ≥ 0}. (39)

Theorem 8 (Reliability Index Theorem) Assume ξ1, ξ2, . . . , ξn are independent uncertain variables with un-
certainty distributions Φ1,Φ2, . . ., Φn, respectively, and R is a strictly increasing function. If some system is
working if and only if R(ξ1, ξ2, . . . , ξn) ≥ 0, then the reliability index is

Reliability = α (40)

where α is the root of

R(Φ−1
1 (1− α),Φ−1

2 (1− α), . . . ,Φ−1
n (1− α)) = 0. (41)

If it is observed that all elements are working at some time t, then α is the root of

R(Φ−1
1 (1− α|t),Φ−1

2 (1− α|t), . . . ,Φ−1
n (1− α|t)) = 0 (42)

where Φi(x|t) are hazard distributions for i = 1, 2, . . . , n.
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Proof: It follows from the operational law that R(ξ1, ξ2, . . . , ξn) is an uncertain variable whose inverse
uncertainty distribution is

Ψ−1(α) = R(Φ−1
1 (α),Φ−1

2 (α), . . . ,Φ−1
n (α)).

Since Reliability = M{R(ξ1, ξ2, . . . , ξn) ≥ 0} = 1−Ψ(0), we get (40).

Theorem 9 (Reliability Index Theorem) Assume ξ1, ξ2, . . . , ξn are independent uncertain variables with un-
certainty distributions Φ1,Φ2, . . ., Φn, respectively, and R is a strictly decreasing function. If some system is
working if and only if R(ξ1, ξ2, . . . , ξn) ≥ 0, then the reliability index is

Reliability = α (43)

where α is the root of

R(Φ−1
1 (α),Φ−1

2 (α), . . . ,Φ−1
n (α)) = 0. (44)

If it is observed that all elements are working at some time t, then α is the root of

R(Φ−1
1 (α|t),Φ−1

2 (α|t), . . . ,Φ−1
n (α|t)) = 0 (45)

where Φi(x|t) are hazard distributions for i = 1, 2, . . . , n.

Proof: It follows from the operational law that R(ξ1, ξ2, . . . , ξn) is an uncertain variable whose inverse
uncertainty distribution is

Ψ−1(α) = R(Φ−1
1 (1− α),Φ−1

2 (1− α), . . . ,Φ−1
n (1− α)).

Since Reliability = M{R(ξ1, ξ2, . . . , ξn) ≥ 0} = 1−Ψ(0), we get (43).

Theorem 10 (Reliability Index Theorem) Assume ξ1, ξ2, . . . , ξn are independent uncertain variables with
uncertainty distributions Φ1,Φ2, . . ., Φn, respectively, and the function R(x1, x2, . . . , xn) is strictly increasing
with respect to x1, x2, . . . , xm and strictly decreasing with respect to xm+1, xm+2, . . . , xn. If some system is
working if and only if R(ξ1, ξ2, . . . , ξn) ≥ 0, then the reliability index is

Reliability = α (46)

where α is the root of

R(Φ−1
1 (1− α), . . . ,Φ−1

m (1− α),Φ−1
m+1(α), . . . ,Φ

−1
n (α)) = 0. (47)

If it is observed that all elements are working at some time t, then α is the root of

R(Φ−1
1 (1− α|t), . . . ,Φ−1

m (1− α|t),Φ−1
m+1(α|t), . . . ,Φ−1

n (α|t)) = 0 (48)

where Φi(x|t) are hazard distributions for i = 1, 2, . . . , n.

Proof: It follows from the operational law that R(ξ1, ξ2, . . . , ξn) is an uncertain variable whose inverse
uncertainty distribution is

Ψ−1(α) = R(Φ−1
1 (α), . . . ,Φ−1

m (α),Φ−1
m+1(1− α), . . . ,Φ−1

n (1− α)).

Since Reliability = M{R(ξ1, ξ2, . . . , ξn) ≥ 0} = 1−Ψ(0), we get (46).

Consider a Boolean system with n elements ξ1, ξ2, . . . , ξn and a truth function f . Since the system is
working if and only if f(ξ1, ξ2, . . . , ξn) = 1, the reliability index is

Reliability = M{f(ξ1, ξ2, . . . , ξn) = 1}. (49)
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Theorem 11 (Reliability Index Theorem for Boolean System) Assume ξ1, ξ2, . . ., ξn are independent elements
with reliabilities a1, a2, . . ., an, respectively. If a system contains ξ1, ξ2, . . . , ξn and has truth function f , then
the reliability index is

Reliability =


sup

f(x1,x2,...,xn)=1

min
1≤i≤n

νi(xi), if sup
f(x1,x2,...,xn)=1

min
1≤i≤n

νi(xi) < 0.5

1− sup
f(x1,x2,...,xn)=0

min
1≤i≤n

νi(xi), if sup
f(x1,x2,...,xn)=1

min
1≤i≤n

νi(xi) ≥ 0.5
(50)

where xi take values either 0 or 1, and νi are defined by

νi(xi) =

{
ai, if xi = 1

1− ai, if xi = 0
(51)

for i = 1, 2, · · · , n, respectively.

Proof: Since ξ1, ξ2, . . . , ξn are Boolean uncertain variables and f is a Boolean function, the equation (50)
follows from Reliability = M{f(ξ1, ξ2, . . . , ξn) = 1} immediately.
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