
14714714714714714 
 

Journal of Uncertain Systems
Vol.4, No.2, pp.147-160, 2010

Online at: www.jus.org.uk

 
 
 

Using Adaptive Nero-Fuzzy Systems to Monitor Linear Quality 
Profiles 

 
M.H. Fazel Zarandi1, A. Alaeddini2 

 
1Department of Industrial Engineering, AmirKabir University of Technology, Tehran, Iran, P.o.Box:15875-13144 

2Department of Industrial and Manufacturing Engineering, Wayne State University (WSU), Detroit, MI, 48202 
 

Received  30 November, 2008;  Revised 8 July 2009 
 

Abstract 
 

In common Statistical Process Control (SPC) applications one or multiple quality characteristics with 
corresponding univariate or multivariate statistical distributions are used to represent process or product quality. 
However, there are several other practical situations, in which, the quality of a process or product can be characterized 
and summarized more effectively by a function of two or more variables. These problems are studied under the 
framework of quality profiles. In some applications, the profile relation can be adequately represented by the linear 
model, while in other applications nonlinear models are usually needed. In this paper, in order to facilitate modelling 
linear profile control problem, an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) based scheme is investigated. 
The performance of the ANFIS approach is examined and compared to conventional methods. 
© 2010 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
There are many practical situations in which the quality of a process or product can be modelled effectively by the 
relationship of a quality characteristic and one or more independent variables. The quality characteristics belong to 
such processes or products are known as quality profiles. In many cases, the relation of quality profiles can suitably 
presented by a first order linear regression relation 

0 1 ,ij ij ij l ij hy a a x x x x                                                                (1) 

where,  is the th observation of the i th profile,  and are the intercept and slope of the i th profile, ijy j 0a 1a ijx  is the 

independent variable for the th observation of the i th profile, and j lx and hx define the range of ijx , where the 

process is characterized by the linear profile. Also, random errors ij are assumed to be identically independent (i.i.d.) 

random variables with mean zero and variance 2 . In common applications, it is assumed that  20,NI~ Dij  , 

however in general ij can follow any i.i.d random variable. Both situations are discussed in this paper (see Figure 1). 

 
Figure 1: Schematic of a linear profile relation 
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Kang and Albin [8] present two examples of situations, in which product profiles are of interest. In the first 
example, the amount of dissolved aspartame per liter of water (as the quality characteristic) is a function of 
temperature. The other example was in a semiconductor manufacturing application involving calibration where the 
performance of a mass flow controller is characterized by a linear function. Mestek et al. [11] give similar calibration 
applications. 

Kang and Albin [8] also propose two monitoring approaches for situations in which the quality of the product is 
characterized by a linear relationship. The first approach monitors profile relation parameters with a multivariate 

2T control chart and the second approach monitors average residuals between sample and reference lines with 
Exponential Weighted Moving Average (EWMA) and R control charts. Kim et al. [9] recommend the use of a 
bivariate 2T and a univariate shewhart chart simultaneously to check the stability of the regression coefficient and 
variation about the regression line in phase I. They also recommend the use of the univariate control charts to monitor 
the intercept, the slope, and the errors of the regression line in phase II. Mahmoud and Woodall [10] propose a 
method based on using indicator variables in a multiple regression model to monitor a linear profile in Phase I. The 
use of linear functions as responses in designed experiments has also been studied by Miller [12] and Nair et al. [14]. 
Abbasi et al. [1] proposed a control chart based on the generalized linear test (GLT) to monitor coefficients of the 
linear profiles and an R-chart to monitor the error variance. 

Jensen et al. [5] use linear mixed models to monitor linear profiles which accounts for any correlation structure 
within a profile. They show that when the data are unbalanced or missing, the linear mixed model approach is 
preferable to traditional methods. Zou et al. [20] propose a statistical control scheme that characterizes the quality of a 
process by a general linear profile for use in an industrial setting. They also introduce some enhancement features to 
improve the performance of the scheme. Zou et al. [21] use recursive residuals as a basis for developing a self starting 
control chart for monitoring linear profiles when the nominal values of the process parameters are unknown. They 
also show good charting performance of their method across a range of possible shifts when process parameters are 
unknown. 

Walker and Wright [17] use additive models to represent the curves of interest in the monitoring of density 
profiles of particleboard. Jin and Shi [7] use wavelets to monitor “waveform signals” for diagnosis of process faults. 
Williams et al. [18] extend the use of the 2T control chart to monitor the coefficients resulting from a nonlinear 
regression model fitted to profile data. Noorossana and Alaeddini [15] use the constrained area between the observed 
and baseline profile to monitor nonlinear profiles. William et al. [19] present some of the general issues involved in 
using control charts to monitor profiles and reviewed the SPC literature on this area. Ding et al. [3] propose two-
component strategy including: a data-reduction component that projects original data into a lower dimension subspace, 
and a data-separation technique that can detect single and multiple shifts as well as outliers in nonlinear profiles data 
in phase I. Chicken et al. [2] present a semi-parametric wavelet method for monitoring changes in sequence of 
nonlinear profiles. Their method is used to differentiate between different radar profiles. They show their method can 
quickly detect a variety of changes from a given in-control profile. Zou et al. [22] propose a methodology to monitor 
changes in both the regression relationship and the variation of the profile online. They also provide an approach to 
locate the change point of the process and identify the type of change in the profile. Jensen and Birch [6] use 
nonlinear mixed models to monitor the nonlinear profiles to accommodate the correlated structure. Their proposed 
approach uses the separate nonlinear regression model fits to obtain a nonlinear mixed model fit. They also show the 
superior ability of their approach in detecting changes in Phase I data. Staudhammer et al. [16] propose a system of 
control charts that simultaneously monitors multiple lumber surfaces and specifically targets three common sawing 
defects. These charts can be used to monitor the slope parameter of a multiple linear regression model and the peak-
to-peak waviness of observations from each board. They illustrate that these methods are better at detecting common 
sawing problems and identifying the causes. 

In this paper we focus on designing a methodology to monitor linear profiles. For this purpose, we use Monte 
Carlo simulations to generate profiles dataset and Adaptive Neuro-Fuzzy Inference Systems to develop a fuzzy rule-
base for monitoring linear profiles. In this regards, we propose two approaches: (i) a model-based approach, which 
monitors linear profiles based on their estimated parameters, and (ii) a model-free approach which controls linear 
profiles only based on their observations. The Schematic representation of the proposed methodology is demonstrated 
in Figure 2. 

 The remainder of the paper is organized as follows. Section 2 addresses the proposed methodology and explains 
the developing process of the linear profile monitoring Fuzzy Inference System (LPM-FIS). Section 3 presents the 
verification and validation of the proposed methodology through extensive simulation studies. Finally, the 
conclusions and further works are presented in Section 4. 

 
2 Monitoring Methodology  
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In this section, we explain the process of the development of the proposed methodology for monitoring linear profiles 
in Phase II. From the SPC point of view, the process monitoring techniques may be employed for either phase I or II. 
In phase I, a set of observed profiles data are gathered and analyzed. Any unusual patterns in this data set indicate a 
lack of statistical control and lead to adjustment and fine tuning. Once all assignable causes are accounted for though, 
the process will be left with clean set of data, gathered under stable operating conditions and illustrative of actual 
performance. This set is then used to estimate the in-control distribution of the process quality characteristics. 

On the other hand, Phase II data are the process readings gathered subsequently. Unlike the fixed set of phase I, 
they form a never-ending stream. As each new reading accrues, the SPC check is re-applied. Phase II methods require 
a phase I data set to have parameter estimated that can be plugged into the phase II calculations. Hence, in Phase II, it 
is assumed that the baseline profile parameters ( ) are known. In this phase, for every value of independent 

variable ( ), profile observation ( ) is collected and analyzed. The task of phase II is to decide whether the 

parameters of the observed profile are the same as the baseline profile or not. Quick detection of the probable shifts in 
parameters is the most important goal of Phase II. 

2
10 ,, AA

ix iy

 
2.1 FIS Development Using ANFIS 
 
ANFIS is a class of adaptive networks that is functionally equivalent to Fuzzy Inference Systems (FIS) [4]. Using an 
input/output dataset, the ANFIS constructs a FIS whose membership function parameters are adjusted using training 
algorithms. The modelling approach consists of: First, hypothesizing an initial FIS which relates inputs to outputs. 
Next, collecting input/output data in a form that will be usable by ANFIS for training, and finally, using ANFIS to 
train the FIS model to emulate the training data presented to it by modifying the membership function parameters 
according to an error evaluation criterion. This study uses ANFIS as an indirect approach for developing Multiple-
Inputs-Single-Outputs (MISO) first order Sugeno type fuzzy inference systems to monitor the linear profiles. 

 
Figure 2: The steps of monitoring linear profiles using ANFIS  

 
2.1.1 Input-Output Data Generation 

 
The first step of the proposed methodology is generating an input-output dataset (see Figure 2). A typical input-output 
dataset consists of n input-output data. Each input-output data is a )1(1  k  vector including:  elements for input 

and one element for output (see Figures 3 and 4). Different types of input-output data are used for the model-base and 
model free approaches of the proposed methodology.  

k

Each input data of the model-base approach consists of three estimated parameters of each observed 
profile  iii aa ̂,ˆ,ˆ 10 , and each output data of this approach consists of a binary value, which shows the quality state 

of the process: 
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Figure 3: Three inputs-single output dataset of the model-base approach 
 

Moreover, each input data of the model-free approach consists of k  observations of each observed 
profile  , and each output data of this approach consists of a binary value, which shows the quality 

state of the process: 

ikii yyy ,...,, 21

 1 2

0,
, ,..., , ,

1, .i i ik i i

if the profile is Under Control
y y y

if the profile is Out of Control
 


   

                                                (3) 

 
 
 

11y  12y … 
ky1 1  

21y  22y … 
ky2 2  

  ...   

1ny  2ny … 
nky n  

Figure 4: inputs-single output dataset of the model-free approach k
 

Under in-control condition, the output data of both model base and model free approaches get value zero. Under 
this condition, the input data of the model-free approach are generated based on the baseline profile 

0 1ij ij ijy a a x    .                                                                              (4) 

Besides, the input data of the model-based approach are calculated based on the estimated parameters and 
estimated standard deviation of the generated input-out put of the baseline profile.  

Under out-of-control conditions, the output data of both model-base and model-free approaches get value one. 
For the input data, the out-of-control state can be uniformly occurred based on different shifts in each of the profiles 
parameters  0 1, ,a a  . Hence, for generating input data under such conditions, the generated inputs should cover all 

possible out-of-control situations. 
There are two approaches of generating out-of-control input data: 1- generating input data based on different 

individual shifts in the profile parameters, and, 2- generating input data based on concurrent shifts in the profile 
parameters. We use the first input data generation approach for the model free approach and the second input data 
generation approach for the model base approach. 

In the first input data generation approach which is illustrated in Table 1, there are three parameters 0 1, ,a a   

which can experience a shift of size , ,   . In SPC it is common to design, evaluate and compare process mentoring 

Input 

Input-Output Data 

Input/Output Data Set 
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tools for a series of specific shifts in the process parameters. Hence we generate out of control input data based on a 
series of specific shifts      ttt  ,...,,,,...,,,,...,, 212121  , where is the probability 

density function of the error.  

),0( 2g

Table 1: Individual shifts in the linear profile relation 
Shift Kind Relation 

Shifts in Intercept  0 1 , ,ij ij ijy a a x 1 2 ,..., t           

Shifts in Slope  0 1 , ,ij ij ijy a a x 1 2 ,..., t           

Shifts in the Variance of Errors 2
0 1 ~ (0, ) , .,ij ij ij ij ty a a x g 1 2, ,..            

 
In the first input data generation approach which is illustrated in Table 2, all parameters  0 1, ,a a   experience a 

vector of shift sizes of  , ,t t t   

1 2, ,..., ,t t

 simultaneously. Again as the SPC methods are analyzed based on a series of 

specific shifts in the process parameters, we generate data based on specific shifts 

 1 2 1 2, ,..., , , ,..., t             .  

Table 2: Concurrent shifts in the linear profile relation 
Shift Kind Relation 

Concurrent Shifts    0 1 ~ (0,ij t t ij ij ijy a a x g 2 )t           

 
2.1.2 Initial FIS Generations 

 
The second step of the proposed methodology is generating an initial FIS using the input-output dataset (See Figure 
2). There are important factors which influence the size and performance of the generated FIS, including: 1- Training 
dataset, 2- Membership functions type, 3- Number of membership functions for each input variable, and 4- The 
method of generating FIS. Extensive simulation studies were conducted to evaluate the effect of above factors on the 
efficiency and complexity of the proposed profiles monitoring FIS and choose the best combination of them.  

To identify the best number of generated data for each in- and out-of-control state, different sizes representative 
including: 1, 5, 10, 30, 100, 1000, and 10000 from every possible in- or out-of-control situation are examined. The 
results show that less than 10 representatives from different shift sizes of the in- or the out-of-control state will lead to 
poor results. Meanwhile the total size of the dataset for the in- or out-of-control states should keep smaller than 
10,000, because based on the simulation results, larger datasets decrease the discrimination power of the resulting FIS. 
On the other hand, respect to simulation results, the total number of in-control representatives should not differ too 
much from the total number of out-of-control representatives because this phenomenon biases the inference 
mechanism of the proposed system. For example if there is 1000 number of in-control input-output data there should 
also be totally 1000 number of input-output data for all possible out-of- control situations.  

In this regard, for the first numerical example of Section 3, linear profile with normal random error,  which has 
ten possible shifts for each 0 1, ,a a  , totally 1,000 in-control data and 13,611 out-of-control data including: 300 single 

shift, and 13,311 concurrent shifts are used for the model-based approach. The 300 single shifts is simply the 
multiplication of: three input parameters, ten possible shifts, and ten number of representatives. Also 13,311 
concurrent shifts is the multiplication of: 11 possible in and out of control states of parameter , 11 possible in and 

out of control states of parameter , 11 possible in and out of control states of parameter
0a

1a  . Also, 10,000 in-control 

data and 30,000 single shift out-of-control data are used for the model-free approach. 30,000 out-of-control data is the 
multiplication of: three input parameters, ten possible shifts, and one thousand number of representatives from each 
out-of-control state. Meanwhile, for the second numerical example of Section 3, linear profile with non-normal error, 
which is formulated using model based approach, with 10 possible shifts for each and 0 ,a 1a  , totally 1,000 in-

control data and 136,110 out-of-control data including: 3000 single shift, and 133,110 concurrent shifts are used. 
In another series of simulation studies, different types of membership functions including: Triangular, Gaussian, 

and Trapezoidal Membership Functions, for the input variables and linear and constant Membership Functions for the 
output variables were investigated. Three measures of comparison including: 1-computational complexity, 2- number 
of generated rules, and 3- FIS error, were developed for membership functions evaluation. Based on the comparison 
measures, under the assumption of error normality, Triangular and Gaussian membership functions for the input 
variables, and linear membership functions for the output variables were identified more convenient for the 
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generation of LPM-FIS. Under the assumption of error non-normality, trapezoidal membership functions for input 
variables, and linear membership functions for output variables showed superior performance. 

 Besides, with respect to the conducted simulation studies, the triangular membership functions lead to 
computationally simple FIS, they increase the number of rules needed to represent different process states. 
Controversially, moving to trapezoidal and Gaussian membership functions increases computational efforts, but they 
lead to lower number of rules. In this study, for the case of normal random error, Triangular membership functions 
are used in the model-base approach and Gaussian membership functions are employed in the model-free approach. 
Also for the case of non-normal random error which is modeled with model based approach, trapezoidal membership 
functions are used. 

We also conducted a number of simulation studies to study the effect of different number of membership 
functions for each input variable. In these simulation studies we evaluate the numbers 1,2,3,  for each input 
variable. The simulation studies show that the number of membership functions for each input variable affects the 
precision and the size of the FIS. Increasing the number of membership functions, decreases fuzziness of the FIS and 
increases number of rules. Based on the results of the simulation studies, 2 and 3 are the most appropriate number of 
membership functions for each input variable. Hence, for the numerical examples in Section 3, three membership 
functions are used for the model-base and model-free approached for each input variable (Figures 5 and 6). 

,10

 
Figure 5: Typical membership functions used for each input variable of the model-base approach 

 

 
Figure 6: Typical membership functions used for each input variable of the model-free approach 

 
In a separate series of simulation studies we assess Grid Partition and Subtractive Clustering methods employed 

for constructing the FIS. Besides, in these simulations the effect of different combination of: the size of training 
dataset, types of membership functions and the number of membership function for each input variable where studied 
on each of Grid Partition and Subtractive Clustering methods. As a result, Grid Partition methods generally lead to 
more rules but took less time for development. On the other hand Subtractive Clustering lead to less rules but took 
more time. In this paper, for the first example of Section 3, grid partition algorithm is followed for the model base 
approach and subtractive clustering is employed for the model free approach. Also for the second example grid 
partition algorithm is employed. 

 
2.1.3 FIS Tuning 
 
In this step, the parameters associated with the membership functions are changed through the learning process.  
Learning process is based on how well the fuzzy inference system is modelling the input/output data for a given set of 
parameters. There are three important factors in FIS tuning, including: 1- training dataset, 2- optimization method, 
and 3- Number of trainings.  

The same dataset for initial FIS generation is used for tuning. Hence, for the example with normal error in 
section, a 14 input-output dataset is used for the model-based approach FIS tuning, and a 40000611 4 5 input-
output dataset is used for the model-free approach FIS tuning. Also, for the example with non-normal error which 
follows model-based approach, an input-output dataset with the size of 146110 4 is employed.  

The computation and adjustment of membership function parameters is facilitated by a gradient vector. Once the 
gradient vector is obtained, any of several optimization routines could be applied in order to adjust the parameters so 
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as to reduce sum of the squared difference between actual and desired outputs. The adjustment can be done using 
either back propagation or a combination of least squares estimation and back propagation for membership function 
parameter estimation. In this paper, a hybrid method of squares estimation and back propagation is used for 
membership function parameter estimation. 

All Neuro-fuzzy systems require stopping criteria for their learning processes. Different stopping criteria such as 
error tolerance, minimum error, training epochs, etc. can be employed for FIS learning. In this study, for the example 
with normal error in Section 3, on both model-base and model-free approaches 300 training epochs is used as a 
stopping criterion which leads to the minimum error of 0.1990 for the model-base approach and 0.2107 for the model-
free approach. The resulted systems were, a 3 1 MISO system with 27 fuzzy rules with based on model base 
approach (See Figure 7) and a 4 MISO system with only 2 fuzzy rules based on the model free approach (See 
Figure 8). 

1

 
 

 

Input1=2.2 Input2=3.45 Input3=5.56 Output=1.01 

Figure 7: Graphical representation of the model-base FIS under normal error 
 

 
Figure 8: Graphical representation of the model-free FIS under normal error 
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Also for the example with non-normal error, 100 training epochs is used as a stopping criterion which leads to 
the minimum error of .1803. The resulted system was a 3 1 MISO system with 27 fuzzy rules (See Figure 9). 

 
Figure 9: Graphical representation of the model-based FIS under non-normal error 

 
2.1.4 Selecting Control Scheme Parameters 
 
Both model-base and model-free FIS developed through above steps get vectors of inputs from a profile based 
process and give a spectrum value between zero and one which show the quality state of the process (Figure 10). A 
control limit is to be chosen to delineate between the in-control and out-of-control states. Such control limit should be 
determined so that if the process is in-control, nearly all of the FIS outputs fall between zero and the limit, and if the 
process is out-of-control, approximately all of the outputs fall between the limit and one. 

 
Figure 10: Monitoring mechanism LPM-FIS 

 
In practice control limits are usually determined based on the performance (in-control performance) or 

equivalently type І error of the scheme. The speed with which a control scheme detects an off-target condition 
determines the Performance of the scheme. Average run length (ARL) has been widely used as a performance 
measure to compare the efficiencies of different control schemes [13]. The ARL is the average number of samples 
before the control chart signals an out-of-control condition. Among different SPC schemes, the in-control ARL 
(ARL0) of 200 is very common for setting control limits. Hence, the control limits of the proposed approaches are set 
to gain the ARL0 equal to 200. 
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3 Verification and Validation  
 
Two sets of simulations studies have been conducted to evaluate the performance of the proposed approach 

under normal and non-normal error assumptions. For the case of normal random error two FISs have been developed 
using model base and model free approaches with the details discussed in Section 2. These FISs are compared with 
different traditional linear profiles monitoring methods including: Kang and Albin [8] control chart, Kang and 
Albin [8]  control chart, and Mahmould and Woodall [10] control chart. For the case of non-
normal error one FIS is developed using model base approach with the conditions discussed in Section 2. This FIS is 
also compared with all the methods mentioned above. 

2T
/EWMA R 3EWMA

Generally, in comparing two control schemes the scheme with higher ARL0 and lower ARL1 is better. Hence, for 
comparing different schemes in SPC, it is common that, first, control schemes parameters is adjusted, so that, same 
in-control ARL (ARL0) is resulted for both methods. Next, out-of-control ARL (ARL1) of two schemes is calculated 
for different shifts. The scheme which has a lower out-of-control ARL has a better performance. 

 
3.1 Simulations for Profiles with Normal Error 
 
Here, for all conducted simulations the linear profile 3 2ij ij ijy x     with ~ (0,ij NID 1)  and fixed ijx  (2, 4, 6, 8) is 

considered. Also, 1,000 iterations have been specified for simulations. ARL0 all compared schemes set to have ARL0 
equal to 200, and the smoothing constants of all approaches which includes chart set equal to 0.2. All schemes 
were studied under different shift sizes of

EWMA
0.2,0.4,.., 2   for parameter ,0 0.025,0.05a ,..,0.25  for parameter , 

and 
1a

1.2,1.4,..,3  for parameter . Tables 3, 4 and 5 and Figures 11, 12 and 13 illustrated the simulation results of 

, , , model-base and model-free approaches for different shifts. 2T /EWMA R E 3WMA
 

3.1.1 Shifts in Intercept 
 
Table 3 and Figure 4 compare the ARL performance of the proposed approaches and Traditional , , 

 methods against different shifts in parameter . As it can be seen the in-control ARL (the ARL of the shift 

size of 0) are set to be not less than 200, and then the out-of-control ARL of each methods is determined based on 
10,000 iterations. For a shift size of

2T /EWMA R
3EWMA 0a

0.2t  , the detect such a change on average after 59.10, also 

after 63.50, the proposed Model-Base Approach after 76.89, the proposed Model-Free Approach after 

77.266 and  after 137.70 observed profile. For this shift the  and charts works better than other 
methods, and the proposed model-based and model free approaches stand on the second rank, also the has the 
lowest performance among compare methods. Same conditions is hold for shift sizes of 

3WMA

E

E

/EWMA R
2T 3WMA /EWMA R

2T
0.4,0t .6  . In SPC such 

shifts which are less than 1 called small shifts. As a consequence , performs better than other 
methods in small shifts. The high performance of , / is that they are statistically designed for 
detecting small shifts. 

3 /EWMAE
EWMA

WMA
R

R
3EWMA

For a shift size of 1.2t 

3WMA

the model free approach have an ARL of 2.761. It means that the proposed model-free 

approach find a shift of size 1.2 only after about 3 observations. Also ARL of the model-base approach is 2.91, the 
is 3.20,  is 3.10, and  is 4.00. It can be seen that the proposed methods outperform all other 

methods. Such condition is met for all other shifts equal or more than
/EWMA R E 2T

1.2t  . In SPC such shifts which are greater 

than 1 called moderate and large shifts. As a consequence the propose methods performs better than other methods in 
large shifts. 

Table 3: Shifts in  for the case of normal error 0a

ARL Shifts  from to 0a 0 ta   

Method 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Model-Base Approach 204.42 76.89 30.77 15.35 7.51 4.31 2.91 1.99 1.63 1.43 1.36

Model-Free Approach 204.19 77.266 31.809 14.621 7.402 4.29 2.761 1.954 1.515 1.26 1.12

EWMA/R 200.00 66.65 17.70 8.40 5.40 3.90 3.20 2.70 2.30 2.10 1.90

T2 200.00 137.70 63.50 28.00 13.20 6.90 4.00 2.60 1.80 1.50 1.90

EWMA3 200.00 59.10 16.20 7.90 5.10 3.80 3.10 2.60 2.30 2.10 1.90
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Figure 11: Shifts in for the case of normal error 0a

 
3.1.2 Shifts in Slope 
 
Table 4 and Figure 5 illustrate the ARL performances of the proposed methods and the traditional Shewhart control 
charts. The result of shifts in the slope of the profile is similar to shifts in the intercept. , methods 
have better performance than the proposed methods for small shifts; however, the proposed approaches have better 
performance in moderate and large shifts. Also the differences between the compared methods in this section are less 
than the differences in the intercept. Meanwhile, the proposed method demonstrates a clear advantage  

/EWMA R 3EWMA

 
Table 4: Shifts in  for the case of normal error 1a

ARL Shifts  from to 1a 1 ta    

Method 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

Model-Base Approach 204.19 117.75 67.07 38.33 22.82 14.00 9.08 6.03 4.27 3.16 2.41

Model-Free Approach 204.42 103.16 55.01 32.66 18.52 11.23 7.28 4.95 3.49 2.62 2.15

EWMA/R 200.00 119.00 43.90 19.80 11.30 7.70 5.80 4.70 3.90 3.40 3.00

T2 200.00 168.00 106.50 60.70 34.50 19.90 12.30 7.80 5.20 3.70 2.70

EWMA3 200.00 101.60 36.50 17.00 10.30 7.20 5.50 4.50 3.80 3.30 2.90

 

 
Figure 12: Shifts in for the case of normal error 1a
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3.1.3 Shifts in Standard Deviation 
 
Table 5 and Figure 6 illustrate the ARL of the proposed methods and the traditional methods. Like other conducted 
simulations the ARL of all methods set to be not less than 200.  For a shift of size 1.4  the model-base approach 

has an ARL of 11.85, also the model free approach ARL is 16.37, the  ARL is 12.00,  ARL is 

12.70, and ARL is 14.90. It can also be seen that for any kinds of shifts in
/EWMA R

2

3EWMA
2T  , the model-base approach has a clear 

advantage over all other methods. In other word the proposed model base approach is uniformly better that all other 
methods for different small, moderate and large shifts. Besides the model-base approach has a near performance to 
methods T ,  methods, but both proposed methods are totally better than method. 2 E 3WMA /WMA RE

 
Table 5: Shifts in  for the case of normal error 

ARL Shifts  from  to   

Method 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

Model-Base Approach 204.19 34.75 11.85 5.89 3.75 2.70 2.11 1.80 1.57 1.45 1.35 

Model-Free Approach 204.42 43.50 16.37 8.28 4.97 3.48 2.63 2.18 1.91 1.64 1.50 

EWMA/R 200.00 34.30 12.00 6.10 3.90 2.90 2.30 1.90 1.70 1.50 1.40 

T2 200.00 39.20 14.90 7.90 5.10 3.80 3.00 2.50 2.20 2.00 1.80 

EWMA3 200.00 33.50 12.70 7.20 5.10 3.90 3.20 2.80 2.50 2.30 2.10 

 

 
Figure 13: Shifts in 2 for the case of normal error 

 
3.2 Simulations for Profiles with Non-normal Error 
 
Here, same profile relation 3 2ij ij ijy x    with  is considered. All other assumptions are similar to the 

normal error case. Just for modeling the shifts in the standard deviation of the error, the relation between the degree of 

freedom of the distribution and its standard error 

5~ij t

t  ( 2) 



2   is used. 

 
3.2.1 Shifts in intercept 
 
Table 6 and Figure 14 compare the performance of the proposed methods and ,  and  methods. 

Here shows a very poor detection power but others have acceptable performance. For small shifts  
and have fairly close and better performance than the proposed approach, while E stands on top. 

However, for large shifts   the proposed approach has a superior performance. As the shift size grows the 

2T /EWMA R 3EWMA

E
3WMA

2T
EWMA

/WMA R
3

1.2t 
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difference between the proposed method and others gets clearer. One reason for such phenomenon is that E  
types of chart work best for small shifts so their performance are degraded when the shift size grows. 

WMA

 
Table 6: Shifts in for the case of non-normal error 0a

ARL Shifts  from to 0a 0 ta   

Method 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

T2 195.84 192.36 188.85 185.31 182.83 177.32 171.23 164.15 154.45 146.13 136.37

Proposed Approach 194.51 132.17 82.65 54.65 37.22 24.31 15.05 9.36 5.96 4.03 2.87 

EWMAR 188.70 110.93 64.87 44.74 29.62 22.13 17.02 13.27 10.87 9.38 8.27 

EWMA3 183.59 109.64 57.51 35.91 25.23 17.82 13.41 10.87 9.05 7.88 6.83 

 

 
Figure 14: Shifts in  for the case of non-normal error 0a

 
3.2.2 Shifts in Slope 
 
Table 7 and Figure 15 show the results of 1,000 simulation runs for the comparing methods. Except the proposed 
approach which has an acceptable performance all other methods performs very poor in monitoring studied shifts. 
Here  shows strange behavior with an increasing series of ARLs in response to the increase in  

parameter. Also  and behave very reluctantly to different types of shift. 

/EWMA R

E
1a

3WMA 2T
 

Table 7: Shifts in  for the case of non-normal error 1a

ARL Shifts  from to 1a 1 ta    

Method 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

T2 195.49 192.56 189.28 186.03 183.86 181.34 178.82 173.86 169.47 166.24 163.02

Proposed Approach 204.23 152.31 121.46 92.70 65.60 49.52 34.71 26.34 18.28 13.93 9.59 

EWMA/R 200.74 205.96 218.54 238.11 256.31 277.37 298.92 320.84 343.93 368.32 390.06

EWMA3 200.93 201.75 202.57 203.93 201.55 199.10 196.10 195.93 194.40 192.98 188.51

 
3.2.3 Shifts in Standard Deviation 
 
Finally, Table 8 and Figure 16 illustrate the performance of the comparing methods on monitoring different types of 
shift in the standard deviation of the error term. Here, 2 22 ( 1   )   is used as the degree of freedom of t  

distribution for generating random numbers with different standard error. Here, in contrast to the results gained for 
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0a

E

and  simulation studies, all approaches have acceptable performance. Meanwhile the proposed approach along 

with chart perform uniformly better that the others. Next to these two methods stands in front of 

. 

1a
2

/ R

T

WMA

3EWMA

 

 
Figure 15: Shifts in for the case of non-normal error 1a

 

Table 8: Shifts in  for the case of non-normal error 
ARL Shifts  from  to   

Method 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

T2 198.55 67.69 40.80 31.18 27.80 24.26 24.27 22.00 21.09 20.08 20.27

EWMA/R 186.90 91.80 62.02 47.48 40.52 35.30 33.36 32.94 31.54 29.55 29.76

Proposed Approach 197.08 66.46 39.91 32.09 28.22 26.66 23.76 22.00 22.23 20.89 20.06

EWMA3 219.48 103.86 73.39 60.23 52.99 49.41 45.75 43.74 41.70 40.94 39.17

 

 
Figure 16: Shifts in for the case of non-normal error 

 
4 Conclusions and Future Works 
 
In this paper, a Fuzzy System was proposed based on Adaptive Neuro Fuzzy Systems for online monitoring of linear 
quality profiles considered as new remarkable issues in quality control. The performance of the proposed method was 
examined under both normal and non-normal errors and through different shifts and different parameters. For the 
normal case, the proposed method had comparable results against strong statistical methods, while for the non-normal 
case it worked superior to the traditional methods on average. The proposed method has two main advantageous. First, 
in contrary to statistical methods it does not need any strict assumptions like knowing the real value or even 
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distribution of the quality characteristic. Second, the proposed approach is easy to construct and has simple final 
structures as well. Besides, The sensitivity of this method to different kind of shifts (little and/or significant shifts) can 
be adjusted by using different kind of membership functions and changing membership function parameters which 
can be seen as an area for further woks. 
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