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Abstract 

 
In this paper, first a fuzzy random resource-constrained project scheduling problem is presented. The object of the 

problem is to find the optimal scheduling of project activities. In this model, duration of project activities is a fuzzy 
random variable. Then, the proposed model is formulated by using the expected value of fuzzy random variables as an 
IP model. An illustrative example is also provided to clarify the concept.  
© 2010 World Academic Press, UK. All rights reserved. 
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1 Introduction  
 
The basic assumption in a project scheduling is complete information about the scheduling of activities. Furthermore, 
it is also assumed that there is a static deterministic environment within which the pre-computed baseline schedule 
will be executed. However, in the real world, project activities are subject to considerable uncertainty, which is 
gradually resolved during project execution.  

The problem addressed in this research is the Resource-Constrained Project Scheduling (RCPS) problem. RCPS 
has been extensively studied in the literature [1, 5, 13, 15]. Hapke and Slowinski [8] considered fuzzy activity 
duration and applied fuzzy dispatching rules to generate a set of schedules for solving the RCPS problem. The object 
of this paper is to develop a fuzzy stochastic methodology to schedule the resource-constraint product development 
project. We apply the fuzzy stochastic framework [9, 14] to handle uncertain and flexible temporal information 
contain both possibility and probability aspects.  

The main goal of the stochastic version of RCPS is to schedule projects with uncertain duration in order to 
minimize the expected project duration. The constraints of the model are zero-lag finish-start precedence constraints 
and renewable resource constraints. Scheduling policies method [12], Branch-and-Bound algorithms [16, 17] and 
heuristic procedures have been applied for stochastic RCPS problem. 

The study of fuzzy model of resource-constrained project scheduling has been initiated by Hapke et al. [7] and 
Hapke and Slowinski [8]. In 1999, Wang [19] has developed a fuzzy set approach to schedule product development 
projects having imprecise temporal information. He assumed a fuzzy ready time and fuzzy deadline for the project. 
The activities have fuzzy durations, all described by trapezoidal fuzzy numbers. 

Fuzzy stochastic theory [18, 19, 20] can provide a useful framework for managing the uncertain and flexible 
temporal information. There are two types of common uncertainties in the real-life words: randomness and fuzziness. 
Fuzzy Random Variable (F.R.V.) initiated by Kwakernaak [10] is one of the appropriate ways to describe this type of 
uncertainty. In this research, fuzzy random variable times have been considered for ready-time, duration time, 
deadline, etc..  

This paper is organized as follows: in the first section, some preliminaries on fuzzy stochastic theory are 
presented. Then, the Fuzzy Random Resource-Constrained Project Ccheduling Problem (FR-RCPS) is introduced. 
The IP model and an algorithm to solve the FR-RCPS are presented in Sections 4 and 5. The concluding remarks and 
suggestions for further research are discussed in the last section. 
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2 Preliminaries 
 
This section reviews some technical terms presented by Puri and Ralescu [14]. In the following definitions, we 
assume that  is a probability space and ),,( P )),(,( Pos  is a possibility space where  is universe, )( is the 

power set of   and  is a possibility measure defined on fuzzy sets. Furthermore, F  is a collection of all 

normalized fuzzy numbers whose 

Pos (c )

 level sets are convex subsets of   and ( )c   is  the class  of all nonempty 

compact  convex subset of  . 
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Definition 2 A F.R.V. is a function )(:  cF  such that  )}(|),{(  tt  for every [0,1]   where 

)(:  c  is a random set defined by })()(|{)(     tt  and   denotes the collection of Borel 

subsets of . 
Three kinds of common F.R.V. are triangular, trapezoidal and normal. The definition of trapezoidal F.R.V. is 

given as follows. 
Definition 3 Let   be a F.R.V.. It is said to be trapezoidal, if for each  , )(  is a trapezoidal fuzzy variable,   

denoted by 1 2 3 4( ( ( ), ( ), ( ))r r),r r     where  is a  random variable defined on the probability space  . ir

Lemma 1 Let X  be a F.R.V..  Then , ]1,0(
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Definition 4 The expected value of a F.R.V. such as X , denoted by , is defined as follows  )(XE
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Therefore, the expectation of a F.R.V. is defined as a unique FU   whose  cut is ( )U E X   

, that is .  ( ), ( )E X E X 
     )())((  XEXE 

Expected value is a fundamental concept for F.R.V.. In order to define the expected value of a F.R.V., several 

operators were introduced in literature [11, 19].  
Definition 5 If a F.R.V. such as   degenerates to a random variable, then the expected value is defined as follows 

)()()(  dPE 


 . 

If   is a trapezoidal F.R.V., then for each  , )(  is a trapezoidal fuzzy variable  ),(),(( 21  rr ))(),( 43  rr  , 

whose expected value is )))(()),()),((()( 421 (( 3)),(  rErErEE  rE . 

Colloraly 1  Let X and Y  be F.R.V. and  . Then 
i)    )(E ; 

ii)  )()()( YEXEYXE   . 
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Definition 6[4] Let ),,( 0  xxxX and ),,( 0  yyyX be two fuzzy numbers. Then we have 

YX     yyxxyyxxyx 000000 && . 
Now we discuss a method to evaluate the fuzzy random inequality  YX ~  or YX ~  where X and Y are fuzzy 

random variables. It is obvious that  and in this case are fuzzy numbers according to Definition 5 and 

can be compared based on Definition 6.    

( )E X ( )E Y

Definition 7 Let X and Y  be fuzzy random variables. Then the relations "~ " and "~ " are defined respectively as 
follows 

i)   iff ; YX ~ ( ) ( )E X E Y

ii) YX ~  iff . ( ) ( )E X E Y
 

3 Problem Formulation  
 
This paper applies fuzzy stochastic theory to model the uncertain and flexible temporal information in a resource-
constrained project scheduling problem. The uncertainty in this model is in the both probability and possibility 
aspects. The uncertain activity duration d  is represented by a fuzzy random variable and can be defined by a 

trapezoidal F.R.V. 

~

),( ))(),(),(()(
~

4321  ttttd   ,  [21]. 

The flexible ready-time and deadline of a project are also assumed to be trapezoidal F.R.V. and denoted by 
and b

~
e~ respectively. Despite an activity duration, both possibility-probability distributions are used to represent the 

preference of a project manager for b
~

and e~ . For example, a project manager may prefer that a project should be 

completed before )(1 e , but not later than )(2 e . In this case, the preferred project deadline e~  can be represented 

as )(~ e = 1 1 1( ),e e e e2( ( ), ( ), ( ))    ,  . In the same way, the preferred ready-time of project b can also be 

represented as  b



1 2( ), (b 2 (b b b2 ( ))( ) ( ), ),     ,  [21].  

The definition of Fuzzy Random Resource-Constrained Project Scheduling (FR-RCPS) model is described as 

follows. A project p has a ready-time b and a deadline e ~ , both are fuzzy random variables, and all of its activities 

must be performed during the period [ , . Furthermore, activity i has specific F.R.V. duration ]b e  id
~

 and its execution 

requires the exclusive use of a number of resources defined by a vector 1 2( , , .. )i i i qN n n ., in whose elements 

determine the usage of resources type  by activity i .  q,...,2,1

The resource availability for the project is also defined by a vector where  indicates the 

availability of resource type k , . Now, the decision variable and constraints of our model are defined as 

follows [21]:  

),...,,( 21 qmmmR  km

qk ,...,1

 
Decision Variable 

if
~

:   finish time of activity i which is a trapezoidal F.R.V.. 

 
Constraints    
(1) Earliest-start-time constraints: For all activities, the real finish time of activity i denoted by  should be greater 

than or equal to its earliest finish time which is F.R.V and denoted by 
if

itef~ . Therefore, we have ),~[  ii teff . 

        The earliest finish  time of activity i  is equal to ii dtes
~~  , where  
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(2)  Latest-start-time constraints: For all activities, the real finish time of activity i should be less than or equal to its 

latest finish time denoted by itlf~ . Hence, we have ]~,( ii tlff  .  

The latest finish time of activity is defined as i
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min { , }, if activity is preceded byactivity

, if activity has no successors.    

i j j
j

i

lft lft d j i
lft

b i
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
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(3)  Precedence constraints: If activity i  precedes j in a partial order, then ),

~
[  jij dff . 

This constraint implies that the finish time of activity i should be less than or equal to the start time of activity j . 

In order words,  should be greater than or equal to the duration of activityij ff  j .   

(4)  Resource capacity constraints: For any time t , let }
~

|{ iiit ftdfiJ  . Then for time t , and all resource 

types , we have  . qk ,...,1



tJi

kik mn

We want to find a feasible schedule that minimize the project makespan nf
~

. 

 

4 Fuzzy Linear Programming Approach 
 

The mathematical formulation of FR-RCPS problem is presented as follows: 
 
(FR-RCPS)                            Min   nf

~
 

                                        s.t.     jji dff
~~~~

   for all Aji ),(  

11

~~~
dbf   

,  1,..., ,  { | },  
t

ik k t i i i
i J

n m k q J i f d t f


       t  

if
~

  is F.R.V. for ni ,...,1  

 
where the first and the third constraints are related to precedence and  resource capacity constraints respectively.  

In order to transform the above model to a mathematical programming model, we need to explain how to 
consider  as a constraint. tJ

We use the Alvarz-Valas and Tamarit’s approach [2] to linearization of FR-RCPS problem. This approach is 
based on the definition of a set, IS , of all minimal resource incompatibles sets . In order to resolve a resource 
conflict that would originate from parallel processing of activities of a resource incompatible set , one needs to 
introduce at least one precedence relation between a pair of the activities in that set. The binary decision 

variable , which equals 1 if activity i  precedes activity

S

),( ji

ijx j  and 0 otherwise (i.e., if activity j is scheduled before i or 

in parallel with i ). We obtained the following formulation: 
 

(Model 1)                             Min nf
~

 

s.t.          for all 1; 0ij jix x  Aji ),(  

1ij jix x   for , 1, ...,i j n  and i j  

1ij jk ikx x x    for  , , 1,...,i j k n  and ji  , kj  ,  ki 

, ,

1ij
i j S i j

x
 

  for all ISS   

( )
i j ij j

f f x d M M          for , 1,...,i j n and i j  

1 1
f b d     

ji , 1,...,i j n{0, 1}ijx      for and  

if
~

 is F.R.V.   for 1, ... , .i n  
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By using the concept of expected value of fuzzy random variable and Corollary 1, the above model can be 
converted to the following fuzzy integer programming problems without fuzzy random parameters:  

 
(Model 2)                         Min ( )nE f

s.t.        for all 1;ij jix x  0 Aji ),(  

1ij jix x     for , 1,...,i j n and ji   

1ij jk ikx x x      for , , 1,...,i j k n  and ji  , kj  ,  ki 





jiSji
ijx

,,

1  for all ISS   

MMdExfEfE jijji  ))
~ ~ ~~) ( (()(    for , 1,...,i j n and ji   
~ ~~

() )( 11 dbEfE   

{0,1}ijx      for , 1,...,i j n and ji   

if
~

 is F.R.V.  for 1, ... ,i n . 

 
By replacing the expected values of variables, we have  
 

(Model 3)                             Min nf  

                                    s.t.       for all 1 =0;ij jix x Aji ),(  

                                                for 1ij jix x  , 1, ... ,i j n and i j  

                                                for 1ij jk ikx x x   , , 1, ... ,i j k n  and i j , j k ,  i k

                                                for all S
, ,

1ij
i j S i j

x
 

 IS  

                                               MMdxff jijji  )(~   for , 1,...,i j n and i j  

                                               11 dbf   

                                                  for {0,1}ijx  , 1, ... ,i j n and i j  

                                               0if    for 1, ... ,i n . 

 

In the above model, f , d  and b are fuzzy trapezoidal values of f , d  and respectively. Now, by using the 

concept of trapezoidal fuzzy numbers, (Model 3) can be written as follows 

 b

 
(Model 4)                     Min ),,,( 4321 nnnn ffff

                            s.t.        for all 1;ij jix x  0 Aji ),(  

                                           for 1ij jix x  , 1, ... ,i j n and i j  

                                            for 1ij jk ikx x x   , , 1, ... ,i j k n  and i j , j k ,  i k

                                             for all 
, ,

1ij
i j S i j

x
 

 ISS   

              MMddddxffffffff jjjjijjjjjiiii  )),,,((),,,(
~

),,,( 432143214321  

                                                                                                for , 1, ... ,i j n and i j                             

11 12 13 14 1 2 2 2 11 12 13 14( , , , ) ( , , , ) ( , , , )f f f f b b b b d d d d   

                                             for {0,1}ijx  , 1, ... ,i j n and i j  

                                       0),,,( 4321  iiiii fffff    for 1, ... ,i n . 

 
By using the maximizing fuzzy number method and fuzzy inequality approaches [4, 6, 22], the following model 

is generated 
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(Model 5)                             Max ],,,[ 343212 nnnnnn ffffff 

s.t.         for all 1; 0ij jix x  Aji ),(  

1ij jix x      for , 1, ... ,i j n and i j  

1ij jk ikx x x       for , , 1, ... ,i j k n  and i j , j k , i k  

, ,

1ij
i j S i j

x
 

     for all S IS  

MMdxff jijji  )( 222
    for , 1, ... ,i j n and i j  

MMdxff jijji  )( 333
    for , 1, ... ,i j n and i j  

MMdxff jijji  )( 111
      for , 1, ... ,i j n and  i j

MMdxff jijji  )( 444
     for , 1, ... ,i j n and  i j

),,,(),,,(),,,( 14131211222114131211 ddddbbbbffff   

{0,1}ijx       for , 1, ... ,i j n and i j  

4321 iiii ffff      for 1, ... ,i n  

0,,, 4321 iiii ffff      for 1, ... ,i n . 

 
Let 1Z , 2Z , 3Z  and 4Z  be upper bounds of , , and  respectively and , 

,  and be their initial tolerance values. By consideration the membership function of fuzzy objective 

function and using Bellman and Zadeh’s max-min operator [3], (Model 5) can be converted to the following model 
[23, 24]: 

12 nn ff  2nf 3nf 34 nn ff  1p
2p 3p 4p

 
(Model 6)                            Max   

s.t.      1 1
2 1 (1 )n nf f Z p      

2 2
2 (1 )nf Z p     

3 3
3 (1 )nf Z p     

4 4
4 3 (1 )n nf f Z p      

1; 0ij jix x    for all Aji ),(  

1ij jix x     for , 1, ... ,i j n and i j  

1ij jk ikx x x      for , , 1, ... ,i j k n  and i j , j k ,  i k

, ,

1ij
i j S i j

x
 

   for all S IS  

MMdxff jijji  )( 222
    for , 1, ... ,i j n  and i j  

MMdxff jijji  )( 333
    for , 1, ... ,i j n  and i j  

MMdxff jijji  )( 111
    for , 1, ... ,i j n and i j  

MMdxff jijji  )( 444
    for , 1, ... ,i j n  and i j  

),,,(),,,(),,,( 14131211222114131211 ddddbbbbffff   

{0,1}ijx      for , 1, ... ,i j n  and i j  

4321 iiii ffff      for 1, ... ,i n  

0,,, 4321 iiii ffff      for 1, ... ,i n  

0 1  . 
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The above model is a mixed integer programming model and can be solved by one of the MIP solution 
approaches such as Branch and bound. Then, expected-optimal solution of the original problem with trapezoidal 
fuzzy numbers can be obtained by ),,,( *

4
*
3

*
2

*
1

*
iiiii fffff   for 1, ... ,i n . 

In our model, finish times of activities are assumed to be fuzzy random variables which are more suitable to real 
world problems. However, it is not possible to determine the finish time of project theoretically in this case due to 
fuzzy randomness of activity duration. Therefore, we used the concept of expected value of fuzzy random variables to 
overcome this problem. This replacement enabled us to convert the original complex model to a mixed integer 
programming model. Another advantage of using expected value is its linear property in compare to the other 
moments like the variance. However, using the expected value is tantamount to focus on the center of the distribution 
while neglecting other parameters of the distribution. 

Unfortunately, obtaining the finish time of activities is not an easy task due to the complexity of the final model 
if some other parameters of the fuzzy random variables are taken into consideration and the generalization of the 
model in this case can be an interesting idea for future researches.   

   

5 An Algorithm for Solving FR-RCPS Problem 
 

In the following steps, we describe the general steps of algorithm for solving FR-RCPS problem. 
 
Data Entry 

-Define a membership function for each fuzzy random variable in (Model 1) and determine the expected values 
of the fuzzy random variables. 

Model Structure 
-Convert (Model 1) to (Model 2) by using the concept of  random expected value of fuzzy random variables. 
-Convert (Model 2) to (Model 4) by using the concepts of fuzzy numbers. 
-Convert (Model 4) to (Model 5) by fuzzy inequality approaches. 
-Convert (Model 5) to (Model 6) by Bellman and Zadeh’s max-min operator. (Model 6) is a mixed integer 
programming  model.  

Solution Procedure 
-Solve (Model 6) as a Mixed Integer Programming model by one of the MIP solvers. Let  be 

expected solutions. Obtain an optimal solution of the original problem by 

*
4

*
3

*
2

*
1 ,,, iiii ffff

),,,( *
4

*
3

*
2

*
1

*
iiiii fffff  . 

 
Example [21]: Assume that a project consists of seven activities and as it is represented by the precedence graph 
shown in Figure 1. The corresponding activity information is listed in Table 1 and supposed that the resource usage of 
each activity is 1. The fuzzy project ready-time and deadline are set to (0, 1, 1, 1) and (57, 57, 57, 63) respectively. 
Only one type of resource is required for the project and its resource availability is 2. Each activity resource usage is 1. 

 
Table 1: Activity information in Figure 1 
Activity Expected of Duration 

1a  (5, 7, 8, 10) 

2a  (8, 10, 15, 18) 

3a  (14, 17, 20, 24) 

4a  (9, 12, 16, 20) 

5a  (3, 5, 7, 9) 

6a  (5, 9, 12, 15) 

7a  (20, 24, 28, 33) 
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Figure 1: Precedence graph with seven activities 

 
Apply the proposed algorithm and solve the obtained MIP problem by one of the MIP solver. The following MIP 

model is generated 
 

Min    727173747372 ,,, ffffff   

s.t.       for all 1; 0ij jix x  Aji ),(  

1ij jix x      for , 1,..., 7i j  and i j  

1ij jk ikx x x      for , , 1,..., 7i j k   and i j , j k ,  i k

23 32 24 42 34 43 1x x x x x x       

53 35 54 45 34 43 1x x x x x x       

MMdxff jkijjkik  )(    for , 1,...,i j 7 and i j ,  1,..., 4k 

       11 12 13 14, , , 0 , 1, 1, 1 5, 7, 8, 10 5, 8, 9, 11f f f f     

{0, 1}ijx       for , 1,..., 7i j  and i j  

4321 iiii ffff      for 1,...,7i   

0,,, 4321 iiii ffff       for 1,...,7i  . 

 
The above model is solved by LINGO 8.0 and the optimal solution of the model is summarized in the second 

column of Table 2.   
 

Table 2:  Schedule generated for the problem     

                                   FR-RCPS                                               RCPSP 

Activity *

i
f  *

if  Precedence Relations 

1 (5, 8, 9, 11) 8.5  

2 (22, 30, 40, 49) 35 4 2 5 7 

3 (19, 25, 29, 35) 27  

4 (14, 20, 25, 31) 22.5 1 3 6 

5 (25, 35, 47, 58) 41  

6 (24, 35, 41, 50) 37.5 4 5 

7 *

7
f =(45, 59, 75, 91) *

7f =67  
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Figure 2: Schedule with seven activities 

 
In order to compare the result of our model with the original RCPS problem in which only duration of project 

activities are assumed to be real variables, this example was also solved by considering the following assumptions: 
, , , , ,5.71 d 5.122 d 5.183 d 144 d 65 d 5.106 d , 267 d . For the real model the following MIP model is 

generated in which the variables are real 
 

Min    7f

s.t.       for all 1; 0ij jix x  Aji ),(  

1 jiij xx    for 7,...,1, ji and i j  

1 ikjkij xxx    for 7,...,1,, kji  and i j , j k ,  i k

1433442243223  xxxxxx  

1433445543553  xxxxxx  

MMdxff jijji  )(    for 7,...,1, ji and i j ,  

11 def   

}1,0{ijx      for 7,...,1, ji and i j  

0if     for 7,...,1i . 

 
The optimal solution in this case when only the mean value of the duration of project activities is important is 

also shown in the third column of Table 2. Furthermore, the optimal precedence relations of this example in both 
fuzzy and real state are summarized in the forth column of Table 2. Finally, Figure 2 indicates the optimal precedence 
relations of activities according to resource constraints. As this result shows, precedence relations have not been 
changed but finish time of activity of our model are more confident. There is no difference between optimal 
precedence relations of two models because we have used exact linear programming in both fuzzy and real models. In 
the fuzzy random model the finish time of activates and the project makespan are trapezoidal fuzzy variables which 
are critical for a top manager of a project and he/she can apply them in order to schedule more confidently in compare 
with the real model which has real variables and has more risk for the manager.  

 

6 Concluding Remarks  
 
In this paper, we introduced the FR-RCPS problem. Then, we proposed a method for solving it. This method is based 
on linear programming formulation [2]. We applied it to the problem in order to transform non-linear constraints of 
FR-RCPSP to linear constraints. Furthermore, we used the expected value of fuzzy random variables, fuzzy inequality 
approaches, and Bellman-Zadeh’s max-min operator for multi-objective programming. In the fuzzy random model 
the finish time of activates and the project makespan are both trapezoidal fuzzy variables which are more flexible for 
a project manager.  

For further future research, different suggestions and remarks can be considered. For example, a   meta-heuristic 
approach can be used to obtain a near-optimal schedule. Furthermore, the usage of resource availability can also be 
considered as fuzzy random numbers.  

As it was mentioned before, there is no doubt that by replacing the fuzzy random variables by their expected 
values some information will be lost. To improve the method discussed in this paper, the reader can generalize the 
model by adding the effect of other factors like variance of a fuzzy random variable to model.  
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