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Abstract

Let (Ω, d) be a metric space and let B be a partition of Ω. For every B in B let L(B) be the class
of all bounded random variables on B. Upper conditional previsions P (X|B) are defined on L(B) × B
with respect to a class of Hausdorff outer measures when the conditioning event B has positive and finite
Hausdorff outer measure in its dimension; otherwise they are defined by a 0-1 valued finitely additive (but
not countably additive) probability. For every conditioning event B these upper conditional previsions
P (X|B) are proven to be the upper envelopes of all linear previsions, defined on the class of all bounded
random variables on B and dominated by P (X|B). Upper conditional probabilities are obtained as a
particular case when L(B) is the class of all 0-1 valued random variables on B. The unconditional upper
probability is defined when the conditioning event is Ω. Relations among different types of convergence of
sequences of random variables are investigated with respect to these upper conditional probabilities. If B
has finite and positive Hausdorff outer measure in its dimension the given upper conditional probabilities
are continuous from above on the Borel σ-field. In this case we obtain that the pointwise convergence
implies the µ-stochastic convergence. Moreover, since the outer measure is subadditive then stochastic
convergence with respect to the given upper conditional probabilities implies convergence in µ-distribution.
It is proven that the given upper conditional previsions satisfy the Monotone Convergence Theorem and
on the class of all Borel-measurable random variables convergence in distribution is equivalent to the
pointwise convergence of the expectation functionals on all bounded continuous functions.
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1 Introduction

One of the main topics in probability theory and stochastic processes theory is the convergence of sequences
of random variables, which plays a key role in asymptotic inference. Different kinds of convergence and their
relations are considered in literature [1] when all the random variables are defined on the same probability
space: convergence with probability 1 or strong convergence and convergence in probability or weak conver-
gence. It is well known that convergence with probability 1 implies convergence in probability but the converse
in not true (see for example Billingsley [1] p.274 and p.340). These convergences are used respectively for the
strong law and the weak law of large numbers. In statistics, if a sequence of statistics converges in probability
to the population value as the sample size goes to infinity according to the weak law of large numbers, the
statistic is called consistent. Convergence in probability implies convergence in distribution, another type of
convergence used in the central limit theorem. Moreover the convergence theorems are important because they
yield sufficient conditions for the integral to be interchanged with pointwise convergence of random variables.

In Denneberg [5] these different types of convergence of sequences of random variables are considered with
respect to a monotone set function instead of a probability measure. To obtain the same relations among
different types of convergence some other properties are required for the monotone set function. In particular
it has been proven that pointwise convergence (that is a particular case of convergence with probability 1) of
a sequence of random variables to a random variable X implies the µ-stochastic convergence (convergence in
probability if µ is a probability measure) if either µ is continuous from above or the convergence is uniform. If µ
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is a subadditive monotone set function then µ-stochastic convergence implies convergence in µ-distribution. In
[2] µ-stochastic convergence plus the uniform integrability have been proven to imply the convergence in mean
for monotone, subadditive, normalized continuous from above set functions; moreover the convergence in mean
of a sequence of Borel measurable random variables has been proven to imply the µ-stochastic convergence.
In this paper relations among different types of convergences with respect to upper probability defined by
Hausdorff outer measures are investigated. The necessity to introduce Hausdorff (outer) measures as new
tool to assess (upper) conditional probability is due to some problems related to the axiomatic definition of
regular conditional probability [8]. In fact every time that the σ-field of the conditioning events is not countably
generated, conditional probability, defined by the Radon-Nikodym derivative may be not separately coherent
as required in the Walley’s approach [9].

The paper is organized as follows. In Section 2 different types of convergence with respect to a monotone set
function and they relations are recalled. Upper conditional previsions defined with respect to Hausdorff outer
measures are proposed in Section 3 and they are proven to be the upper envelopes of all linear previsions defined
on the class of all bounded random variables and agree with them on the Borel σ-field. Upper conditional
probabilities are obtained if all random variables are 0-1 valued and the unconditional probability is obtained
when the conditioning event is Ω. In Section 4, relations among different types of convergence with respect
to the given upper conditional probability are proven. Moreover the upper conditional previsions are proven
to satisfy the Monotone Convergence Theorem so that they are continuous from below with respect to the
pointwise convergence. In Section 5 convergence in distribution with respect to the given upper conditional
probability and for Borel-measurable random variables is proven to be equivalent to the pointwise convergence
of the expectation functionals on all bounded continuous functions.

2 Convergences of Random Variables with Respect to a Monotone
Set Function

In [5] different kinds of convergence of a sequence of random variables with respect to a monotone set function
are introduced and their relations have been proven.

Given a non-empty set Ω and denoted by S a set system, containing the empty set and properly contained
in ℘(Ω), the family of all subsets of Ω, a monotone set function µ: S → <+ = <+∪{+∞} is such that µ(®)=0
and if A,B ∈ S with A ⊂ B then µ(A) ≤ µ(B). A monotone set function on S is continuous from below if for
each increasing sequence of sets An of S such that A=

⋃∞
n=1An belongs to S we have limn→∞µ(An) = µ(A).

A monotone set function on S is continuous from above if for each decreasing sequence of sets An of S such
that A=

⋂∞
n=1An belongs to S we have limn→∞µ(An) = µ(A). If µ is a finite, additive monotone set function

on S, which is closed under set difference then the following properties are equivalent

(i) µ is continuous from below;

(ii) µ is continuous from above

(iii) µ is continuous from above at the empty-set.

If S is a σ-field then µ is σ-additive if and only if it is additive and continuous from below.
Given a monotone set function µ on S the outer set function of µ is the set function defined on the whole

power set ℘(Ω) by

µ∗(A) = inf
{

µ(B)|A ⊂ B ∈ S
}

, A ∈ P (Ω).

The inner set function of µ is the set function defined on the whole power set ℘(Ω) by

µ∗(A) = sup
{

µ(B)|B ⊂ A;B ∈ S
}

, A ∈ P (Ω).

We recall the definitions of different types of convergence with respect to a monotone set function and
their implications given in [5]. Let µ be a monotone set function defined on S properly contained in P(Ω) and
X : Ω → < = < ∪

{
−∞,∞

}
an arbitrary function on Ω then the set function

Gµ,X(x) = µ
{

ω ∈ Ω : X(ω) > x
}
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is decreasing and it is called decreasing distribution function of X with respect to µ. If µ is continuous from
below then Gµ,X(x) is right continuous.

A function X : Ω → < is called upper µ-measurable if Gµ∗,X(x) = Gµ∗,X(x).
Given a monotone set function µ defined on a field S and a sequence Xn : Ω → < of upper µ-measurable

functions we say that Xn converges in µ-distribution to an upper µ measurable function X : Ω → < if
limn→∞Gµ,Xn

= Gµ,X except at on at most countable set. Since a monotone set function is continuous
except on an at most countable set the previous condition is equivalent to limn→∞Gµ,Xn

(x) = Gµ,X(x) for
all continuity points x of Gµ,X .

A sequence of random variables Xn converges µ-stochastically (or converges in probability if µ is a
probability) to a random variable X if |Xn-X| converges in µ∗-distribution to the null function Gµ,0(x),
where Gµ,0(x) = µ(Ω) if x ≤ 0 and Gµ,0(x) = 0if x > 0.

If µ is monotone and subadditive and Xn converges µ-stochastically to X then Xn converges in µ-
distribution to X (Proposition 8.5 of [5]). If µ is monotone and continuous from above and Xn converges
pointwise to X then Xn converges µ-stochastically to X (Proposition 8.8 of [5]).

Given an upper µ-measurable function X : Ω → < with decreasing distribution function Gµ,X(x), the
Choquet integral of X with respect to µ is defined if µ(Ω) < ∞ through

∫
Xdµ =

∫ 0

−∞(Gµ,X(x)− µ(Ω))dx +
∫∞
0

Gµ,X(x)dx.

The integral is in < or can assume the values −∞, ∞ and ‘non-existing’. If X ≥ 0 or X ≤ 0 the integral
always exists.

Let µ be a monotone set function and let Xn be a sequence of random variables such that Y ≤ Xn ≤ Z
for every n ∈ N and Y and Z have finite Choquet integral with respect to µ; if Xn converges in µ-distribution
to X then limn→∞

∫
Xndµ =

∫
Xdµ (General Dominated Convergence Theorem, Proposition 8.9 of [5]).

3 Upper Conditional Previsions Defined with Respect to Hausdorff
Outer Measures

Let (Ω, d) be a metric space, a bounded random variable X is a bounded function from Ω to < and let L(Ω)
be the set of all bounded random variable on Ω. When K is a linear space of bounded random variables a
coherent upper prevision is a real function P defined on K , such that the following conditions hold for every
X and Y in K :

(1) P (X) ≤ sup(X);

(2) P (λ X) = λ P (X) for each positive constant λ;

(3) P (X+Y ) ≤ P (X) + P (Y ).

Suppose that P is an upper prevision defined on a linear space K, its conjugate lower prevision P is defined
on the same domain K by P (-X) = - P (X). If for every X belonging to K we have P (X) = P (X) = P (X),
then P is called a linear prevision.

When K is a linear space of events, that can be regarded as a class of 0-1 valued gambles then P (X) is
called an upper coherent probability and P (X) is a lower coherent probability.

A necessary and sufficient condition for an upper probability P to be coherent is to be the upper envelope
of linear previsions, i.e. there is a class M of linear previsions such that P =sup{P (X) : P ∈ M} ([9] 3.3.3).

Given a coherent upper (lower) prevision P defined on a domain K the maximal (minimal) coherent
extension of P to the class of all bounded random variables is called [9] natural extension of P ([9] 3.1.1).

The linear extension theorem ([9] 3.4.2) assures that the class of all linear extensions to the class of all
bounded random variables of a linear prevision P defined on a linear space K is the class M(P ) of all linear
previsions that are dominated by P on K. Moreover the upper and lower envelopes of M(P ) are the natural
extensions of P ([9] Corollary 3.4.3).

We recall the notion of separately coherent conditional upper previsions.
Let B denote a partition of Ω, which is a class of non-empty, pair wise-disjoint subsets whose union is Ω.

For B in B let H (B) be the set of all random variables defined on B. An upper conditional prevision P (X|B)
is a real function defined on H (B). Upper conditional previsions P (X|B), defined for B in B and X in H (B)
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are required [9] to be separately coherent, that is for every conditioning event B P (·|B) is a coherent upper
prevision on the domain H (B) and P (B|B) = 1. Upper and lower conditional probabilities are particular
kinds of upper and lower conditional previsions obtained when H (B) is a class of events.

3.1 Hausdorff Outer Measures

Given a non-empty set Ω an outer measure is a function µ∗ : ℘(Ω) → [0,∞] such that µ∗(®) = 0, µ∗(A) ≤
µ∗(A′) if A ⊆ A′ and µ∗(

⋃∞
i=1 Ai) ≤

∑∞
i=1 µ∗(Ai).

Examples of outer set functions or outer measures are the Hausdorff outer measures.
Let (Ω, d) be a metric space. A topology, called the metric topology, can be introduced into any metric

space by defining the open sets of the space as the sets G with the property:
if x is a point of G, then for some r > 0 all points y with d(x, y) < r also belong to G.
It is easy to verify that the open sets defined in this way satisfy the standard axioms of the system of open

sets belonging to a topology ([7] p.26).
If we assume that (Ω, d) is the Euclidean metric space where Ω is a subset of <n, then the topology is

the metric topology defined into the Euclidean metric space (Ω,d), that is the natural topology. If we assume
that d is the discrete metric then the metric topology is ℘(Ω). The following results about Hausdorff outer
measures are valid in a general metric space setting.

The diameter of a non empty set U of Ω is defined as |U |= sup
{

d(x, y) : x, y ∈ U
}

and if a subset A of Ω

is such that A⊂ ⋃
i Ui and 0< |Ui| < δ for each i, the class

{
Ui

}
is called a δ-cover of A.

Let s be a non-negative number. For δ >0 we define hs,δ (A) = inf
∑∞

ı=1 |Ui|s , where the infimum is over

all δ-covers
{

Ui

}
.

The Hausdorff s-dimensional outer measure of A, denoted by hs(A), is defined as

hs(A) = limδ→0 hs,δ (A).

This limit exists, but may be infinite, since hs,δ(A) increases as δ decreases. The Hausdorff dimension of
a set A, dimH(A), is defined as the unique value, such that

hs(A) = ∞ if 0 ≤ s < dimH(A),
hs(A) = 0 if dimH(A) < s < ∞.

We can observe that if 0 < hs(A) < ∞ then dimH(A) = s, but the converse is not true. We assume that
the Hausdorff dimension of the empty set is equal to -1 so that no event has Hausdorff dimension equal to
the empty set. Denote by t the Hausdorff dimension of Ω , if an event A is such that dimH(A) = s < t then
the Hausdorff dimension of the complementary set is equal to t since the following relation holds:

dimH(A ∪B)=max
{

dimH(A), dimH(B)
}

.

Hausdorff outer measures are metric outer measures, that is hs(E ∪F ) = hs(E) + hs(F ) whenever E and
F are positively separated, i.e. d(E, F ) = inf {d(x, y) : x ∈ E, y ∈ F} > 0.

A subset A of Ω is called measurable with respect to the outer measure hs if it decomposes every subset
of Ω additively, that is if hs(E) = hs(A ∩ E) + hs(E −A) for all sets E ⊆ Ω.

All Borel subsets of Ω are measurable with respect to a metric outer measure ([6] Theorem 1.5 ). So
every Borel subset of Ω is measurable with respect to every Hausdorff outer measure hs since Hausdorff outer
measures are metric.

The restriction of hs to the σ-field of hs-measurable sets, containing the σ-field of the Borel sets, is called
Hausdorff s-dimensional measure. The Borel σ-field is the σ-field generated by all open sets. The Borel sets
include the closed sets ( as complement of the open sets), the Fσ-sets ( countable unions of closed sets) and
the Gσ-sets (countable intersections of open sets), etc.

In particular the Hausdorff 0-dimensional measure is the counting measure and the Hausdorff 1-dimensional
measure is the Lebesgue measure.

The Hausdorff s-dimensional measures are modular on the Borel σ-field, that is hs(A ∪B) + hs(A ∩B) =
hs(A) + hs(B) for every pair of Borelian sets A and B; so that (Proposition 2.4 of [5]) the Hausdorff outer
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measures are submodular (hs(A ∪ B) + hs(A ∩ B) ≤ hs(A) + hs(B)) and the Hausdorff inner measures are
supermodular or 2-monotone (hs(A ∪B) + hs(A ∩B) ≥ hs(A) + hs(B)).

An important property of Hausdorff outer measures is that they are regular ([6] Theorem 1.6), that is if
for every set A there is an hs-measurable set E containing A with hs(E) = hs(A). In Theorem 1.6 (a) of [6]
it has been proven that if A is any subset of <n there is a Gσ-set G containing A with hs(A) = hs(G). In
particular hs is a outer regular measure.

Moreover Hausdorff outer measures are continuous from below ([6] Lemma 1.3), that is for any increasing
sequences of sets

{
Ai

}
we have limi→∞ hs(Ai) = hs(limi→∞Ai).

A useful consequence of regularity of Hausdorff outer measures is that hs-measurable sets with finite
Hausdorff outer measure can be approximated from below by closed subsets ([6] Theorem 1.6 (b)) or equally
that the restriction of every Hausdorff outer measure hs to the class of all hs-measurable sets with finite
Hausdorff outer measure is inner regular on the class of all closed subsets of Ω.

3.2 A New Model of Separately Coherent Upper Conditional Previsions

Upper conditional previsions for bounded random variables are defined by the Choquet integral with respect
to Hausdorff outer measures if the conditioning event has positive and finite Hausdorff outer measure in its
dimension; otherwise, they are defined by a 0-1 valued finitely, but not countably, additive probability.

Theorem 1 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B denote by s the
Hausdorff dimension of the conditioning event B and by hs the Hausdorff s-dimensional outer measure. Let
L(B) be the class of all bounded random variables on B. Moreover, let m be a 0-1 valued finitely additive, but
not countably additive, probability. Then for every B in B the functionals P (X|B) defined on L(B) by

P (X|B) = 1
hs(B)

∫
B

Xdhs if 0 < hs(B) < ∞
and by

P (X|B) = m(XB) if hs(B) =0, ∞
are separately coherent upper conditional previsions.

Proof: Since L(B) is a linear space we have to prove that, for every B ∈ B P (X|B) satisfy conditions 1),
2), 3) and the condition P (B|B) = 1.

From the definition of P (X|B) we have that for every conditioning event B the upper conditional prevision
P (·|B) satisfies properties 1) and 2). Moreover property 3) follows from the given definition in the case where
B has Hausdorff measure equal to zero or infinity. If B has finite and positive Hausdorff outer measure in its
dimension then property 3), follows from the Subadditivity Theorem ([5] Theorem 6.3) since Hausdorff outer
measures are monotone, submodular and continuous from below. From the definition we also have P (B|B)
= 1.

Upper (lower) conditional probabilities can be obtained from the previous definition in the case where
L(B) is the class of all 0-1 valued random variables of B. In [4] they are proven to be separately coherent.

Theorem 2 Let (Ω, d) be a metric space and let B be a partition of Ω. Denote by s the Hausdorff dimension
of the conditioning event B and by hs the Hausdorff s-dimensional outer (inner) measure. Let F be the class
of all subsets of Ω. Moreover, let m be a 0-1 valued finitely additive, but not countably additive, probability.
Then the functions defined on F × B by

P (A|B) = hs(AB)
hs(B) if 0 < hs(B) < ∞

and by

P (A|B) = m(AB) if hs(B) = 0, ∞
are separately coherent upper (lower) conditional probabilities.

For every B ∈ B let P (·|B) be the restriction to the class of all bounded Borel-measurable random variables
of the upper and lower conditional previsions defined in Theorem 1.

In the next theorem we prove that the upper and lower conditional previsions defined as in Theorem 1 are
the upper and lower envelopes of all linear extensions of P (·|B) to the class of L(B).
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Theorem 3 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B let P (·|B) be the
restriction to the class of all bounded Borel-measurable random variables of the upper and lower conditional
previsions defined in Theorem 1. For every conditioning event B ∈ B let L(B) be the class of all bounded
random variables defined on B; then the upper and lower conditional previsions defined on L(B) as in Theorem
1 are the upper and lower envelopes of all linear extensions of P (·|B) to the class L(B).

Proof: Since P (·|B) is a linear conditional prevision on the σ-field of all bounded Borel-measurable random
variables, which is a linear space, for the linear extension theorem we have that the class of all linear extensions
of P (·|B) to the class of all bounded random variables defined on B is M(P ), i.e. the class of all linear
conditional previsions dominated by P (·|B) on the σ-field of all bounded Borel-measurable random variables.
Upper and lower envelopes of all such extensions are the natural extensions of P (·|B) ([9] Corollary 3.4.3).
If the conditioning event B has positive and finite Hausdorff measure in its dimension the natural extensions
of P (·|B) are the upper and lower conditional previsions P (·|B) and P (·|B) defined as in Theorem 1. In
fact the natural extensions of a countably additive probability defined on a σ-field are the outer and inner
measures generated by it ([9] Theorem 3.1.5). Moreover since Hausdorff outer (inner) measures are submodular
(supermodular or 2-monotone) the natural extensions to the class of all bounded random variables on B of
the upper (lower) conditional probabilities defined as in Theorem 1 are given by the Choquet integral with
respect to these upper (lower) probabilities [3]. If the conditioning event B has Hausdorff outer measure equal
to zero or infinity then P (·|B) is a 0-1 valued additive probability on the Borel σ-field and so it is the upper
(lower) envelope of all probability measures defined on the Borel σ-field and dominated by P (·|B).

4 Relations among Different Types of Convergence

In the next theorem we prove that when B has finite and positive Hausdorff outer measure in its dimension and
upper conditional probabilities are defined as in Theorem 2, then µ-stochastic convergence implies convergence
in µ-distribution.

Theorem 4 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B such that B has
finite and positive Hausdorff outer measure in its dimension denote by µ = P (A|B) the upper conditional
probability defined as in Theorem 2. Let Xn be a sequence of random variables on B; if Xn converges to a
random variable X µ-stochastically then Xn converges in µ-distribution to X.

Proof: Since B has finite and positive Hausdorff measure in its dimension we have µ = P (A|B) = hs(AB)
hs(B) .

Moreover every outer Hausdorff measure is subadditive so we obtain that µ-stochastic convergence implies
convergence in µ-distribution.

An important consequence of Theorem 4 is that upper conditional probabilities defined as in Theorem 2,
satisfy the General Dominated Convergence Theorem.

We prove that when B is a non-empty set with positive and finite Hausdorff outer measure in its dimension,
the upper conditional prevision defined as in Theorem 1 satisfies the following Monotone Convergence Theorem
for monotone set functions ([5] Theorem 8.1).

Theorem 5 Let µ be a monotone set function on a σ-algebra F properly contained in P (Ω), which is con-
tinuous from below. For an increasing sequence of non negative, F-measurable random variables Xn the limit
function X = limn→∞Xn is F-measurable and limn→∞

∫
Xndµ =

∫
Xdµ.

We can observe that if the monotone set function is defined on the power set then we do not need to
impose any measurability condition since the Choquet integral is defined for every random variable. Moreover
the Monotone Convergence Theorem involves a sequence of non negative, measurable random variables but
this is not a restriction since for any measurable random variable f there exist two measurable, non negative
random variables f+(ω) = max {f(ω), 0} and f−(ω) = −min {f(ω), 0} such that f = f+ − f−([1] p.203).

Theorem 6 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B let L(B) be
the class of all bounded random variables on B. If B has positive and finite Hausdorff outer measure in its
dimension then the coherent upper previsions defined as in Theorem 1 are continuous from below, that is given
an increasing sequence of non negative random variables Xn converging pointwise to the random variable X
we have that limn→∞P (Xn|B) = P (X|B).
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Proof: If B has positive and finite Hausdorff outer measure in its dimension we have that P (X|B) =
1

hs(B)

∫
B

Xdhs. Since each s-dimensional Hausdorff outer measure is continuous from below then by the
Monotone Convergence Theorem it follows that the given upper conditional prevision is continuous from
below.

When B has positive and finite Hausdorff outer measure in its dimension, the upper conditional prob-
abilities µ defined as in Theorem 2, are monotone, subadditive and continuous from below so they satisfy
Proposition 3.7 of [2], that is a sequence of random variables µ-uniformly integrable and µ-stochastically
converging to a random variable X, converges in µ-mean to X. Moreover from Proposition 3.8 of [2] we
obtain that if µ is equal to the upper conditional probability defined as in Theorem 2 then a sequence of Borel
measurable random variables converging in µ-mean to X is µ-stochastically converging. In the next theorem
we prove that when B has finite and positive Hausdorff outer measure in its dimension and we consider the
restriction to the Borel σ-field of the upper conditional probabilities defined as in Theorem 2, then pointwise
convergence implies µ-stochastic convergence.

Theorem 7 Let (Ω, d) be a metric space and let B be a partition of Ω. Let F be the σ-field of all Borel
subsets of Ω. Moreover, let m be a 0-1 valued finitely additive, but not countably additive, probability. For
every B ∈ B such that B has finite and positive Hausdorff outer measure in its dimension denote by µ be the
(upper) conditional probabilities defined on F as in Theorem 2, that is µ = P (A|B). Let Xn be a sequence
of Borel measurable random variables on B converging pointwise to a random variable X. Then Xn converges
to X µ-stochastically.

Proof: Since B has finite and positive Hausdorff measure in its dimension we have µ = P (A|B) = hs(AB)
hs(B) .

Moreover every outer Hausdorff measure is continuous from below and countably additive on the Borel σ-
field. So every (outer) Hausdorff measure is continuous from above on the Borel σ-field. Then the pointwise
convergence of a sequence of random variables Xn to X implies the µ-stochastic convergence of Xn to X.

Remark 1: In general a coherent upper probability is not continuous from below and continuous from
above; for example if we consider a coherent upper probability defined as natural extension of a merely
finitely additive probability on a σ-field, then it is not continuous from above and continuous from below
since an additive measure on a σ-field is continuous from above and continuous from below if and only if it is
σ-additive. As a consequence we have that the pointwise convergence does not imply stochastic convergence
with respect to this upper probability and the Monotone Convergence Theorem cannot always be applied.
Hausdorff outer measures satisfy Theorem 6 and Theorem 7 because they are Borel regular outer measures.

5 Convergence in µ-distribution

In probability theory convergence in distribution has been proven to be equivalent to the pointwise convergence
of the expectation functionals on all bounded continuous functions (see for example Theorem 29.1 of [1]).

If µ is a probability measure on a probability space and X is a measurable random variable then to every
decreasing distribution function Gµ,X(x) corrisponds a probability measure on (<,F), where F is the Borel
σ-field. If µn and µ are the probability measures on (<,F ) corresponding to Gµ,Xn

(x) and Gµ,X(x) then Xn

converges in µ-distribution to X if and only if limn→∞µn(A)=µ(A) for every A=(x,∞).
This last condition is equivalent to the pointwise convergence of expectation functionals on all bounded

and continuous function f (Theorem 29.1 of [1]), that is limn→∞
∫

fdµn =
∫

fdµ.
The notion of upper probability induced by a random variable X is proposed.

Definition 1 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B with positive
and finite Hausdorff outer measure in its dimension denote by µ = P (A|B) the upper conditional probabilities
defined as in Theorem 2. Given a random variable X on B then the upper probability µX induced by X on
(<,F), where F is the Borel σ-field, is defined by µX(B) = P (ω ∈ B : ω ∈ X−1(H)) = hs(X−1(H))

hs(B) for H

belonging to F.

We have that the equivalence between convergence in µ-distribution for Borel-measurables random vari-
ables and the pointwise convergence of expectation functionals on all bounded and continuous function f
remains valid when upper probabilities are defined with respect to Hausdorff outer measures.
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Theorem 8 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B with positive and
finite Hausdorff outer measure in its dimension denote by µ = P (A|B) the restriction to the Borel σ-field
of the upper conditional probability defined as in Theorem 2. Let L∗(B) be the class of all Borel measurable
random variables on B. Then the convergence in µ-distribution of a sequence of random variables of L∗(B)
to a random variable X is equivalent to the pointwise convergence of expectation functionals on all bounded
and continuous function f that is limn→∞

∫
fdµn =

∫
fdµ.

Proof: If Xn and X are Borel-measurable random variables and H is a Borelian set then the sets X−1
n (H)

and X−1(H) are also Borelian sets; moreover since every Hausdorff s-dimensional outer measure is countably
additive on the Borel σ-field then the (upper) conditional probabilities µn and µ induced respectively by Xn

and X on (<,F ) are probability measures. Then convergence in µ-distribution is equivalent to the pointwise
convergence of expectation functionals on all bounded and continuous function f .

6 Conclusions

This paper investigates the relations among different types of convergence for random variables when they
are based on an upper probability approach where conditional upper expectations with respect to Hausdorff
outer measures are used whenever we have to condition on a set with probability zero.

Upper (lower) conditional previsions defined with respect to Hausdorff outer measures are proven to be
the upper (lower) envelopes of all linear extensions to the class of all random variables of the restriction to
the Borel-measurable random variables of the given upper conditional previsions.

It is proven that the relations among different types of convergences of random variables defined with
respect to upper conditional probability defined by Hausdorff outer measures are the same that hold if con-
vergences are defined with respect to a probability measure. When the conditioning event has finite Hausdorff
outer measure in its dimension these results are obtained because Hausdorff outer measures are Borel regular
outer measures and so continuous from below and continuous from above on the Borel σ-field. In general if
upper conditional probability is defined as natural extension of a coherent merely finitely additive probability
defined on a σ-field we have that µ-stochastically convergence does not imply convergence in µ-distribution
since in this case the upper conditional probability is not continuous from above.
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