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Abstract 
 

Conventional Fuzzy regression using possibilistic concepts allows the identification of models from uncertain data 
sets. However, some limitations still exist.  This paper deals with a revisited approach for possibilistic fuzzy regression 
methods. Indeed, a new modified fuzzy linear model form is introduced where the identified model output can envelop 
all the observed data and ensure a total inclusion property. Moreover, this model output can have any kind of spread 
tendency. In this framework, the identification problem is reformulated according to a new criterion that assesses the 
model fuzziness independently of the collected data. The potential of the proposed method with regard to the 
conventional approach is illustrated by simulation examples. 

 © 2010 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
Classically, in regression models, deviations between the observed and the estimated values are supposed to be due to 
measurement errors and/or random variations. In this case, statistical techniques are well suited for the model 
determination. However, in many real applications, the deviations are due to the imprecise observed data or the 
indefiniteness of the system structure. In this case, the uncertainty is not due to randomness but fuzziness. So, 
regression analysis on fuzzy data for dealing with fuzziness is usually called fuzzy regression analysis. 

Fuzzy regression, a fuzzy type of classical regression analysis, has been proposed to evaluate the functional 
relationship between dependent and independent variables in a fuzzy environment. Indeed, unlike statistical 
regression modeling that is based on probability theory, fuzzy regression is based on possibility theory and fuzzy set 
theory [23, 24]. In the fuzzy literature, the regression problem with fuzzy data has been previously treated from 
different points of view and by considering different kinds of input/output data. In this context, the complete 
specification of regression problems highly depends on the nature of input-output data [8]. Some works are thus 
devoted to Crisp-Input Crisp-Output (CICO) data [16] while others [9, 15, 21] consider the regression problem using 
Fuzzy-Inputs and Fuzzy-Outputs (FIFO) data. Most commonly, a mixed approach Crisp-Inputs and Fuzzy-Outputs 
(CIFO) is chosen [6, 8, 10-12, 14, 17, 18]. In this framework, the fuzzy regression with CIFO data aroused a major 
interest. However, the FIFO model regression remains a little studied field. Indeed, only a few papers concerning this 
problem have been published. In this context, it is even more difficult to design a robust fuzzy regression 
methodology.  First step towards the identification of such systems consists in studying and implementing a fuzzy 
regression for CIFO systems. So, in this paper, the CIFO regression problem is considered.  

In the context of regression model identification, two main problems come up, namely, the model structure 
specification and the estimation of the given model. The first problem is focused on the choice of a suitable model 
structure for a data set. This problem is traditionally addressed a priori, in order to take advantage of the estimators 
found for the second one. In this paper, as commonly used, the model structure is assumed to be linear. In this case, 
the fuzzy regression problem is reduced to an estimation problem of the model parameters.  

According to Diamond [6-8, 17, 18], fuzzy regression techniques can be classified into two distinct areas. The 
first proposed by Tanaka, which minimizes the total spread of the output, is named possibilistic regression. This 
method tries to minimize the whole fuzziness of the model by minimizing the total spread of its fuzzy parameters, 
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subject to including the data points of each sample within a specified feasible data interval. In other words, the 
regression problem is viewed as finding fuzzy parameters of a regression model according to a mathematical 
programming problem. The second approach developed by Diamond [6], which minimizes the total square error of 
the output is called the fuzzy least square method. In the present study, the possibilistic approach is employed, for 
which a new revisited methodology is proposed. In this case, the main objective is to revisit some theoretical works 
about fuzzy regression techniques and to propose some slight improvements for their limitations. 

Since the fuzzy regression has been introduced by Tanaka et al. [17], several fuzzy regression approaches have 
been proposed. In this context, Tanaka et al. [18] propose different expressions of the criterion to be optimized and 
different formulations of the constraints to be satisfied for possibility and necessity estimation models. Still in a linear 
context, Tanaka and Ishibushi [19] extend their approach for dealing with interactive fuzzy parameters. In this paper, 
a mixed approach (CIFO) is adopted [17, 18] with the idea of keeping a simple model, possibly invertible 
(Boukezzoula et al. 2003, 2006). From most of these methods, three types of problems emerge: 

• The assumption of symmetrical triangular fuzzy parameters is most frequently used. However, such 
parameters have some limitations, especially when a total inclusion of the observed data in the predicted model output 
must be ensured. Indeed, the identification is made at a chosen level  considered as a degree of the fitting of the 　
obtained model to the observed data. If this principle allows in simplifying the problem computation by using interval 
arithmetic to express the inclusion problem, after reconstruction of the parameters, the inclusion cannot be guaranteed 
anymore at any level α [1, 2]. 

• The obtained models are not able to represent any tendency of the output spread. In this case, the obtained 
models become more imprecise than necessary in some situations. Indeed, one weakness is the fact that the fuzziness 
of the model output varies in the same way than the absolute value of the inputs. It follows that it is impossible to 
have a decreasing (resp. increasing) spread of the model output for positive (resp. negative) inputs. This restriction is 
acceptable in a measurement context where it is usual to express percentage relative errors. However, when fuzziness 
is considered as an intrinsic characteristic of the system to be modeled, the assumption that the higher the input, the 
higher the fuzziness attached to the model output, is open to criticism [2]. 

• In conventional regression methods [10, 11, 14, 17, 18], the used criteria are only based on the available data, 
their minimization does not guarantee that the identified model has the least global fuzziness that could be achieved 
on a whole domain D (input domain of definition). If the identified model is to be used on the domain D, it may be 
more judicious to prefer a model with a lower global fuzziness, i.e. a less imprecise model. Actually, the global 
fuzziness of a model is an intrinsic characteristic of the latter that should be assessed independently of the 
identification data, already used to express the constraints of the linear program. 

According to above-discussed points, the originality of the presented work is triple: 
• A total inclusion property is ensured by assuming a trapezoidal fuzzy interval representation of the predicted 

output and the parameters in the regression model.  
• A modified form of the fuzzy linear model is proposed so that any kind of spread tendency can be 

represented. 
• The formulation of the linear program used to identify the model introduces a modified criterion that 

assesses the model fuzziness independently of the collected data. 
The structure of this paper is as follows. In section 2, the concepts of intervals and fuzzy intervals are introduced. 

Section 3 is devoted to the conventional fuzzy linear regression. A revisited approach of the latter is detailed in 
section 4. Section 5 presents the identification process and its illustration by simulation examples. Finally, 
conclusions and perspectives are presented in Section 6. 
 
2   Relevant Concepts and Notations 

 
2.1  Conventional and Fuzzy Intervals 

 
An interval a is defined by the set of elements lying between its lower and upper limits as:  

},/{ ℜ∈≤≤= +− xaxaxa .                                                                           (1) 
Given an interval a, its Midpoint M(a) and its Radius R(a) are defined by: 

( ) 2/)( +− += aaaM  and ( ) 2/)( −+ −= aaaR .                                                             (2) 
An interval a can be viewed as a particular case of a fuzzy number whose membership function µa takes the 

value 1 over the interval and 0 anywhere else (see Figure 1.a). In the same way, a fuzzy interval A is represented by 
its membership function µA. In order to specify the fuzzy interval shape, one has to consider two dimensions. The first 
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one (horizontal dimension) is similar to that used in interval representation, that is the real line ℜ. The second one 
(vertical dimension) is related to the handling of the membership degrees and thus restricted to the interval [0, 1] (see 
Figure 1.b). 

 

 
Figure 1: Conventional and fuzzy interval representation 

 
In this context, two kinds of information are required for completely defining a fuzzy interval. Both pieces of 

information, called support and kernel intervals, are defined on the horizontal dimension, but are associated to two 
different levels (level 0 and level 1) on the vertical dimension (see Figure 1.b). To completely define the fuzzy 
interval, two additional functions (profiles) are used to link the support to the kernel: 

( ) ( ) },;/{)(},;/{)( +− ≤≥=≥≥= +−
AAAA SxxxSupASxxxInfA αµαµ αα

                                                (3) 

where α ∈ [0, 1] represents the vertical dimension. 
In this case, for a given α-cut on the fuzzy interval A, a conventional interval  is obtained: α)(A

])(,)[()( ααα
+−= AAA .                                                                                          (4) 

When the profile functions are assumed to be linear, the fuzzy interval A becomes a trapezoidal one and is fully 
defined by its support and its kernel intervals (see Figure 1.b): 

Support:  and Kernel : ],[ +−= AAA SSS ],[ +−= AAA KKK .                                                           (5) 
Finally, in the same way that the conventional interval a is denoted [a, a+], the fuzzy trapezoidal interval A will 

be defined by its support and kernel, i.e.: 
]),[],,([),( +−+−== AAAAAA SSKKSKA .                                                                          (6) 

It is obvious that a triangular symmetrical fuzzy interval is a particular case of a trapezoidal one. In this case, we 
have: 
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2.2  Fuzzy Interval Inclusion 

 
For two conventional intervals a and b, an inclusion relation (Boukezzoula et al. 2007) of a in b (see Figure 2.a) is de-
fined as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) (
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)                           (8) 

From Eq. (8) it follows 
( ) ( ) )()( aRbRaMbMba −≤−⇔⊆ .                                                                (9) 

In the particular case where a is a scalar value, the relation of Eq. (9) becomes 
( ) )(bRabMba ≤−⇔∈ .                                                                           (10) 

For two fuzzy intervals A and B, an inclusion relation of A in B is defined by the following relation between their 
profiles: 

)()(: xxxBA BA µµ ≤∀⇔⊆ .                                                                           (11) 
In the case of trapezoidal fuzzy intervals, Eq. (11) leads to 
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BA KK ⊆  and .                                                                            (12) BA SS ⊆
As the fuzzy interval profile functions are linear, it is clear that condition (12) guarantees inclusion for any level 

α . Moreover, when the particular case of triangular fuzzy intervals is assumed, the inclusion condition defined in Eq. 
(12) imposes an equality condition between the kernel values (see Figure 2(b)). 

 

 
Figure 2: Conventional and fuzzy triangular interval inclusions 

 
3    Conventional Fuzzy Linear Regression Methodology 

 
The linear regression model is the most frequently used form in regression analysis for expressing the relationship 
between one or more explanatory variables and response. As commonly assumed in the fuzzy regression literature, 
the case of simple linear regression model involving a single independent variable is considered. The case of multiple 
inputs is a straightforward generalization of this methodology. The simple linear regression model can be 
mathematically expressed as follows: 

ExAAY ⊕⊗⊕= 10 ,                                                                    (13) 
where Y is the output (dependant fuzzy variable), x is a non fuzzy (crisp) input, E is the fuzzy error associated with 
the regression model and A0, A1 are fuzzy intervals, the unknowns to be estimated from observed data.  

Let us consider a set of M observed data samples defined on an interval D = [inf(D), sup(D)]. Let the jth sample 
be represented by the couple (xj, Yj), j = 1,..., M where xj are crisp inputs ranked in an increasing order and Yj are the 
corresponding fuzzy interval outputs. 

Like any regression technique, the fuzzy regression objective is to determine a predicted functional relationship:  
xAAY ⊗⊕= 10

ˆ , where: Y  is the predicted output.                                    (14) ˆ
In this case, as the model structure is assumed to be fixed, using the formalism of fuzzy intervals we can express 

the regression problem as an estimation problem of the fuzzy interval parameters A0 and A1. In other words, the fuzzy 
regression problem is reduced to the estimation of the fuzzy parameters A0 and A1.  As discussed in the paper 
introduction, a possibilistic fuzzy regression approach is adopted where the objective is to determine the fuzzy 
parameters such that the observed data are included in the predicted one. 

In the fuzzy literature, several techniques have been proposed to deal with this problem [17, 18].  In this 
framework, whatever the methodology chosen, two points have to be considered for its implementation:  

• The model form induced by the used parameters shape and implying constraints for the optimization 
problem.  

• The used identification criterion in the optimization process.  
 

3.1   Conventional Model Form 
 
As proposed by (Tanaka et al. 1982, 1989), the parameters A0, A1 are assumed to be symmetrical triangular fuzzy 

intervals. In this case, as the model is linear and the inputs are considered as crisp values, the model output will be 
also a triangular fuzzy interval whose membership function is of the same kind as that of the model parameters. 

So, when considering the jth observed data, whose output is the triangular symmetrical fuzzy interval 
, the corresponding predicted output is the triangular fuzzy interval given by: ),(

jj YYj SKY =

))])(ˆ()),(ˆ([,(]),[,(),(ˆ
ˆˆˆˆˆˆˆˆ xYRKxYRKKSSKSKY jYjYYYYYYYj jjjjjjjj

+−=== +−                                           (15) 

Some remarks and design considerations can now be expressed concerning the used model form.  
 

3.1.1    Model Tendency 
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According to the used model (see Eq. (14)), it can be stated that the model output varies in the same way that the 
absolute value of the input. So, it is impossible to have a decreasing (resp. increasing) spread of the model output for 
positive (resp. negative) inputs. To justify this assertion, the output modal value and the spread are determined. 
Indeed, as A0 and A1 are symmetrical triangular fuzzy intervals, and x a crisp input,  is also a symmetrical 

triangular one. In this case, the modal value  and the spread  are given by the following equation:  

)(ˆ xY
))(ˆ( xYM ))(ˆ( xYR

⎪⎩

⎪
⎨
⎧

+=

+=+==

.).()())(ˆ(

.).()())(ˆ(

10

10ˆ 10

xARARxYR

xKKxAMAMKxYM AAYj                                                   (16) 

In this case, as x is varying on the domain D, the variation of Eq. (16) needs to be analyzed according to the sign 
of x. So, from Eq. (16), it means that the variation of  depends on the sign of  and can be increasing or 
decreasing for any value of the input x. In the same time, according to Eq. (16), it can be stated that the variation of 

 depends on the sign of the input. As  is always positive, it can be stated that if x is positive, the output 
radius will increase, whereas when x is negative, the output radius will decrease. 

))(ˆ( xYM
1AK

))(ˆ( xYR )( 1AR

In this framework, it is possible to have any kind of variation of the output modal value, with an appropriate sign 
of . However, the radius output variation is limited by the sign of the input x. As mentioned previously, classical 
fuzzy regression models are not able to represent any tendency of the output spread, they become more imprecise than 
necessary in several situations.  

1AK

 
3.1.2   Constraint Definition 

 
It is well-known that when the α-cut principle is used, a fuzzy interval can be viewed as a weighted family of nested 
conventional intervals. In other words, for a specified α-cut, a fuzzy interval becomes a conventional interval, which 
states that the fuzzy interval representation is a generalization of the conventional one. 

This principle has been applied by Tanaka for defining the inclusion constraints in the optimization problem (the 
observed data are included in the predicted ones). In this case, for a set of observed data, the fuzzy model parameters 
A0 and A1 are determined so that all observed data are included in the predicted ones for a given and specified α-cut, 
i.e., 

)]([)]ˆ([|)]([)]ˆ([| ]ˆ[][ αααααα jjjjjj YRYRYMYMYY −≤−⇔⊆ .                                          (17) 
After the optimization method is performed, the obtained parameters computed for a given 　-cut are assumed to 

be valid for all α∈[0, 1]. If this strategy (the α-cut representation) has the advantage to reduce the fuzzy 
computational complexity and makes easier its implementation, it can not ensure a total inclusion. Indeed, when the 
supports are included, the total fuzzy intervals inclusion is respected if and only if the modal values are equal (see 
Figure 2(b)). It means that the identification at α= 1 is impossible if the observed modal values are not strictly aligned 
(Diamond and Tanaka 1999). Moreover, the higher the α considered for identification is, the wider the support of the 
predicted fuzzy number is [15]. These drawbacks weaken the potential use of this method, especially in real 
identification problems.  
 
3.2  The Used Identification Criterion 

 
The first criterion proposed by (Tanaka et al. 1982) is the minimization of the sum of the radius of the model fuzzy 
parameters: 

)()( 10 ARARJ += .                                                                           (18) 
However, the optimization of this criterion leads to a model whose parameters are often crisp numbers, and 

whose output is too wide to be exploited [18]. 
That’s why another criterion has been introduced by Tanaka et al. [18]. It consists in minimizing the fuzziness of 

the model. This characteristic is defined as the sum of the spread of all predicted intervals: 

∑ =
+==

M

j jxARARMSumJ
110 ||).()(. .                                                              (19) 

In the literature, several variants of this criterion [10, 11, 14] have been applied for the fuzzy linear regression 
problem. Although the expressions of these criteria are slightly different, their common characteristic resides in using 
a linear criterion expressing the observed output spread. In this case, a strong dependence of the criteria to the 
learning data is unavoidable. 
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4   Revisited Fuzzy Linear Regression: the Proposed Approach 
 

In order to deal with the two drawbacks discussed in the previous section (the model form and the identification 
criterion), three evolutionary concepts are introduced into the conventional fuzzy regression model identification 
problems. 

 
4.1. Proposed Model Form 

 
In the proposed model, the identified fuzzy interval parameters A0 and A1 are assumed to be trapezoidal. In this case, 
the predicted output induced by these parameters is also trapezoidal and given by the following equation: 

]),[],,([),(ˆ
ˆˆˆˆˆˆ
+−+−==

jjjjjj YYYYYYj SSKKSKY .                                                                     (20) 

 
4.1.1  Model Tendency 

 
As stated previously, the main drawback of the conventional approach is that the output model tendency is not taken 
into account. In order to solve this problem, a modified model expression is proposed. In this case, the model output 
can have any kind of spread variation for any sign of x by introducing a shift on the original model input. Doing so, it 
is possible to obtain the desired sign for the shifted input variable, and so to influence the spread variation of the 
output. 

In this case, the fuzzy linear model defined on its domain D, becomes: 
)(10 shiftxAAY −⊗⊕=  = wAA ⊗⊕ 10  where : shiftxw −= .                                               (21) 

In the model of Eq. (21), the output spread is given by:  
wARARxYRDx ).()())(ˆ(: 10 +=∈∀ .                                                              (22) 

According to Eq. (22) and by tuning the value of shift, the model output can have any spread variation on D. 
Indeed: 

1. If 0≥− shiftx , Dx∈∀  i.e., )inf(Dshift ≤ , then the model output has an increasing spread on D. 
2. If 0<− shiftx , Dx∈∀  i.e., )sup(Dshift > , then the model output has a decreasing spread on D. 
For the sake of simplicity, the value )inf(Dshift = is chosen for a model whose output has an increasing radius. 

On the contrary, for decreasing radius,  )sup(Dshift =  is taken (see Table 1). 
 

Table 1: Used shifted model according to the output spread variation 

 
 
According to this model, the problem of more imprecision than necessary for the output is solved by considering 

all possible tendencies (two for a single variable model). 
 

4.1.2   Constraint Definition 
 

In this case, by using trapezoidal model form, it can be ensured that total inclusion of all observed inputs in the 
predicted ones at each level α  is respected. As the fuzzy parameters are trapezoidal, the model output  )(ˆ xY  is also 
trapezoidal. 

In this situation, knowing that the observed output Yj are symmetrical fuzzy triangular intervals and the model 
outputs jŶ  are assumed to be trapezoidal, the problem of inclusion can be reduced to an inclusion of the kernels and 
the supports. Thus, in order to extend the Tanaka interval method and solving the inclusion problem, two inclusion 
constraints must be taken into account in the identification method:  

Support inclusion 00 ]ˆ[][ == ⊆ αα jj YY , and Kernel inclusion  

11 ]ˆ[][ == ⊆ αα jj YY .                                                                              (23) 
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In this case, as a trapezoidal fuzzy interval shape is assumed, it is obvious that if Eq. (23) is respected, then the 
total inclusion is guaranteed for each level α ∈[0, 1],  i.e.,  

ααα ]ˆ[][:]1,0[ jj YY ⊆∈∀ .                                                                        (24) 
In this case, according Eq. (9) and (10) the inclusion constraints can be written as: 
• Kernel inclusion constraints (α= 1): 

⇔⊆ == 11 ]ˆ[][ αα jj YY
jYK )()(],[ ˆˆˆˆ

jjjjj YYYYY KRKKMKK ≤−⇔∈ +− .                                  (25) 

• Support inclusion constraints (α = 0): 

⇔⊆ == 00 ]ˆ[][ αα jj YY ],[
jjjj YYYY RKRK +−

jjjjjj
YYYYYY RSRKSMSS −≤−⇔⊆ +− )()(],[ ˆˆˆˆ .      (26) 

• Constraints of inclusion of the kernel into the support: 
In order to obtain a fuzzy interval, another inclusion constraint must be verified, i.e., the inclusion of the kernel 

into the support: 

)()()()(],[],[ ˆˆˆˆˆˆˆˆ
jjjjjjjj YYYYYYYY KRSRSMKMSSKK −≤−⇔⊆ +−+− .                                        (27) 

• Radius positivity constraints:  
Obviously, the radius of the identified fuzzy intervals must be positive or null, i.e.,  

0)( ≥
iAKR  and: 0)( ≥

iASR , for  i = 0, 1.                                                              (28) 
To sum up, the identification method must be performed under the constraints presented in Eq. (25)-(28). 
 

4.2  The New Used Identification Criterion 
 

As discussed previously, this section aims at defining a criterion which is independent of the learning data. Knowing 
that the identified model is to be used on the whole domain D, it may be more judicious to prefer a model with a 
lower global fuzziness, i.e. a less imprecise model. As the vertical dimension must be taken into account, the global 
fuzziness of the model is in fact the volume delimited by its output on the domain D. 

It can be stated that the output area represented by a trapezoidal fuzzy interval (Yager 2008) is given by the 
following expression:  

2/)(2/)()( ˆˆˆˆ
−−++ +−+= YYYY SKSKwarea                                                          (29) 

with:  
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 where: ))(( DMsign=∆ .                 (30) 

The volume delimited by the model output on its whole domain D is given by: 

dwwareaVolume
w

w∫=
max

min

)( .                                                                  (31) 

By substitution of Eq. (29) and Eq. (30) in Eq. (31) it yields: 
∆+++= ).()).()(()()(

1100
DMSRKRSRKRVolume AAAA .                                   (32) 

It is clear that this criterion is independent from the data. Thus, the optimization is performed not only at the 
learning points, but on the definition domain of the model, independently from the learning data distribution. This 
property guarantees a certain robustness of the proposed criterion in Eq. (32). So, identifying fuzzy models with the 
criterion of Eq. (32) leads to models whose fuzziness is possibly lower than usually.  

 
5    Illustrative Examples 

 
In this section, simulation results using the proposed regression methodology are presented. Three illustration 
examples are considered in order to emphasize the specific points discussed previously and to show the benefits of the 
proposed concepts.  

The first illustration is dedicated to show the influence of the model form on the inclusion property. In this case, 
in order to be able to compare the results, the conventional and the proposed methods are implemented using a well-
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known and often used data set. The next illustration is used to show the proposed criterion potential and its robustness. 
The last illustration deals with the output tendency property and its advantage in fuzzy regression.  

In each case, several performance indicators are introduced to express the viability and the performances of the 
identified model. In this paper, the most relevant indicators exploited in the fuzzy regression literature are considered. 

 
5.1   Illustration 1 

 
We consider the data set (Hojati et al. 2005, Tanaka and Lee 1998) presented in Table 2. The objective is to illustrate 
the different characteristics of the models presented in the previous part. 

 
Table 2: Observed data set 

 
 
First, we apply the identification method proposed by (Tanaka et al. 1989) in order to study the inclusion of the 

observed data in the predicted ones. So, the performance indicator considered here is the compatibility measure 
defined by the following equation: 

))(),(min(  max)/1( ˆ1
xxMityCompatibil

jj YY

M

j x
µµ∑ =

= .                                                 (33) 

The identified model has the form given by Eq. (14) where the coefficients are symmetrical triangular fuzzy 
intervals.  

The identification is performed minimizing the sum of the radius of the predicted intervals (see Eq. (19)) at  = 　
0 under the inclusion constraints given by Eq. (17).  The obtained results are illustrated in Figure 3.  

 

 
Figure 3: Identified triangular fuzzy model 



Journal of Uncertain Systems, Vol.4, No.1, pp.59-72, 2010                                                                                                               67                           

Let us consider the observed and predicted triangular fuzzy output for j = 1. They are respectively:  
])3 ,5.1[ ,25.2(1 =Y  and )3] [0.5, ,75.1(1̂ =Y .                                                    (34) 

As illustrated in Figure 4, it can be stated that if the inclusion constraint is respected for  = 0, it is not the case 　

for any α ∈[0,1]. 
 

 
Figure 4: Observed and predicted output for j = 1 

 
As proposed previously (see section 4), it is possible to improve the Tanaka’s method by ensuring a total 

inclusion of the observed outputs in the predicted ones. This objective can be carried out by identifying a trapezoidal 
model (outputs and parameters are assumed to be trapezoidal). In this case, we identify trapezoidal fuzzy coefficients 
by minimizing, under the appropriate constraints of inclusion given by Eq. (25)-(28), the sum of the spreads given by 
the following equation: 

( ) ( )∑ =
+++=

M

j jAAAA xKRSRKRSRMSum
1

||.)()()()(.
1100

.                                   (35) 

This criterion is an adaptation of the one given in Eq. (19) where the kernel and the support radius of the 
identified trapezoidal parameters are taken into account. The obtained results are shown in Figure 5. 

 

 
Figure 5: Identified trapezoidal fuzzy model 

 
When considering the same observed fuzzy output used previously (for j = 1) and its corresponding predicted 

trapezoidal fuzzy output, we have:  
])3 ,5.1[ ,25.2(1 =Y  and 3]) [0.5, 2.25], ([1,1̂ =Y .                                            (36) 

which proves that the inclusion of the observed output into the predicted one is ensured (see Figure 6). 
In this case, inclusion is constrained in the identification process at the levels α = 0 and α= 1, which implies a 

total inclusion α∈[0,1]. As a consequence the indicator compatibility has the best value, i.e. compatibility = 1, 
highlighting the fact that the inclusion of observed outputs in predicted ones is total (see Figure 7). 

In the sequel, a trapezoidal model form is adopted. In other words, the model parameters are assumed to be 
trapezoidal. 
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Figure 6: Observed and predicted output for j = 1 

 

 
Figure 7: Identified triangular and trapezoidal fuzzy models in a 3-D view 

 
5.2. Illustration 2 

 
In this illustration, the robustness of the criterion used in the identification method is investigated. For this purpose, 
the influence of redundant learning data is considered. Indeed, the data at j = 8 in the observed output set is duplicated 
three times. In this case, two identification methods are applied.  

• The first one is an adaptation of the conventional Tanaka’s method for trapezoidal models, where the 
criterion is given by Eq. (35).  

• The second one is the proposed strategy where the exploited criterion is the minimization of the volume, 
which is a criterion independent of the learning data. 

The used performance indicators are: 
• The Diamond Distance: for determining the fitting of the model to the data. It is defined as follows for 

symmetrical triangular fuzzy intervals (Eq. (37)) and trapezoidal ones (Eq. (38)). 
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• The Sum and Volume criteria values: for giving indications on the fuzziness of the identified model. 
The obtained results are shown in Table 3 and Figure 8. 
Several important points can be underlined on these results:  
• The identified model on this data set with the minimization of the criterion (35) is different of the one given 

in Figure 5. This point highlights the lack of robustness of this criterion. Its structure is modified, as a greater 
importance is given to the redundant data. In this case, it is impossible to identify the initial model. 

• The identified model with the proposed criterion Volume, independent of the learning data, remains the same 
as the one given in illustration 1 (see Figure 5), which is the optimal one in the sense of a lower global fuzziness. So, 
this criterion is more robust than the conventional one. 

• The identified model with the proposed criterion Volume, independent of the learning data, remains the same 
as the one given in illustration 1 (see Figure 5), which is the optimal one in the sense of a lower global fuzziness. So, 
this criterion is more robust than the conventional one. 
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• Concerning the indicators Distance and Sum, the proposed model seems to be less efficient. However, these 
two indicators, less suited to our methodology, are defined on the whole learning data set. So, a greater importance is 
given to the redundant data, introducing a bias in the indicators values. If we consider the same indicators, but 
computed with the initial data set (i.e. only one representation of the data j = 8 is considered), it is obvious that the 
model identified with the criterion Volume is the best one for each value (see Table 4). In fact, the identified model 
presents a better fitting to the data and a lower sum of spreads of the outputs for each input x considered. 
 

Table 3: Identified parameters and corresponding performance indicators 

 
 

 
Figure 8: Identified fuzzy models for conventional and proposed methods 

 
Table 4: Performance indicators computed on the initial data set (no redundant data) 

 
 
The fuzzy trapezoidal model form and the volume criterion given by Eq. (32) are adopted in the illustration 3.  
 

5.3  Illustration 3 
 
This section aims at illustrating the tendency problem discussed previously. In this case, a comparison between 

conventional models and shifted proposed ones is achieved. In the previous examples, it can be stated that the 
observed data outputs have globally increasing radius. As the outputs are corresponding to positive inputs, 
conventional models can represent this tendency without any problem. This is no more the case for negative examples. 
In order to illustrate this point a new training set is built from the initial data by applying a constant translation (-0.9) 
to all input data without modifying the corresponding output (see Table 7). 

In this case, two trapezoidal models (conventional and shifted one) are optimized according to the criterion 
Volume on the domain D = [-0.8, -0.1].  
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As data present an increasing spread tendency on the domain D, the value of shift is set to inf(D), i.e., shift = -0.8. 
The results are illustrated in Table 6 and Figure 9. 
 

Table 5: Translated data set 

 
 

Table 6: Identified parameters and corresponding performance indicators 

 
 

.  
Figure 9: Identified conventional and shifted fuzzy models 

 
Some important points can be underlined on this illustration: 
• The conventional model cannot represent an increasing tendency of the observed output spread for negative 

inputs. As a consequence, the coefficient A1 is crisp, and the output radius is constant on the domain D. On the 
contrary, with the appropriated shift value, the shifted model output well represents the increasing tendency of the 
observed output radius. 

• All the indicators are better for the shifted model, i.e. this model has a better fitting to the data and a lower 
fuzziness on the domain D. This is due to the fact that the shifted model has an improved expressiveness, and can 
represent any kind of data tendencies. 
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These illustrations demonstrate the benefits of a trapezoidal shifted model, identified with the minimization of 
the global fuzziness in fuzzy linear regression. As a consequence, total inclusion property is ensured and the 
identified model can represent any kind of spread tendencies. Moreover, its robustness is improved. 

 
6   Concluding Remarks 
 
In this paper, a revisited fuzzy regression method has been proposed where a linear model is identified from Crisp-
Inputs Fuzzy-Outputs (CISO) data. We have shown that the proposed methodology can be built according to two 
evolutionary concepts: a new trapezoidal model form and a new expression of the output fuzziness used as an 
optimization criterion. 

The proposed regression strategy ensures a total inclusion property of the observed data in the predicted ones. 
Moreover, the use of shifted models allows the representation of any kind of fuzzy output spread tendency. In 
addition, we can say that the proposed criterion is independent of the learning data and presents a certain robustness 
performance.  

The design methodology has been illustrated on simple first order simulated systems and can potentially be 
applied to a wide class of linear systems according to its generalization for multi-inputs systems. Future work will 
focus on the extension of this approach to Fuzzy-Inputs Fuzzy-Outputs (FIFO) linear systems. 
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