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Abstract 

 
This paper emphasizes that numerically correct calculation of economic uncertainty with intervals and fuzzy 

numbers requires implementation of global optimization techniques in contrast to straightforward application of 
interval arithmetic. This is demonstrated by both a simple case from managerial economics as well as a real life 
railway reconstruction project. Based on identical uncertain input data the difference between the probabilistic and the 
possibilistic approach is highlighted, the latter producing a substantial larger degree of numerical uncertainty due to its 
non-statistical nature.  

 © 2010 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
The notion of risk and uncertainty being relevant for economic analysis was suggested by Knight [13] and the 
concepts were incorporated into economic theory by von Neumann and Morgenstern [17] who developed a rational 
foundation and rules for decision making according to expected utility, see also [9]. Thus, the traditional approach to 
representation of uncertainty in economic theory is that of probabilities. An uncertain variable may be represented by 
a probability distribution reflecting either the objective nature of the variable or the subjective belief of the agent. The 
most common objectivist position argues that the probability of a particular event in a particular trial is the relative 
frequency of occurrence of that event in an infinite sequence of similar trials. Obviously, the idea of infinite repetition 
is referring to an idealized laboratory experimental situation like rolling an ideal dice an infinite number of times. 
How then is one to comprehend the probability of one-of-a-kind-events, such as the probability of a quote leading to 
an order or the cost incurred to build a new opera house? 

Consequently, there have been many objections to this view of probability arguing that randomness is not an 
objectively measurable phenomenon but rather a knowledge phenomenon. Thus, probabilities are rather an 
epistemological and not an ontological issue. This epistemic or knowledge view of probability can be traced back to 
[1, 14]. More recently, Ramsey [19] asserted that probability is related to the knowledge possessed by a particular 
individual and thus probability represents personal belief rather than objective knowledge. Probability theory and 
statistics today represent a well-established mathematical theory with clear axioms and has reached an advanced stage 
of development. However, criticism has been raised towards probability theory as being a too normative framework 
to take all the aspects of uncertain judgment into account, see e.g. [7]. In this paper, we will focus on alternative 
methods of modelling economic uncertainty like the interval representation and the fuzzy number representation. 

The interval representation [15, 16] is particularly well suited to a situation where the knowledge of an uncertain 
parameter is limited to knowing its minimum and maximum value whereas nothing else is known. Based upon a 
mathematical theory of interval analysis this approach has shown to be useful in keeping track of worst and best cases 
in economic analyses and thus contribute to improved decision processes, see e.g. [20, 21]. Zadeh [25] introduced the 
concept of fuzzy set for the purpose of modelling the imprecision and ambiguity of ordinary language. It is based on 
the concept of possibility rather than probability and translates natural language expressions into the mathematical 
formalism of possibility measures. It is generally recognized that possibility is distinct from probability. As 
mentioned earlier, probabilities can be interpreted as relative frequencies or, more generally, uncertain knowledge or 
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belief of a statistical nature. In contrast, possibility relates to the degree of feasibility and ease of attainment or 
imprecise knowledge. 

Particularly, this paper will deal with some computational aspects of uncertainty representation by intervals and 
fuzzy numbers. It is the author’s experience that these aspects are widely neglected, probably due to lack of 
communication and interaction between professional communities each one dealing with separate issues. In Section 2 
a simple case from managerial economics is presented in order to serve as a reference case for the subsequent 
numerical calculations. In Section 3, the basics of interval analysis are briefly stated and subsequently applied to the 
simple case in order to demonstrate the difference between straightforward interval arithmetic and global optimization 
considering both independent and interdependent uncertain input variables as well as uncertain model characteristics. 
Section 4 focuses on fuzzy numbers, particularly the procedure of applying global optimization on α-cuts in order to 
get correct results. In Section 5, a real life example of estimating the cost of a railway reconstruction project is treated 
by representing uncertainty by triangular and trapezoidal fuzzy numbers. Finally, in Section 6, comparisons are made 
with Monte Carlo simulations in order to demonstrate the quite substantial differences generated by the possibility 
and probability approaches, respectively. Section 7 contains a conclusion. 
 
2   A Simple Case from Managerial Economics 

 
In order to demonstrate the principles of numerical modelling of uncertainty by intervals and fuzzy numbers 
presented in this paper we introduce a simple yet instructive case from managerial economics. Consider a company 
selling one product at price p and quantity q into a market. For the sake of simplicity, we may assume fixed cost to be 
zero. The turnover TR is 

TR = TR(p,q) = p·q,                                                                         (1) 
and the variable cost VC is given by 

VC = VC(q) = 20·q.                                                                        (2) 
Then the profit π is 

π = π(p,q) = TR(p,q) – VC(q) = p·q – 20·q.                                                           (3) 
Clearly, we have an ordinary non-fuzzy model for the profit as a function of price and quantity. Not knowing 

better, it is assumed that quantity and price are independent variables. The profit is mapped in Table 1. 
We want to find the price p* and quantity q* that gives the maximum profit π*. It is seen from (3) that the profit is 

a monotone function of q and p, which means that no maximum of π exists unless the variables are constrained. If for 
example p ≤ 65 and q ≤ 450, then p* = 65, q* = 450, and π* = 20.250 (for comparison see Table 1). 

 
Table 1: Mapping of profit function π = π(p,q), independent price and quantity 

Quantity q p,q independent 
π(p,q) = p·q – 20·q 250 300 350 400 450 500 550 

75 13.750 16.500 19.250 22.000 24.750 27.500 30.250 
70 12.500 15.000 17.500 20.000 22.500 25.000 27.500 
65 11.250 13.500 15.750 18.000 20.250 22.500 24.750 
60 10.000 12.000 14.000 16.000 18.000 20.000 22.000 
55 8.750 10.500 12.250 14.000 15.750 17.500 19.250 
50 7.500 9.000 10.500 12.000 13.500 15.000 16.500 

Price p 

45 6.250 7.500 8.750 10.000 11.250 12.500 13.750 
 

Next, we recognize that price and quantity are interdependent variables due to market conditions. Assuming that 
they are connected by the demand function 

p = p(q) = 100 – 0,1·q  or  q = q(p) = 1.000 – 10·p,                                               (4) 
we get for the turnover 

TR = TR(p) = – 10·p2 + 1.000·p,                                                              (5) 
the variable cost 

VC = VC(p) = – 200·p + 20.000,                                                              (6) 
and the profit margin 

π = π(p) = TR(p) – VC(p) = – 10·p2 + 1.200·p – 20.000.                                           (7) 
Mapping of the profit function is redone under the new conditions and the results are shown in Table 2. 
We determine the maximum profit of (7) by the optimality criterion that marginal cost MC be equal to marginal 

turnover MR which gives the results (compare with Table 2) 
p* = 60, q* = 400, and π* = 16.000.                                                               (8) 
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Table 2: Mapping of profit function π = π(p,q), interdependent price and quality 
Quantity q q = 1.000 – 10·p 

π(p,q) = p·q – 20·q 250 300 350 400 450 500 550 
75 13.750 - - - - - - 
70 - 15.000 - - - - - 
65 - - 15.750 - - - - 
60 - - - 16.000 - - - 
55 - - - - 15.750 - - 
50 - - - - - 15.000 - 

Price p 

45 - - - - - - 13.750 
 

In the following, we shall refer to the above examples for explanations of computational details and special 
features. 
 
3    Uncertainty Modelling Using Intervals 
 

3.1  Basics of Interval Analysis 
 
Following Moore [16] and Caprani, Madsen, and Nielsen [2], we define a real interval number as an ordered pair [a; b] 
of real numbers with a ≤ b. It may also be defined as an ordinary set of real numbers x such that a ≤ x ≤ b, or 

[a; b] = {x | a ≤ x ≤ b}.                                                                      (9) 
If the basic arithmetic operations addition, subtraction, multiplication, and division are denoted by the symbol # 

we can define operations on two intervals I1 = [a1; b1] and I2 = [a2; b2] based on the set-theoretic formulation: 
I1 # I2 = {x # y | a1 ≤ x ≤ b1, a2 ≤ y ≤ b2}.                                                     (10) 

For basic operations on the intervals I1 and I2 we get the resulting interval I = [a; b] by the formulas 
I = I1 + I2 = [a1+a2; b1+b2], 
I = I1 – I2 = [a1–b2; b1–a2], 

I = I1 · I2 = [min(a1·a2, a1·b2, b1·a2, b1·b2); max(a1·a2, a1·b2, b1·a2, b1·b2)],                                                                
I = I1 / I2 = [min(a1/a2, a1/b2, b1/a2, b1/b2); max(a1/a2, a1/b2, b1/a2, b1/b2)], 0 ∉ [a2; b2].               (11) 

It can be shown that the four basic interval operations are inclusion monotonic, and that addition and 
multiplication are commutative and associative, [2]. However, the distributive rule is not valid in general. Instead, the 
so-called sub-distributivity holds 

I1·(I2 + I3)  I⊆ 1·I2 + I1·I3.                                                                    (12) 
From a rational real valued function F of n real valued variables 

F = F(x1, x2, …, xn),                                                                        (13) 
we can create the interval extension function as an interval function FI of n intervals 

FI = FI(I1, I2, …, In),                                                                       (14) 
simply by replacing the real operators by interval operators and the real variables by intervals. 

A rational function can be formulated in many ways whereas the same reformulations cannot be done for interval 
expressions due to the invalidity of the distributive rule. This implies that different formulations of a rational function 
will lead to different interval extension functions and thus to different interval results. In the case of F being a 
monotonic function within the entire range of the input variables the minimum and maximum of FI as an interval can 
simply be found among the function values F at the extreme points of the variables. In the general case of F being 
non-monotonic or variables appearing more then once, the calculation of FI as an interval is non-trivial, which is 
demonstrated by the following example. 
Example 1: Based on the function F = x·(1 – x) the interval function FI = I·(1 – I), I = [0; 1] is calculated. 
Straightforward application of formulas from (11) gives the result FI = [0; 1] whereas the correct result obtained by 
global optimization is [0; 0,25]. 

In this paper, the term “correct” is used to indicate the narrowest possible interval that can be calculated for an 
uncertain variable. Generally, to obtain this, iterative global optimization methods have to be used, see e.g. [8, 12]. In 
order to obtain correct results (as in the above example) to an accuracy specified by the user, interval calculations in 
this paper are carried out using the Interval Solver 2000 program [10, 11], as an add-in module to MS-Excel 2000. An 
overall absolute and relative precision of 10-6 has been applied. 

Correct calculation of interval functions allows for strong statements about the uncertainties involved. Firstly, you 
can say that provided all uncertain input variables stay within their minimum and maximum values, the uncertain 
output function will stay within its minimum and maximum values. Secondly, the uncertain output function will not 
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attain any value that is not a function value of some combination of the uncertain input values (within their minimum 
and maximum values). 

 
3.2    Uncertainty Analysis with Independent and Dependent Variables 
 
3.2.1   Independent Input Variables 
 
Using interval arithmetic 

To calculate the uncertain profit we first use the formulas of interval arithmetic (11) by three different ways of 
calculation. As an example look at the independent and uncertain quantity and price 

p = [55; 65], q = [350; 450].                                                                 (15) 
Firstly, we use the turnover and variable cost as intermediate variables. By (1) we get for the uncertain turnover 

TR and by (2) for the uncertain variable cost VC 
TR = [55; 65]·[350; 450] = [19.250; 29.250],  VC = 20·[350; 450] = [7.000; 9.000].                  (16) 

Then by (3) we get for the uncertain profit 
π = TR – VC = [10.250; 22.250].                                                          (17) 

However, the above calculation produces a too wide interval for the profit. The reason for this is, that in the 
expression (3) the variable q appears twice thus allowing the quantity q used to calculate TR to be different from the 
quantity used to calculate VC. 

Secondly, the rightmost form of (3) is used, giving 
π = [350; 450]·[55; 65] – 20·[350; 450] = [10.250; 22.250],                                (18) 

which is identical to (17) because the arithmetic operations are identical. 
Thirdly, (3) is rearranged before the interval calculations are carried out: 

π = π(p,q) = q·(p – 20).                                                               (19) 
We then get for the uncertain profit 

π = [350; 450]·([55; 65] – 20) = [350; 450]·[35; 45] = [12.250; 20.250],                                (20) 
which is a somewhat narrower interval than (17) and (18) because each variable is appearing only once in (19). 
Actually, (20) is the correct result, compare with Table 1. 
 
Using global optimization 

Next, we calculate the uncertain profit by global optimization using Interval Solver 2000. With the same input 
variables (15) and intermediate variables TR and VC we get from (3) 

TR = [19.250; 29.250], VC = [7.000; 9.000], π = TR – VC = [10.250; 22.250],                         (21) 
which is identical to (17) and (18) for the same reason as mentioned above. With the same input variables and by way 
of formulas (18) and (19) we get the result 

p = [55; 65], q = [350; 450], π = [12.250; 20.250],                                             (22) 
which is seen to be the correct result identical to (20). The results are summarized in Table 3. 

 
Table 3: Resume of uncertainty analyses, independent price p = [55; 65] and quantity q = [350; 450] 

Calculation Method π = TR – VC π = p·q – 20·q π = q·(p – 20) 
Interval Arithmetic [10.250; 22.250] [10.250; 22.250] [12.250; 20.250] 

Global Optimization [10.250; 22.250] [12.250; 20.250] [12.250; 20.250] 
 
3.2.2   Interdependent Input Variables 
 
Using interval arithmetic 

To perform an uncertainty analysis around a given price p = 60 we set 
p = [55; 65].                                                                                 (23) 

The profit is calculated in two different ways using interval arithmetic (11). Firstly, the profit is calculated by 
intermediate variables TR and VC according to (5) and (6), respectively 

TR = – 10·[55; 65]2 + 1.000·[55; 65] = [12.750; 34.750],                                                        (24) 
and 

VC = – 200·[55; 65] + 20.000 = [7.000; 9.000],                                                             (25) 
which gives 

π = TR – VC = [3.750; 27.750].                                                                          (26) 
Secondly, the profit is calculated by the formula 
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π = – 10·p2 + 1.200·p – 20.000,                                                                     (27) 
yielding 

π = – 10·[55; 65]2 + 1.200·[55; 65] – 20.000 = [3.750; 27.750].                                            (28) 
The results found above are identical and way out of order, since the correct result of the uncertain profit is [15.750; 
16.000], compare with (8) and Table 2. 
 
Using global optimization 

Global optimization is used to calculate the uncertain profit by means of the formulas (23)-(26) and (27) and the 
results are shown in Table 4. It may be observed that correct results are produced, except in the case where the usage 
of intermediate variables TR and VC allows for a too wide interval. 
 

Table 4: Resume of uncertainty analyses, interdependent price p = [55; 65] and quantity q = 1.000 – 10·p 
Calculation Method π = TR – VC π = – 10·p2 + 1.200·p – 20.000 
Interval Arithmetic [3.750; 27.750] [3.750; 27.750] 

Global Optimization [13.750; 17.750] [15.750; 16.000] 
 
The difference between the correct interval and the more wide intervals in Table 4 is considerable. It emphasizes 

the fact that global optimization is indispensable when calculating with intervals. Looking at the correct results in 
Table 4 (lower right cell), the decision maker knows that if he decides to set the price between 55 and 65 his profit 
will come out between 15.750 and 16.000. However, he does not know what specific profit a particular price will 
produce. Left with this uncertainty he might as well choose the price 55 instead of 65. Without prior knowledge of the 
information given in Table 2, he will never get to know that the price 60 will result in the maximum profit according 
to the non-fuzzy model. 

 
3.3   Analysis with Uncertain Model 
 
The equations (1)-(3) constitute the non-fuzzy model of Section 2 in the case of independent input variables p and q 
and output variable π. When p and q are interdependent by the demand function the model is extended with equation 
(4). When the input parameters are uncertain variables p and q, the profit output variable π also becomes uncertain. 

The model of Section 2 is easily extended into an uncertain model simply by substituting the constants in (2) and 
(4) with intervals representing the uncertainty. For the uncertain variable cost (2) then becomes 

VC = VC(q) = a·q,                                                                                     (29) 
and the uncertain demand function (4) becomes 

q = q(p) = (p – p0)/p1.                                                                                 (30) 
 

Table 5: Mapping of demand function q = q(p) = (p – p0)/p1 
p1 Quantity q 

q = (p – p0)/p1, p = 60 –0,115 –0,110 –0,105 –0,100 –0,095 –0,090 –0,085 
115 478,3   550,0   647,1 
110  454,5  500,0  555,6  
105   428,6 450,0 473,7   
100 347,8 363,6 381,0 400,0 421,1 444,4 470,6 
95   333,3 350,0 368,4   
90  272,7  300,0  333,3  

p0 

85 217,4   250,0   294,1 
 

Table 5 contains a mapping of the demand function showing a quite substantial sensitivity of the quantity q as a 
function of the constants p0 and p1. A deviation from the nominal value p0 = 100 of ± 10% gives a deviation of q of 
± 25%. Likewise, a deviation of ± 10% from the nominal value of p1 = –0,1 gives a deviation of q of +11% and –9%. 

An expression of the uncertain profit π calculated at the certain price p is easily derived from (29) and (30) 
π = p2/p1 – p·(p0/p1+a/p1) + a·p0/p1.                                                                (31) 

Calculating (31) with the price p = 60 and uncertain constants p0 = [90; 110], p1 = [–0,11; –0,09], and a = [18; 22],  
by using global optimization, we get the correct result π = [10.364; 23.333]. 

In conclusion, introducing an uncertainty of ± 10% in the constants defining the model produces an uncertainty 
of +46% and –35% in the resulting profit. This means, that although the decision maker sets the price to 60 in order to 
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maximize profit in accordance with the theoretical model without uncertainty he might experience a dramatically 
higher as well as lower profit. This is mainly due to the uncertain demand function that may result in both higher and 
lower quantities of sale. 

What we have seen in Section 3.3 is an example of a model with uncertainty and an input parameter without 
uncertainty producing an uncertain output. In Sections 3.1 and 3.2 a model without uncertainty with an uncertain 
input also producing an uncertain output. Of course, a combination of uncertain model and uncertain input also will 
also produce an uncertain output. A detailed discussion of some of these aspects can be found in [3]. 
 
4    Uncertainty Modelling using Fuzzy Numbers 
 
4.1   Fuzzy Numbers and Intervals 
 
Following the seminal paper by Zadeh [25] a fuzzy set A in X where X is a space of points (objects) with a generic 
element of X denoted by x, i.e. X = {x}, is characterized by a membership function fA(x) which associates with each 
point in X a real number in the interval [0; 1]. The value of the membership function fA(x) at x represents the “grade 
of membership” of x in A. Thus the closer the value of fA(x) to unity, the higher the grade of membership of x in A. 
Note that when A is an ordinary set, i.e. non-fuzzy, the membership function can take only two values 0 and 1. 

A = {(x, fA(x)) | x ∈ X}.                                                                       (32) 
It is also useful to define the ordinary (non-fuzzy) set Aα as the α-cut of A: 

Aα = {x ∈ X | fA(x) ≥ α, 0 ≤ α ≤ 1}.                                                            (33) 
In this paper, we are mainly interested in the concept of fuzzy numbers as a means of representing uncertain or 

fuzzy information [5, 6]. In addition to the simplest fuzzy number, namely the interval, we also make use of the 
triangular fuzzy number [4] [a; c; b], where a ≤ c ≤ b, that can be defined by its membership function: 

(x-a)/(c-a),  a x c
f(x)= (b-x)/(b-c),  c<x b

0,  otherwise.

≤ ≤⎧
⎪ ≤⎨
⎪
⎩

                                                                (34) 

We also use the trapezoidal fuzzy number [24] [a; c; d; b], where a ≤ c ≤ d ≤ b, defined by the following definition 
(x-a)/(c-a),  a x c
1, c<x d

 f(x)=
(b-x)/(b-d),  d<x b
0,  otherwise.

≤ ≤⎧
⎪ ≤⎪
⎨ ≤⎪
⎪⎩

                                                                (35) 

Mathematical operations on triangular fuzzy numbers can be facilitated by introducing the left L(α) and right R(α) 
representation of a fuzzy triangular number FT, refer to the α-cut (33): 

FT = [L(α); R(α)], where L(α) = a + (c–a)·α and R(α) = b + (c–b)·α, α ∈ [0, 1].                   (36) 
For a trapezoidal fuzzy number we have correspondingly: 

FTR = [L(α); R(α)], where L(α) = a + (c–a)·α and R(α) = b + (d–b)·α, α ∈ [0, 1].                 (37) 
Observe that in this notation a fuzzy number is written as an interval with upper and lower bounds depending on α. 

This means that addition, subtraction, multiplication, and division can be carried out by using interval methods for all 
values of α. Likewise, for any triangular and trapezoidal function, the resulting triangular and trapezoidal functional 
values can be calculated and represented by L and R functions using interval methods for all values of α. 
Example 2: Based on the real valued function F = x·(1 – x) calculate the corresponding fuzzy function with triangular 
argument [0; 0,5; 1] and trapezoidal argument [0; 0,3; 0,7; 1]. The correct results have been calculated with global 
optimization and are shown in Tables 6 and 7. 

From the results in Table 6 it can be seen that the function F has a maximum of 0,250 at x = 0,5. Likewise, from 
Table 7 it can be seen that F has a maximum of 0,250 somewhere between x = 0,3 and 0,7, but not where exactly. 

To obtain simpler representations and reduce the number of calculations, triple and quadruple representations of 
fuzzy variables corresponding to α-cuts 0 and 1 in (33) may be used. In the triangular case the result then is [0; 0,25; 
0,25], where the extreme function values is obtained by global optimization on the interval [0; 1] and the interior 
point is obtained by conventional calculation at x = 0,5. In the trapezoidal case the result is [0; 0,21; 0,25; 0,25], 
where the “outer interval” [0; 0,25] is obtained by global optimization on the interval [0; 1] and the “inner interval” 
[0,21; 0,25] by global optimization on the interval [0,3; 0,7]. 
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Table 6: Fuzzy extension of x·(1 – x) calculated with triangular argument [0; 0,5; 1] 
α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

L(α) 0,000 0,047 0,090 0,127 0,160 0,188 0,210 0,227 0,240 0,248 0,250
R(α) 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250

 

 
Table 7: Fuzzy extension of x·(1 – x) calculated with trapezoidal argument [0; 0,3; 0,7; 1] 

α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 
L(α) 0,000 0,029 0,056 0,082 0,106 0,128 0,148 0,166 0,182 0,197 0,210
R(α) 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250 0,250

 
4.2   Simple Case with Triangular Fuzzy Numbers 
 
Next we calculate the simple case from Section 2 using profit function (3) with independent triangular fuzzy input 
parameters p = [55; 60; 65], q = [350; 400; 450] defined by (34). The resulting membership function is shown in 
Table 8 for different values of α. It is easily seen that the value α = 0 corresponds to the correct profit interval found 
in Section 3.2.1 and α = 1 corresponds to the single point calculation of the profit, compare with Table 1. This is one 
of the important features of the triangular fuzzy number representation of uncertainty: It is easily communicated and 
understood that the ordinary single point calculation is extended to an interval around the single point representing the 
uncertain value of the input variable. The resulting triangular fuzzy profit is interpreted as follows: With the given 
uncertain input variables, the most possible value of the profit is 16.000 and profits outside the interval [12.250; 
20.250] are impossible. 
 

Table 8: Uncertain profit π (3) by global optimization, triangular fuzzy input p = [55; 60; 65], q = [350; 400; 450] 
α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

L(α) 12.250 12.603 12.960 13.323 13.690 14.063 14.440 14.823 15.210 15.603 16.000
R(α) 20.250 19.803 19.360 18.923 18.490 18.063 17.640 17.223 16.810 16.403 16.000

 
Calculations have also been carried out with interdependent triangular fuzzy input parameters corresponding to p 

= [55; 60; 65] and profit function (7), the results are shown in Table 9. For all values of α the correct maximum profit 
of 16.000 has been found and no profit value outside the interval [15.750; 16.000] is possible, compare with Table 2. 

 
Table 9: Uncertain profit π (7) by global optimization, triangular fuzzy input p = [55; 60; 65] 

α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 
L(α) 15.750 15.797 15.840 15.877 15.910 15.937 15.960 15.977 15.990 15.977 16.000
R(α) 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

 
Table 10: Uncertain profit π (3) by global optimization, trapezoidal independent  

fuzzy input p = [55; 58; 62; 65], q = [350; 375; 425; 450] 
α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

L(α) 12.250 12.443 12.638 12.834 13.032 13.231 13.432 13.634 13.838 14.043 14.250
R(α) 20.250 20.003 19.758 19.514 19.272 19.031 18.792 18.554 18.318 18.083 17.850

 
Table 11: Uncertain profit π (7) by global optimization, trapezoidal fuzzy input p = [55; 58; 62; 65] 

α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 
L(α) 15.750 15.779 15.806 15.832 15.856 15.877 15.898 15.916 15.932 15.947 15.960
R(α) 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

 
4.3   Simple Case with Trapezoidal Fuzzy Numbers 
 
The preceding calculations have been redone with trapezoidal input parameters according to (37). Table 10 shows the 
result with p = [55; 58; 62; 65], q = [350; 375; 425; 450] and Table 11 with p = [55; 58; 62; 65]. The interpretation of 
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the resulting trapezoidal profit in Table 10 is that the most possible values corresponding to α = 1 are in the interval 
[14.250; 17.850] and values outside the interval [12.250; 20.250] are impossible (unchanged from Table 8). The 
possibility of attaining a particular profit value is given by the value of the membership function. Arguments along 
the same lines hold for the results in Table 11. Again, the maximum profit of 16.000 has been correctly calculated for 
all values of α. 
 
5   A Railway Reconstruction Project 
 
Consider the case of estimating the total cost incurred by a railway reconstruction project described by independent 
fuzzy input variables, namely 18 cost items X1, ..., X18 and 3 correction factors X19, ..., X21. This case has been treated 
previously by using the concept of imprecise stochastic variables [23]. The correction factors are introduced in order 
to account for overall influences not accounted for by the individual cost items. The total cost before corrections is the 
sum Y1 = X1 + X2 + ... + X18. The total cost after corrections Y is a function of all 21 uncertain variables Y = (X1 + X2 
+ ... + X18) · X19 · X20 · X21.        
 

Table 12: Cost estimation for railway reconstruction case by triangular fuzzy numbers 
Var. Code Item [a; c; b] 

 0,00 Management and specs. [1.732; 1.780; 1.884] 
X1 0,10 Project management [524; 540; 575] 
X2 0,20 Construction management etc. [975; 1.000; 1.050] 
X3 0,30 Design specifications etc. [233; 240; 259] 
X4 10,00 Environmental and soil eng. [864; 888; 950] 
X5 20,00 Traffic tasks [48; 50; 53] 

 30,00 Renewal of tracks [8.905; 9.190; 9.664] 
X6 30,10 New outbound main track [975; 1.000; 1.050] 
X7 30,20 Track renewal at platform 3/5 [5.432; 5.600; 5.880] 
X8 30,30 New platform edge [1.533; 1.580; 1.643] 
X9 30,40 Track renewal depot, West [285; 300; 321] 
X10 30,50 Track layout design [682; 710; 770] 
X11 40,00 Platform and station [538; 560; 602] 
X12 50,00 Safety and signal installations [5.035; 5.245; 5.586] 

 60,00 Informatics incl. power supply [2.374; 2.417; 2.626] 
X13 60,10 Phase 2-4 [78; 80; 86] 
X14 60,20 Sub project management [249; 259; 275] 
X15 60,30 Passenger information [1.009; 1.030; 1.123] 
X16 60,40 Electrical power supply [1.038; 1.048; 1.142] 

 70,00 Overhead line incl. pylons [3.507; 3.624; 3.787] 
X17 70,10 Overhead cables [3.021; 3.122; 3.262] 
X18 70,20 Layout and planning [486; 502; 525] 
Y1  Total cost before corrections [23.003; 23.754; 25.152] 
X19 A Internal decision process [1,006; 1,032; 1,098] 
X20 B Design specifications etc. [1,009; 1,040; 1,100] 
X21 C Working process [1,021; 1,042; 1,084] 
Y  Total cost after corrections [23.842; 26.565; 32.930] 

 
Railway experts with relevant project experience should estimate the uncertain input variables. Subsequently, the 

total cost Y is calculated by means of global optimization. The total cost estimation results are shown in Table 12 in 
the case of triangular fuzzy input variables. The term “code” refers to the cost structure hierarchy. In Table 13, the 
membership function of total cost Y after corrections is shown. 
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For α = 1 the single point calculation of 26.565 is shown corresponding to an ordinary calculation without 
uncertainty. This value is the most possible one and is attained when all input variables are attaining their most 
possible values. For α = 0 the total cost after corrections is within the interval [23.842; 32.930] and any value outside 
this interval is impossible considering the uncertain input variables. 

Likewise, Table 14 contains the results using trapezoidal fuzzy input variables and Table 15 the membership 
function for the total cost after corrections. For α = 1 the most possible values will be in the interval [25.347; 29.029] 
corresponding to all input variables to be confined within their inner intervals. For α = 0 the total cost after 
corrections is within the interval [23.842; 32.930], as was the case with triangular fuzzy input variables because the 
outer limits of the trapezoidal numbers are identical to those of the triangular input variables. 
 

Table 13: Total cost after corrections for railway reconstruction case by triangular fuzzy number 
α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

L(α) 23.842 24.108 24.353 24.624 24.875 25.148 25.480 25.734 26.020 26.276 26.565
R(α) 32.930 32.244 31.592 30.895 30.269 29.626 28.983 28.387 27.743 27.161 26.565

 
Table 14: Cost estimation for railway reconstruction case by trapezoidal fuzzy numbers 

Var. Code Item [a; c; d; b] 
 0,00 Management and specs. [1.732; 1.757; 1.820; 1.884] 

X1 0,10 Project management [524; 534; 551; 575] 
X2 0,20 Construction management etc. [975; 985; 1.025; 1.050] 
X3 0,30 Design specifications etc. [233; 238; 244; 259] 
X4 10,00 Environmental and soil eng. [864; 872; 910; 950] 
X5 20,00 Traffic tasks [48; 49; 51; 53] 

 30,00 Renewal of tracks [8.907; 9.109; 9.374; 9.664] 
X6 30,10 New outbound main track [975; 985; 1.015; 1.050] 
X7 30,20 Track renewal at platform 3/5 [5.432; 5.556; 5.735; 5.880] 
X8 30,30 New platform edge [1.533; 1.572; 1.599; 1.643] 
X9 30,40 Track renewal depot, West [285; 295; 310; 321] 
X10 30,50 Track layout design [682; 701; 715; 770] 
X11 40,00 Platform and station [538; 556; 575; 602] 
X12 50,00 Safety and signal installations [5.035; 5.176; 5.345; 5.586] 

 60,00 Informatics incl. power supply [2.374; 2.398; 2.473; 2.626] 
X13 60,10 Phase 2-4 [78; 79; 83; 86] 
X14 60,20 Sub project management [249; 253; 262; 275] 
X15 60,30 Passenger information [1.009; 1.025; 1.073; 1.123] 
X16 60,40 Electrical power supply [1.038; 1.041; 1.055; 1.142] 

 70,00 Overhead line incl. pylons [3.507; 3.598; 3.759; 3.787] 
X17 70,10 Overhead cables [3.021; 3.100; 3.250; 3.262] 
X18 70,20 Layout and planning [486; 498; 509; 525] 
Y1  Total cost before corrections [23.005; 23.515; 24.307; 25.152] 
X19 A Internal decision process [1,006; 1,021; 1,055; 1,098] 
X20 B Design specifications etc. [1,009; 1,022; 1,073; 1,100] 
X21 C Working process [1,021; 1,033; 1,055; 1,084] 
Y  Total cost after corrections [23.842; 25.347; 29.029; 32.930] 
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Table 15: Total cost after corrections for railway reconstruction case by trapezoidal fuzzy number 
α 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

L(α) 23.842 23.964 24.138 24.285 24.436 24.557 24.737 24.864 25.039 25.193 25.347
R(α) 32.930 32.525 32.116 31.716 31.314 30.984 30.557 30.173 29.785 29.408 29.029

 
6    Comparison with Monte Carlo Simulation Approach 
 
In order to compare the approach using triangular fuzzy numbers with the probability approach the cost estimation of 
the railway reconstruction case in Section 5 is used. The triangular fuzzy input variables are interpreted as triangular 
probability distributions and used as input variables in a Monte Carlo simulation. In this way numerically identical 
input variables from Table 12 are used to contrast fuzzy representation of imprecision with probabilistic 
representation of variation. The Monte Carlo simulation program [18], was run with 10.000 iterations and the output 
result for total cost after corrections fitted with a normal distribution of mean value 27.590 and standard deviation 822. 
This is shown in Fig. 1 together with the corresponding triangular fuzzy number result of Table 13. Not surprisingly 
there is a substantial numerical difference between the results. When the input variables are interpreted as probability 
distributions the resulting total cost are much narrower compared to the triangular fuzzy representation, the latter 
clearly displaying the possibility of a much broader range of outcomes. Further, notice that the triangular fuzzy result 
at α = 1 substantially differs from the mode and mean value of the normal distribution, the former maintaining the 
original skewness of the uncertain input variables. Finally, the result from the Monte Carlo simulation gives a 
minimum and maximum value of the probability distribution of respectively 25.030 and 30.819, which should have 
been 23.842 and 32.930 as is seen from the triangular fuzzy result. This observation indicates that one should not rely 
on Monte Carlo simulations when the tales of the distributions are important. This is a confirmation of previously 
established results in a comprehensive comparative study of alternative approaches to modelling of economic 
uncertainty [22]. 

Similarly, trapezoidal probability distributions based on the data from Table 14 have been used in a Monte Carlo 
simulation resulting in a normal distribution with mean value 27.700 and standard deviation 879. Not surprisingly, 
this result is very close to the one obtained above using triangular distributions. 
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Figure 1: Cost estimation for railway reconstruction case. Probability distribution by  
Monte Carlo simulation with triangular input variables based on data from Table 12.  
Triangular fuzzy number from Table 13. Trapezoidal fuzzy number from Table 15 
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7    Conclusions 
 

In order to calculate correct results with intervals and fuzzy numbers global optimization techniques must be 
implemented in contrast to straightforward application of interval arithmetic. The experimental calculations reported 
in the paper also show that further care should be taken not to introduce intermediate variables, e.g. when variables 
appear more than once, which might also introduce excess width intervals. Not only uncertain input variables have 
been considered but also an uncertain model based on uncertain model parameters. 

The results of the paper indicate that correct calculations of intervals (and fuzzy number membership functions) 
allow for rather strong statements pertaining to economic uncertainties. For example, it can be said that provided all 
uncertain input variables stay within their limits the uncertain output variables will stay within their limits. Obviously, 
it is an advantage of the interval, triangular fuzzy, and trapezoidal fuzzy representation of uncertainty that the 
meaning is easily communicated and understood. 

The substantial difference between uncertainty results produced by the possibilistic approach and the probabilistic 
approach has been demonstrated by interpreting and processing numerically identical uncertain input data to the 
railway reconstruction project in two different ways. Firstly, triangular input data were interpreted as triangular fuzzy 
numbers and processed accordingly by global optimization. Secondly, they were interpreted as triangular probability 
distributions and processed by Monte Carlo simulation. Not surprisingly, the possibilistic approach resulted in a 
substantially wider range of uncertainty reflecting the non-statistical nature of the uncertainty. Using trapezoidally 
shaped input data yielded a similar result. These results usually create heated discussions with statisticians who often 
claim that it proves the probabilistic approach to be superior and more realistic because it produces a smaller range of 
uncertainty. However, the point is that the two approaches allow for different kind of arguments. Basically, if the 
uncertainty is of a statistical nature, statistical methods are recommended. If the uncertainty is of a non-statistical 
nature, non-statistical methods should be used. 
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