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Abstract 

 
In this paper, we propose a new global optimization algorithm inspired by stochastic model and graph theory, 

which is named as lambda algorithm (LA). The new algorithm utilizes strings of element from member set {0, 1, 2, 3, 
4} to represent the values of candidate solutions (typically represented as vectors in n-dimensional Euclidean space). 
LA draws useful information from both repeated and unrepeated elements from candidate solutions (strings), to 
simulate best global schema towards final optimization. Except the mathematical operations for evaluating the 
objective function, sort procedure, creating initial population randomly, the algorithm only involves if-else logical 
operation. In contrast to existing global optimization algorithms, the lambda algorithm engages the simplest 
mathematics but reaches the highest searching efficiency.  

 © 2010 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
Optimization is one of challenging and active mathematical research branches. Particularly, the topic of global 
optimization is of critical importance because of the high demand and wide applications in science, business, 
economy, and industry.  

We have created a new global optimization search algorithm with following features: 
First, the algorithm use lambda operator to build a five-state regular Markov chain model and initialize its 

individual solution as strings of 0s, 1s, 2s, 3s, 4s. Let P be a regular transition probability matrix with state space 
S={0,1,2,3,4}. Then the limiting probability distribution Π=(π0,π1,π2,π3,π4) with πi=0.2 and   satisfying Π=ΠP. The 
property of limiting probability will hold the algorithm search result being independent of initial individual solution 
setting, keeping algorithm to seek the intrinsic harmonious state of a system under investigation. 

Secondly, the algorithm considers five-state system as a filter, filtering advanced schema (ex.10**243**2) 
(Genetic algorithm’s idea) from each individual solution. The key issue is selecting 3 different candidate solutions, 
their fitness values are similar. The algorithm made each of them compare to each other, then drawing out 
information from repeated and unrepeated digits. When most of candidate solutions of population have the same digit 
at same position, the probability of the digit portion is larger than a confidence value γ, 0≤γ≤1, thus the digit at this 
position goes to a steady state.  

Thirdly, the algorithm operation is a pseudo-linear transformation such that searching the optimum of a 
nonlinear multivariate objective function is essentially linear. According to the limiting probability distribution 
property and advanced schema filtering, a weighting system is created, which leads some large weighted digits of 
population soon approach a probability stationary. Then extracting the steady digits by shrink the search area of 
candidate solutions, this procedure will repeat again and again since the algorithm is running, the algorithm will run 
towards to final optimum direction until the search area be shrink smaller enough. Thus, Cauchy sequences will be 
generated in this algorithm to satisfy the optimum approach condition. 
 
2    An Inspiring Example 
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The objective function for illustrating purpose is the Rosenbrock function 

 ( ) ( ) (2 22, 100 1 )f x y y x x= − + − .                                                            (1) 
The global minimal value is 0 of Rosenbrock function at (x,y)=(1,1). The plot of (1) in Figure 1 offers an 

intuitive view on the features optimality of (1). 
 

 
Figure1: Plot of Rosenbrok function 

 
We used GA [7] to search the global minimum of Rosenbrok function. However, contrary to the global 

optimization searched by GA, the “global” minimal value 0.11935 at (x,y)= (0.681,0.477) is reported.   
The case of GA’s “failure” to search the true global minimum (for given computing time) here inspires us to 

consider the fundamental weakness of GA. It is noticed that GA, as a global optimization algorithm, differs from 
many other algorithms.  

Let f(x) be the objective function, where x=(x1,x2)T ∈ D ⊂ R2. In many optimization searching algorithms, a 
typical exercise is trying to improve the optimality within the neighborhood. It is obvious that the increment in x 
approach typically leads to a local optimum [5, 6, 9]. 

GA does not work on system state x ∈ D ⊂ Rn of the objective function f(x) directly, rather it uses string like 
 for representing the state 1110010011101010011001100 xT=(x1,x2,…,xn) and hence may possess better global 

coverage. However, GA string member set is {0, 1}. Inevitably, the change in string may not change the state 
xT=(x1,x2,…,xn) efficiently for covering the whole domain because the element change in a string is 1.  

GA string member set {0,1} is too simple, which restrict itself not being able to operate complicated “mutation”, 
only after “selection” and “crossover” two procedures’ support, which then simulates advanced schema 
(ex.10*01**1). But for “crossover”, for now we only follow “random crossover” or “60% crossover”. It is a fuzzy 
intuitive way to operate, which restricts us to improve GA itself in further research. So, by expanding the string 
member set, we can make a more complicated “mutation” operation, and drop the fuzzy “crossover” idea, and it may 
lead to a better way to generate a more efficient heuristic algorithm.  

 
3    String Representation of the State of Objective Function 
 
An improvement strategy is to expand string member set. Now let us formally establish the string representation 
related concepts. 
Definition 3.1: A string is a sequence of integers, denoted by n1,n2,…,nt. Number P is called the length of a string. 
For operational convenience, a string may be repressed by a row vector, nT=(n1,n2,…,np). 
Definition 3.2: The collection of the elements for constructing a string, denoted by {0,1,…,s−1}, is termed as an 
element set for a string. S is called the size of the element set of a string (i.e., the number of elements in the element 
set).  
Conjecture 3.3: The size of the element set of a string used in a lambda algorithm is a prime number. In GA, the size 
of the element set {0,1}  is prime number 2. Prime number 3, 5, 7, 11, etc can also be used. If the size of the element 
set is 7, then the element set is {0,1,2,3,4,5,6}.The length of a string P should be at least n(s+1). 
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Definition 3.4: Let x=(x1,x2,…,xn)T ∈ D ⊂ R2 denote system state, which is also representing the candidate solution. 
Then the length of the string representing x is p>nu if the size of the string element set is S, u>s, u is called the basic 
unit size of a string. The string representation for (x1,x2,…,xn)T is 

( )1 2 1 2 1 1
e e e e e e eu u u nun u

L L L L+ - + . 
An intuitive correspondence between the state x and the representing string is 

( )
1 2

1 2 1 2 1 1

n

u u u nun u

x x x

e e e e e e eL L L L
14243 14243 1442443

+ - +

. 
Lemma 3.5: Let the system state be x ∈ D ⊂ Rn, and e be a string representation (of the system state) with element 
set size S and string length n(S+1). Let , where 

max, min,max{ }r i il i n
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where the nonzero weights are located at the ith segment. Then the system state is a linear transformation of the S-

element string representation min rx u u O= + e .                                                                                  
Definition 3.6: If e is an element of a string with element set {0,1,2,3,…,s−1}, then the value changing rule is 

{ }
⎩
⎨
⎧

−=
−∈+

=
.10

2.,2,1,01
seif

seife
e

L  

Definition 3.6’s element value change rule is called λ lambda operation, and λ[ ] is called lambda operator, we 
will discuss and define that part carefully at later section. In the remaining sections of this paper, we will use 5-
element string for illustration and the establishment of the lambda algorithm. 

e

 
4    Five-Element String Representation 

 
For clarity, we will use numerical examples for illustrating the necessity and advantages of string representation. 
Example 4.1: Let D≡[umin,umax]×[umin,umax] be the domain for an objective function f(x1,x2). Assume that a string 1 2 4 
3 0 1 2 4 3 2 1 1 represents (x1,x2): the first 6 elements, i.e., 1 2 4 3 0 1, in the string stand as and the second 6 

elements, i.e., 2 4 3 2 11, stand as . The element set is {0,1,2,3,4}, the size of element set is 5, the basic unit 
u=5+1=6. The length of the string 1 2 4 3 0 1 2 4 3 2 11 is 2u=12, which is the number of units occupied in computer. 

1x

2x

Mathematically, the linear system linking the five-element string and the system state can be expressed by 
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Then a matrix equation for string to state vector transformation is 
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Matrix O is actually a weighting system which promotes the changes in (x1,x2) according to the location of an 
individual member in the string as well as the changing size of the member.   

In other words, the mechanism underlying the usage of string lies on that the weighting system, i.e., 
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5 , assigned to the 6 members in the first half of the string and 
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5 5 5 5 5 50,0,0,0,0,0, , , , , ,
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⎧
⎨
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⎫
⎬ , the weighting system assigned to the  6 members in the second half of the string 

create the possibility that change in the member of the string will have different impacts.  
A string, denoted by e1e2…e6e7e8…e12, the 1-6 members are the first half of the string, representing x1, the 7-12 

members are the second half of the string, representing x2. Logically, changes in e1 and e7 will result in largest 
changes in x1 and x2 respectively, because the highest weight 0.2 is assigned to them, while changes in e6 and e12 will 
result in the smallest changes in x1 and x2 respectively, because the lowest weight 0.000064 is assigned to them. 
Therefore, a well-constructed string element change scheme will have a balanced global searching capability as well 
as local fine-tune capacity. 
Example 4.2: (Continued) Define umin=−1010, umax=+1010, then ur=umax−umin=2×1010. String 1: 1 2 4 3 0 1 2 4 3 2 11 
used in Example 3.4 is the base for observing the impacts from string member changes. String 2 changes the first 
element of the String 1 by adding 1 and the seventh element of the String 1 by adding 1, which is the smallest shift in 
size at highest weight 0.2. The change in x1 and x2 is quite large with distance 5656854249.5. However, String 3 
changes the sixth element of the String 1 by adding 3 and the seventh element of the String 1 by adding 3, which is 
the largest shift in size at highest weight 0.000064. The change in x1 and x2 is much small with distance 202276452.4. 
Table 1 summaries the changes and impacts. 

 
Table 1: The impacts of weights in global searching and local tune-up 

String x1 x1 ⏐!x⏐ 
1 2 4 3 0 1 2 4 3 2 1 1 -3662720000 175680000  
2 2 4 3 0 1 3 4 3 2 1 1 337280000 5751680000 5656854249.5 
1 2 4 3 0 4 2 4 3 2 1 4 -3460480000 1755520000 202276452.4 

 
It is important to emphasize here that the value of a string depends on three factors: (1) value of individual 

element in a string from {0,1,2,3,4}; (2) the location (or position) of a specific element ; (3) the combination of all 

elements appeared in the given string. Formally, let us define the five-element if-else operator, called as 
ie

λ operator.  
 
5   Lambda Operation 

        
Before we introduce lambda operator, let us first review some useful knowledge of stochastic process and graph 
theory. 

Suppose the Markov chain M is a digraph (directed graph) G=GM having the set of nodes N={1,2,…,n} and the 
set of edges E. Each node corresponds to a state of M, and G contains edge (i,j)∈E if and only if pij>0. Thus the 
digraph, or state transition diagram, G captures the structure of possible one-step state transitions. For any state i we 
let pi denote the probability that, starting in state i, the process will ever reenter state i. State is said to be recurrent if 
p

i
i=1 and transient if pi<1.In graph-theoretic terms,  means there is a directed path Q of length l(Q)=k(number 

of edges) from node i to node j in G. If this holds for some k≥0, then node j is accessible from node i, written i→j. If 
both i→j and j→i hold, then we say that states i and j communicate, written i↔j. A path joining a node to itself is 
called a circuit. If this circuit contains no repeated nodes, then it is a cycle.  

0>k
ijp
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Theorem 5.1: If G is strongly connected then there is a unique stationary distribution π for M. Moreover, this 
distribution satisfies πj>0 for all j∈N.  
Definition 5.2: (λ operator) let e∈{0,1,2,3,4}, then 

[ ] { }
⎩
⎨
⎧

=
∈+

=
,40

3,2,1,01
eif

eife
eλ  

λ(l)[ ] is lth order λ operator , which repeats λ operation m times.  
Definition 5.3: (Modulo operator): Let d be a positive integer, q be the quotient and r remainder r satisfying d = nq 
+ r, Then we write the modulo operation as d mod(q) = r.    
Definition 5.4: Let e=(e1,e2,…,eg) be a five-element string, then the λ operation on a string is a component-wise 
operation, i.e., [ ] [ ] [ ] [ ]( )1 2 2, , ,e e e el l lLl = . Furthermore, let ( )

ghijeA
×

= be a five-element matrix, i.e., 

eij∈{0,1,2,3,4}, then λ [A]=(λ[eij ])h×g.       

Proposition 5.5: , where λ( )[ ] [ ]ee l ))4mod((1 λλ = (0)[e]≡e. 
Proof: Note that , the number e only has five choices. For example, , and { 4,3,2,1,0∈e } 0=e

( )[ ] ( )[ ]145 λλ =e ( )[ ] ( )[ ] ( )[ ] 0432 123 ==== λλλ . 
 

 
Figure 2: λ[ ]operation cycle 

 
For any element e∈{0,1,2,3,4}, one-time λ[ ] operation shifts the element e from current position into the next 

1st position along the cycle shown in Figure 2. Hence l-time λ[ ] operation shifts the element e from current position 
into the next lth-position along the cycle. Further, due to the fact that five-element member set {0,1,2,3,4} only has 
five members in it, the period of the cycle is 5. Therefore, ( ) [ ] [ ]ee ll ))4mod((λλ = since 0 is the first member of the 
element set. 
Proposition 5.6: For any given five-element string e , the five-time λ[ ] operated strings form a string cycle. In other 
words, ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]{ },,,,, 4321 eeeee λλλλ  is a string cycle. 

Definition 5.7: (λ spreading operation) Let ( ) ( ) [ ]min , 0,1,2,3,4k k
rx u u O e kλ= + = be the corresponding system state 

of ( ) [ ]ekλ . Then ( ) ( ) ( ) ( ){ }4321 ,,,, xxxxx  is the system state cycle and ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }4321 ,,,, xfxfxfxfxf  is the 
objective function value cycle respect to the string cycle ( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }eeeee 4321 ,,,, λλλλ , the procedure to generate 
the string cycle, we called λ spreading operation.  
Definition 5.8: (λ comparing operation) If we compare 2 strings e1 and e2, string e1 (candidate solution)’s fitness 
value better than string e2’s, then we manage some change to e2. l is length of strings e1, e2. e1i, e2i is one of the 
element of e1 , e2 respectively. 

For i=1:1:  l

If   ii ee 21 =

( )ii ee 22 λ=  
Else if  ii ee 21 ≠

ii ee 22 =  
End 
End  
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From Definition 5.8 we know, compare to 1e , 2e  has ( ) 2.021 == ii eep , and ( ) 8.021 =≠ ii eep , it means  has 

probability 0.2 equal to
ie2

( )ie2λ  to change its value, has probability 0.8 to keep its value.  
We could consider λ comparing operation as a Markov chain model M, state space S={0,1,2,3,4}, the transition 

probability is P. 

8.00002.0
2.08.0000

02.08.000
002.08.00
0002.08.0

=P

. 
Illustration the process, we could draw a digraph of M, called graph G [1], [2]. 
 

 
Figure 3: λ comparing operation model digraph 

 
The Figure 3 graph G is a strongly connected graph, and then there is a unique stationary distribution π for M. 

(Definition given by theorem 5.1) 
Let π0, π1, π2, π3, π4 are stationary probability of state 0, 1, 2, 3, and 4. Then we have  
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. 
From equation (2) we have: π0 = π1 = π2 =  π3 = π4 = 0.2.         
And also: state 0  ↔ state 1  ↔ state 2  ↔ state 3  ↔ state 4.         
From the above showing to us, the property of limiting probability will hold the algorithm search result 

independent of initial individual solutions setting, keep algorithm to seek the intrinsic harmonious state of a system 
under investigation.  

Proposition 5.9: Let ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }1 2 3 4
min min , , , , ,f f x f x f x f x f x= ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }1 2 3 4

max max , , , , .f f x f x f x f x f x=  

Then the objective function cycle will demonstrate three patterns: (i) ( ) minfxf = , i.e., the remaining four objective 
function values are above the cycle starting value ( )xf ; (ii) ( ) maxfxf = , i.e., the remaining four objective function 
values are below the cycle starting value ( )xf ; (iii) ( ) maxmin fxff ≤≤ , i.e., the cycle starting value f(x) falls between 
cycle minimum and maximum. 
Remark 5.10: The weight matrix O in string and system state linking equation eOuux r+= min  reveals the ever-
changing and controllable character of five element string representation. And the three cycle patterns of objective 
function values with respect to string cycles reveal that λ[ ] operations guarantee the chance for global optimum 
searching.  
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6   LA Optimization Working Principal 
 
From our intuitive observation of whole population of candidate solutions (5-elements represent), the only 
information we could directly observe is: about 20% digits repeated at same position of each string (candidate 
solution), and 80% digits are not. Different with many optimization algorithms, the LA draws useful information 
from both repeated and unrepeated elements from candidate solutions (strings), to simulate best global schema 
towards final optimization.  

Now we start to introduce the optimization principal of LA. Suppose we have N randomly simulated candidate 
solutions, called population of strings.  

1. Rank the whole N strings by fitness checking, sort them by ascending order according to objective function 
values with respect to N strings.  

2. Packed-Rolling operation. The Matlab pseudo-code of packed rolling operation is listed as follows. Assume 
ranked candidate solutions denote as matrix Q, the matrix size is row multiply column. 

for i=1:1: row-4  
for j=1:1: column  
if Q(i,j)== Q(i+1,j) && Q(i,j)~=4  
Q(i+1,j)=Q(i+1,j)+1;  
elseif Q(i,j)== Q(i+1,j) && Q(i,j)==4  
Q(i+1,j)=0;  
elseif Q(i,j)== Q(i+2,j) && Q(i,j)~=4  
Q(i+2,j)= Q(i+2,j)+1;  
elseif Q(i,j)== Q(i+2,j) &&Q(i,j)==4  
Q(i+2,j)=0;  
end  
end  
end 
Verbally, Packed-Rolling operation can be explained as follows: Defined 3 strings as a “package”, within the 

selected package, the best string is the first item of the package. Then examining the first element (location) in the 
second string, if the element repeats the first element of the best string, [ ]λ  operator should be applied to the 
repeated element one-time. If the second string don’t have repeated element, the second element (position) of the 
second string is examined, if it repeats the second element of the best string, [ ]λ  operator should be applied. Then 
we select the second package, in which the second string in the string vector Q will be defined as the first string of 
this package. Perform the check and replacement operations within the second package until finished. Then the third 
package is defined where the third string in the string vector Q, and perform the check and replacement operations 
within the third package, and so on until the row-2 package is defined and checked. 

3. Executive λ spreading operation: spreading the string vector Q to ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ]{ }QQQQQ 4321 ,,,, λλλλ , then 
all the strings is re-evaluated via ( )eOuuf r+min

. From ( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }QQQQQ 4321 ,,,, λλλλ , then select best fitness N 

strings as new string vectorQ′ .From Packed-Rolling operation procedure we could see, 3 fitness values most similar 
candidate solutions be seemed as one “package”. Whole population of candidate solutions is classified to ROW-2 
packages. The repeated elements according to different classified “package” were transferred to , unrepeated 
elements stay at Q. all repeated and unrepeated elements joined with new digits combined to new strings via 
evaluation. Select 1/5 strings from whole 

( ) [ ]Q4λ

( )[ ] ( )[ ] ( )[ ] ( )[ ]{ }QQQQQ 4321 ,,,, λλλλ , ask comparing two new strings which 
contains unrepeated and repeated elements. Loop above procedure several times, more and more advanced schema is 
simulated by testing and selection, successfully draws out the useful information during LA running.  

The algorithm operation is a pseudo-linear transformation such that searching the optimum of a nonlinear 
multivariate objective function is essentially linear. According to the limiting probability distribution property and 
advanced schema filtering, a weighting system is created via ( )min rf u u Oe+ , which leads some large weighted digits 
of population soon approach a probability stationary. 
Example: For ( )geeee ,,, 21 L= , by weight comparing, we has ( )geeeee >>>= L321 , then might be first 
and second elements approach probability stationary.  

21 ,ee

In LA, larger weight element always approach probability stationary more soon than smaller weight element, it 
means before  goes to stationary, have no way to approach.  1e geee ,,, 32 L
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Definition 6.1: (Cauchy sequence): A sequence of real numbers is called Cauchy, if for every 321 ,, xxx positive 

real number ε, there is a positive integer N such that for all natural numbers m, n > N, ε<− nm xx  (where the 
vertical bars denote the absolute value). (See Figure 4) 

When goes to stationary, the algorithm will ask to extract from1e 1e ( )geeee ,,, 21 L= .  will transform to new 

,  to , …, to .  A new will add by simulation randomly. A new 
2e

1e′ 3e 2e′ ge 1−′ge ge maxu′ , minu′ will replace , . Also maxu minu

minmaxminmax uuuu −<′−′ .Repeat this procedure again and again when algorithm is running, until ( ) ( ) ε<− nn uu minmax
, 

ε is a smaller enough positive number, we say the algorithm approach to final optimum.  
 

 
Figure 4: Cauchy sequence illustration 

 

 
Figure 5: Two dimensional Rosenbrock LA optimization result 

 
From Figure 5 we can see, at the beginning, the search area given by program is: 
umin≤x1,x2≤umax, umin=−1.0⋅106, umax=−1.0⋅106, ⏐umax−umin⏐=2.0⋅106, after =0.999999930368000, 

=1.000000035225600, ⏐ ⏐=1.048576⋅10
minu¢

maxu¢ max minu uⅱ - -7, at computer screen, it shows: =1.000, =1.000. minu¢ maxu¢

http://en.wikipedia.org/wiki/Positive_and_negative_numbers
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Absolute_value
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Cauchy sequence idea is proved. Confidence probability given by 0.5, if ei’s portion probability larger than 0.5, we 
consider ei goes to stationary and exact ei out.  

 
7   A Lambda Algorithm Global Optimum Search Scheme 

 
A few terms are defined first. Stopping time: The algorithm stops after running for an amount of time in seconds, 
which is specified as stopping time. Population size: The population size defines numbers of rows of matrices, 
denoted by N. String length: The string length defines the number of elements in each five-element string. 

Confidence probability: Give a probability P, usually let 0.5≤P≤1, if 1st element’s portion probability larger 
than P,  then we believe the element will goes to stationary. n: the dimension of objective function. umin: the lower 
bound value of input variables. umax: the upper bound value of input variables. 

Before the searching scheme enters algorithm loop the LA nature of the scheme requires the creation of a 
candidate solution string population. Randomly select numbers from member set {0,1,2,3,4} uniformly and 
independently and put them into strings until the string population is established. It is obvious that the discrete 
uniform random number nature eliminates any possible bias for the starting the algorithm.  

Stochastic initialization: Randomly generate 2N, say, N=100, five-element strings as candidate solutions, then 
divide the candidate solutions into two string vectors (two matrices of elements), the first string vector is denoted by 
Qmin and the second by Qmax. The searching range for the ith component of system state x is , i.e., 

.  
[ ]maxmin ,uu

maxmin uxu i ≤≤
Searching loop: 
Step 1: 2N string cycles creation. By applying λ spreading operation to Qmin and Qmax respectively, ten string 

vectors (including Qmin and Qmax), denote them by Qi , i=1,…,5,6,…10. Note that Q1=Qmin and Q6=Qmax. 
Mathematically, 

( )[ ] ( )[ ] 10,9,8,7,6,,5,4,3,2,1, max
1

min
1 ==== −− iQQiQQ i

i
i

i λλ . 
Mathematically, step 1 is creating 200 (2N in general) string cycles according to Proposition 5.6, which paves 

the way toward the global optimum searching. 
Step 2: Rank the strings and checking stationary of elements: Fitness checking and best-worst string vectors 

creation. It is divided into three sub-steps: 
1. Combine Qi, i=1,2,…,10 into a super string vector, denoted by Q. 
2. Sort the 1000 strings in Q by ascending order according to objective function values with respect to the 1000 

strings, and denote the ranked string vectors as Q'.  
3. Define the top 100 strings of Q' as minQ′  and the bottom 100 strings of Q' but reverse them in descending 

order as . maxQ′
Mathematically, Step 2 is utilizing the 200 cycles of objective function values in which 200 minimum candidate 

solutions and maximum candidate solutions are constructed according to Proposition 5.9.  
Checking stationary of . If each variable’s string representation, its 1st element’s portion probability larger 

than P, then we believe the element will goes to stationary. Exact the element, and a new ,  will replace , 

. Search area 

minQ′

maxu′ minu′ maxu

minu minmaxminmax uuuu −<′−′ . * maxQ′ will be selected from ’s λ spreading operation 500 strings. 
The operation is ranked 500 strings by descending order, 

minQ

maxQ′ will be top 100. 
Step 3: Best element select and worst element remove.  
Intuitively, this step utilizes genetic engineering ideas: for seeking the best healthy gene combinations it is 

necessary to keep the best individual gene in the particular position within the gene sequence and also remove the 
worst individual gene from the particular position within the gene sequence. What we will act is just an imitation to 
gene selecting and removing in the five-element string sequences created in Step 2, i.e.,  and  in terms of λ[ ] 
operation. This is divided into two sub-steps. 

minQ′ maxQ′

1. Packed-Rolling operation. This sub-step performs operations within  and  respectively.If we aim at 
search global minimum of the given objective function, strings in  will be regarded as worse gene sequences and 
thus the first string corresponding to the maximum objective function value is the worst one. Similarly, strings in  
will be regarded as better gene sequences and thus the first string corresponding to the minimum objective function 
value is the best one. 

minQ¢ maxQ¢

maxQ¢

maxQ¢



Journal of Uncertain Systems, Vol.4, No.1, pp.22-33, 2010                                                                                                               31 

2. Excise worst elements. Different from Packed-Rolling sub-step, this operation is performed by comparing 
the corresponding elements between Qmin and Qmax. Intuitively, excising the worst elements with respect to the best 
strings from the opposite string vector is similar to excising bad gene from the gene sequence by comparing to a 
healthy gene sequence.In this sub-step, two corresponding strings (candidate solutions) from Qmin and Qmax each are 
selected and compare their corresponding elements sequentially. If we are seeking global minimum, then the strings 
from Qmax will be “sick” ones while the strings from Qmin will be regarded as “healthier” ones. For the same location, 
if the healthier string contains element being the same as the element at the same location in the “sick” string, this 
individual element at this location should be excised and replaced by the element at the same location from the best 
string (i.e., the first string in Qmin). The pseudo-code of Matlab describes how to excise unhealthy elements from 
relevant the strings. 

Assume string vector Q is for generating global minimum, and string vector Q1 is for generating global 
maximum.  

for i=1:1:row-1 
for j=1:1:column  
if Q1(1,j)== Q(i+1,j) 
Q(i+1,j)= Q(1,j);    
end 
if Q(1,j)== Q1(i+1,j) 
Q1(i+1,j)= Q1(1,j);      
end 
end 
end 
In the excising operation, the first strings in Q and Q1’s are defined as the best elements and the worst elements 

respectively. If for a given location the element in Q repeats the element at the same location in Q1, this particular 
element should be excised and replaced by the element at the same location of the first string in Q. 

At the beginning of scheme running, the excising operation might cause the convergence too quick (such that 
trap into local optimum), and during the whole algorithm running period, it also might cause some healthy elements 
been excised. However Proposition 5.9 guarantees the success of the scheme as what we pointed in Remark 5.10. 

At the end of Step 3, new string vector  in ascending order and  in descending order will be generated. 
The flow chart of the LA optimization searching scheme is shown in Figure 6.  

''
minQ ''

maxQ

 

 
Figure 6: Flow chart of naïve five-element string algorithm 

 
The LA algorithm can be stated as following: 
Initialization (generating string population Qmin and Qmax stochastically). 
Start loop 
2N string cycles creation; 
Rank the strings and checking stationary;  
Best element select and worst element remove; 



32                                                                                                                  Y. Cui, R. Guo and D. Guo：Lambda Algorithm                

Check the loop stop criteria: (yes, GoTO 1, yes, Loop Stops); 
End loop 
 

8    Illustrative Examples 
 

We use Lambda algorithm to search the global optimum for three objective functions: Rosenbrok function, Rastrigin 
function and Griewank function. Also, we use GA performing the three functions as comparison.  
A. Rosenbrok function 

( ) ( ) ( )
2 22

1 2 2 1 1, 100 1f x x x x x= − + − . 

The Lambda algorithm searching by 100 loops gives 
min
f =3.9144e−020, and the global minimum 

1 2( , )m mx x =(0.999999999878608,0. 999999999741594). The searching area is D≡[−106,106]× [−106,106]. Spend 
22.828079 seconds. 
B. Rastrigin function 

( ) ( ) (2
1 2 1 1 2, 2 cos 18 cos 18 )f x x x x x= + - - . 

 

 
Figure 7: 3D-plot of Rastrigin function 

 
The global minimum is 0 at 1 2( , )m mx x =(0,0) and it is well-known that in area [−1,1]× [−1,1] there are more than 

50 local minima spreading as a lattice around the global minimum. 
The naïve string algorithm searching in the area D≡[−106,106]× [−106,106] by 26 loops gives the global 

minimum 0 at 1 2( , )m mx x =(0,0). 
 

Table 2: Comparisons between GA and five-element naïve string algorithm 
Function Algorithm Searching cube Loops Global min 

GA [−106,106]2 57 0.11935 Rosenbrock LA [−106,106]2 100 3.9144e-020 
GA [−5.12,5.12]30 84 105.7045 Rosenbrock 

 LA [−5.12,5.12]30 400 1.0165 
GA [−106,106]2 51 1.2178 Rastrigin LA [−106,106]2 26 0.000 
GA [−106,106]2 52 0.12506 Griewank 

 LA [−106,106]2 77 0.000 
GA [−600,600]1000 52 0.55736 Griewank 

 LA [−600,600]1000 37 2.3360e-011 
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C. Griewank function 
 
This function is 1000-dimensional. In the cube [-600,600]1000, there are thousands of local minima around and the 
global minimum 0 at the origin. 

( ) ∑ ∏
= =
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⎛−=
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i
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i
xxxf
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4000

1
L  

Using lambda algorithm to search in the cube, by 37 loops, the algorithm locates xi=0.2458, i=1,2,…,1000 which 
gives global minimum 2.3360e-011. Spend 337.4632 seconds. 
 
9    Concluding Remarks 
 
It is quite promising that the naïve five-element string algorithm has demonstrated its excellent global searching 
capability with competitive speed (measured by loop number) and competitive quality (in terms of the global 
minimum). The naïve sting algorithm offers global minimum and maximum at the same time. It is also exciting that 
when the search “cube” is reduced, the searching loops decreases greatly and the search quality increases without any 
doubts. However, the “reduced” search cube implies a constrained optimization or more information is required for 
the objective function.  

In the new algorithm development, (1) The states of the system is represented by strings of 5 elements {0,1,2,3,4} 
and hence the search of the optimal state(s) is realized by string manipulations; (2) A weighting system is created for 
a balanced global and local search to avoid the scheme trapping in local optimum; (3) The string operation is a 
pseudo-linear transformation, which involves if-else logical operator, such that the searching the optimum of a 
nonlinear multivariate objective function is essentially linear. 

Finally, there is a trend in scientific research – complication. It is true that real world is complicated. However, 
any complicated phenomenon can be decomposed into simple ones. It is fair to say that to pursue simple one, rather, 
complicated should be the basic goal of scientists. Our naïve five-element string algorithm is the simplest one with 
high efficiency, and it already has successful applications [3], [4], [8] should be examined further. 
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Theorem 8 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B with positive and
finite Hausdorff outer measure in its dimension denote by µ = P (A|B) the restriction to the Borel σ-field
of the upper conditional probability defined as in Theorem 2. Let L∗(B) be the class of all Borel measurable
random variables on B. Then the convergence in µ-distribution of a sequence of random variables of L∗(B)
to a random variable X is equivalent to the pointwise convergence of expectation functionals on all bounded
and continuous function f that is limn→∞

∫
fdµn =

∫
fdµ.

Proof: If Xn and X are Borel-measurable random variables and H is a Borelian set then the sets X−1
n (H)

and X−1(H) are also Borelian sets; moreover since every Hausdorff s-dimensional outer measure is countably
additive on the Borel σ-field then the (upper) conditional probabilities µn and µ induced respectively by Xn

and X on (<,F ) are probability measures. Then convergence in µ-distribution is equivalent to the pointwise
convergence of expectation functionals on all bounded and continuous function f .

6 Conclusions

This paper investigates the relations among different types of convergence for random variables when they
are based on an upper probability approach where conditional upper expectations with respect to Hausdorff
outer measures are used whenever we have to condition on a set with probability zero.

Upper (lower) conditional previsions defined with respect to Hausdorff outer measures are proven to be
the upper (lower) envelopes of all linear extensions to the class of all random variables of the restriction to
the Borel-measurable random variables of the given upper conditional previsions.

It is proven that the relations among different types of convergences of random variables defined with
respect to upper conditional probability defined by Hausdorff outer measures are the same that hold if con-
vergences are defined with respect to a probability measure. When the conditioning event has finite Hausdorff
outer measure in its dimension these results are obtained because Hausdorff outer measures are Borel regular
outer measures and so continuous from below and continuous from above on the Borel σ-field. In general if
upper conditional probability is defined as natural extension of a coherent merely finitely additive probability
defined on a σ-field we have that µ-stochastically convergence does not imply convergence in µ-distribution
since in this case the upper conditional probability is not continuous from above.
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