
Journal of Uncertain Systems
Vol.4, No.1, pp.14-21, 2010
Online at: www.jus.org.uk

A Splitting Technique for Discrete Search based on Convex

Relaxation

Martin Fuchs1,2,∗, Arnold Neumaier2

1CERFACS, 31057 Toulouse, France
2University of Vienna, Faculty of Mathematics, 1090 Wien, Austria

Received 15 January 2009; Revised 3 July 2009

Abstract

In mixed integer programming branching methods are a powerful and frequently employed tool. This
paper presents a branching strategy for the case that the integer constraints are associated with a finite set
of points in a possibly multidimensional space. We use the knowledge about this discrete set represented
by its minimum spanning tree and find a splitting based on convex relaxation. Typical applications include
design optimization problems where design points specifying several discrete choices can be considered as
such discrete sets.
c©2010 World Academic Press, UK. All rights reserved.
Keywords: branching strategies, mixed integer programming, convex relaxation, minimum spanning tree,
design optimization

1 Introduction

In mixed integer programming problems one seeks an optimal solution among variables θ ∈ T ⊂ Rn0 where
the components of T = T 1 × · · · × Tn0 are intervals of continuous or integer variables. Depending on the
objective function and the constraints one faces different problem classes of mixed integer programming: both
objective function and constraints are all linear, i.e., mixed integer linear programming (MILP); at least one
constraint or the objective function is nonlinear, i.e., mixed integer nonlinear programming (MINLP); at least
one constraint or the objective function is given as a black box, i.e., black box optimization. For all these
types of problems there exist algorithms that employ the splitting (also called branching) of the search space
T as a crucial part of their solution technique.

A splitting technique finds a subdivision of the original problem in two or more subproblems such that the
associated optimization algorithm can decide how to proceed solving these subproblems which may possibly
include further splitting. The subdivision must ensure that the optimal solution of the original problem can
be found as one of the solutions of the subproblems.

For a study of efficient methods using splitting in branch and bound for MILP see, e.g., [3, 11]. Additionally,
methods for MINLP also employing branch and bound can be found, e.g., in [10, 14]. Branching in black
box problems with continuous variables only is studied, e.g., in [7, 9]. Branching rules in mixed integer
programming (mainly MILP) are presented, e.g., in [1]. For an exhaustive survey on discrete optimization,
including branch and bound, see [13].

In many problem formulations, integer variables arise from reformulation of discrete multidimensional sets
in terms of subsets of Z. That means the original problem contains constraints like z ∈ Z := {z1, . . . , zN},
zk ∈ Rn. This constraint can be reformulated to a mixed integer formulation of the search space by using N
binary variables b1, . . . , bN , bi ∈ {0, 1} and the constraints z =

∑N
i=1 bizi and

∑N
i=1 bi = 1.

One real-life application, where this kind of discrete search spaces shows up frequently is design optimiza-
tion, cf., e.g., [2, 4, 12]. In design optimization a design choice can be either a continuous variable, e.g., the
diameter of a car tire, or an integer variable, e.g., the choice between different motor types, determining a mul-
tidimensional discrete space Z of design points (in our example the specifications like mass and performance
of different motors). If the design optimization problem is formulated using integer choice variables, it can
be tackled heuristically without branching, e.g., by separable underestimation [5]. An optimization algorithm
using a branching method on the integers does not exploit the knowledge about the structure of Z. Using
this knowledge, however, may have significant advantages since functional constraints (i.e., constraints that

∗Corresponding author. Email: martin.fuchs81@gmail.com (M. Fuchs), Web: www.martin-fuchs.net.

Journal of Uncertain Systems, Vol.4, No.1, pp.14-21, 2010 15

model the functional relationships between different components of the design, often given as black boxes)
typically depend on the values of z ∈ Z rather than on the values of the integer choices.

In this paper we present a branching strategy for discrete search spaces such as Z described above. We
use only local information about functional constraints. Thus the method is applicable in all problem classes
of mixed integer programming, even for black box optimization.

We use the knowledge about the structure of the space Z represented by its minimum spanning tree
[15]. We represent a solution of an auxiliary optimization problem as a convex combination of the points
z1, . . . , zN , and use the coefficients of the combination to determine a splitting across an edge of the minimum
spanning tree of Z. An implementation of our method in Matlab can be found at www.martin-fuchs.net/
downloads.php.

This paper is organized as follows. In Section 2 we introduce the optimization problem formulation and
notation. In Section 3 we discuss in detail how to determine a splitting based on convex relaxation of the
discrete constraints. Section 4 summarizes the corresponding implementation in Matlab. In Section 5 we
describe a simple solver strategy that makes use of our splitting technique. An illustrative example in 3
dimensions shows how to use the method, and a more complicated real-life example in 10 dimensions is given
in Section 6.

2 Problem Statement

Assume that we are given a mixed-integer optimization problem with selection constraints of the following
form: 




min
θ,x

cT x

s.t. F (Z(θ)) ≤ Ax,

θ ∈ T := T 1 × · · · × Tn0 ,

(1)

where c, x ∈ Rm, T means transposed, A ∈ Rm×m, F : Rnz → Rm, Z : Rn0 → Rnz , θ = (θ1, θ2, . . . , θn0)T

is a vector of choice variables, T the selection space for θ. We assume that the choices can be discrete or
continuous. Let Id be the index set of choice variables that are discrete and Ic be the index set of choice
variables that are continuous, Id ∪ Ic = {1, 2, . . . , n0}, Id ∩ Ic = ∅. The selection constraints θ ∈ T specify
which choices are allowed for each choice variable, i.e., T = T 1× · · · ×Tn0 , T i = {1, 2, . . . , Ni} for i ∈ Id, and
T i = [θi, θi] for i ∈ Ic. The mapping Z assigns an input vector z to a given choice θ.

In the discrete case, i ∈ Id, a choice variable θi determines the value of ni components of the vector
z ∈ Rnz which is the input for F . Let 1, 2, . . . , Ni be the possible choices for θi, i ∈ Id, then the discrete
choice variable θi corresponds to a finite set of Ni points in Rni . Usually this set is provided in an Ni × ni

table τ i (see, e.g., Table 1 with Ni = 10, ni = 3).

Table 1: Tabulated design specifications (taken from [4]): Each row corresponds to the specifications of the
thruster choice θ

θ Thruster F/N Isp/s mthrust/kg
1 Aerojet MR-111C 0.27 210.0 200
2 EADS CHT 0.5 0.50 227.3 200
3 MBB Erno CHT 0.5 0.75 227.0 190
4 TRW MRE 0.1 0.80 216.0 500
5 Kaiser-Marquardt KMHS Model 10 1.0 226.0 330
6 EADS CHT 1 1.1 223.0 290
7 MBB Erno CHT 2.0 2.0 227.0 200
8 EADS CHT 2 2.0 227.0 200
9 EADS S4 4.0 284.9 290

10 Kaiser-Marquardt KMHS Model 17 4.5 230.0 380

That means Zi(θi) is the θith row of τ i. The mapping Zi, i ∈ Id, can be regarded as a reformulation of
a multivariate discrete sub search space consisting of Zi(1), . . . , Zi(Ni) into the integer choices 1, . . . , Ni. In

16 M. Fuchs and A. Neumaier: A Splitting Technique for Discrete Search based on Convex Relaxation

the continuous case, i ∈ Ic, the choice variable θi belongs to an interval [θi, θi], i.e.,

Zi(θi) := θi for θi ∈ [θi, θi]. (2)

We define

Z(θ) := z := (Z1(θ1), . . . , Zn0(θn0)). (3)

Note that any vector z = Z(θ) has the length nz =
∑

i∈Id
ni+|Ic|. We call Z a table mapping as the nontrivial

parts of Z consist of the tables τ i.

Remark 1: The problem statement (1) is typical in design optimization where the choice θi may be the
choice of a design component (as mentioned in Section 1 and shown in Table 1), and F models the functional
relationship between different components. In this case F is typically 1-dimensional and c = 1, A = 1. Thus
we can reformulate (1) as 




min
θ,z

F (z)

s.t. z = Z(θ),
θ ∈ T,

(4)

by eliminating x and introducing a new intermediate variable z.

3 Convex Relaxation based Splitting

The idea behind the method presented in this section is that a representation of a continuous relaxed solution
ẑ = (ẑ1, . . . , ẑnz) of (1) by convex combinations of the points Zi(θi), θi ∈ T i, i ∈ Id, gives an insight about
the relationship between the solution ẑ and the structure of the discrete search space in each component
i ∈ Id. The split divides this space into two branches, where the difference between the contribution of each
branch to the relaxed solution of (1) is minimal (also see Section 6.1 for an illustrative example). Thus we can
exploit the knowledge of the structure of Zi(T i) – represented by its minimum spanning tree – towards
finding a natural subdivision of T. A convex combination for ẑ =: (v̂1, . . . , v̂n0) is given by

v̂i =
∑Ni

j=1 λ̂i
jZ

i(j), for i ∈ Id,

with
∑Ni

j=1 λi
j = 1, λi

j ≥ 0, i.e., a convex combination of the finitely many tabulated vectors in Rni given in
a table τ i. We will see that the coefficients λ̂i = (λ̂i

1, . . . , λ̂
i
Ni

), i ∈ Id, of the convex combination in the ith
coordinate impose a splitting of the search space components T i, i ∈ Id.

To compute a convex relaxation of (1) we reformulate the problem as follows. Assume that we have an
initial set of N0 starting points z1, . . . , zN0 . The starting points come from a relaxation Z1

rel × · · · × Zn0
rel of

the discrete constraints, that means the discrete sets Zi(T i) ⊂ Rni , i ∈ Id, are relaxed to interval bounds
Zi

rel = Zi
rel,1×· · ·×Zi

rel,ni
, where Zi

rel,k = [`, u] with ` = minx∈Zi(T i) xk, u = maxx∈Zi(T i) xk, x = (x1, . . . , xni).
Let F1 = F (z1), . . . , FN0 = F (zN0) be the function evaluations of F at the starting points, N0 be the number
of points where F is known. We solve the following problem:





minz,x,µ,v,λ cT x + ε‖µ‖p

s.t.
∑N0

j=1 µjFj ≤ Ax,

z =
∑N0

j=1 µjzj ,∑N0
j=1 µj = 1,

z = (v1, . . . , vn0), vi =
∑Ni

j=1 λi
jZ

i(j) for i ∈ Id,∑Ni

j=1 λi
j = 1 for i ∈ Id, λ

i
j ≥ 0 for i ∈ Id, 1 ≤ j ≤ Ni,

vi ∈ [θi, θi] for i ∈ Ic.

(5)

Here we approximate F at the given evaluation points, i.e., F (z) ≈ ∑N0
j=1 µjFj , for z =

∑N0
j=1 µjzj ,

∑N0
j=1 µj =

1. We require the solution to be a convex combination of the tabulated points Zi(j) in the discrete case i ∈ Id,
i.e., z = (v1, . . . , vn0), vi =

∑Ni

j=1 λi
jZ

i(j),
∑Ni

j=1 λi
j = 1, λi

j ≥ 0, 1 ≤ j ≤ Ni. And we require the solution to

Journal of Uncertain Systems, Vol.4, No.1, pp.14-21, 2010 17

respect the bound constraints on the continuous choices, i.e., vi ∈ [θi, θi]. The constant ε can be considered
as a regularization parameter, adjusted externally. The objective function in (5) is convex, the constraints
are linear.

Remark 2: In the implementation we choose p = 1 if F is multidimensional (i.e., m ≥ 2). In case of
a 1-dimensional F the problem (5) with p = 1 is typically unbounded for low ε, and after increasing ε it
typically changes towards a binary solution µi = 1 for some i, and µk = 0 for k 6= i. A binary µ would simply
mean that if there are starting points among the zj in the Cartesian product of the convex hulls of Zi(T i),
then the solution ẑ =: ẑstart is the best of these points. Choosing p = 2 and increasing ε from 0 towards
∞ in numerical experiments, the solution of (5) typically changes from unbounded to a binary solution and
then converges to µ = (1

N0
, . . . , 1

N0
) which may produce an alternative solution ẑ 6= ẑstart. Hence in case that

m = 1 we solve (5) twice, with p = 1 and p = 2. Thus we get two solutions ẑ1 and ẑ2, respectively. Then we
wish to compare the two solutions. For m = 1, and assuming that sign(c ·A) = 1, A 6= 0, (1) can be rewritten
as {

min
z

F (z)

s.t. z ∈ Z(T),
(6)

similar to (4). Hence to compare ẑ1 and ẑ2 we just have to evaluate F , i.e., F̂1 := F (ẑ1) and F̂2 := F (ẑ2). If
F̂2 < F̂1 we use in the remainder of our method the convex combination λ found by (5) with p = 2, otherwise
we use the convex combination λ found by (5) with p = 1.

Remark 3: One could also approximate F nonlinearly in (5). Hence (5) becomes a nonlinear programming
problem which requires a different implementation than the one described in Section 4.

The solution of (5) gives the values of the coefficients λ̂i = (λ̂i
1, . . . , λ̂

i
Ni

), i ∈ Id, of the convex combinations.
These values are now used to determine a splitting of T i.

Consider the ith coordinate θi ∈ T i = {1, 2, . . . , Ni}, i ∈ Id. One computes the minimum spanning
tree for the points Zi(T i) ⊂ Rni , see, e.g., Figure 1.

For a fixed edge k in the graph belonging to the minimum spanning tree of Zi(T i) we denote by Zi
k1 the

set of all points on the right side of k, and we denote by Zi
k2 the set of points on the left side of k (e.g., in

Figure 1 let k be the edge (1—5), then Z1
k1 = {1, 2, 3, 4}, and Z1

k2 = {5, 6, 7}).
For every edge k in the minimum spanning tree of Zi(T i) one computes the weight wi

k1 of all points in
Zi

k1 and the weight wi
k2 of all points in Zi

k2 by

wi
k1 =

∑

{j|Zi(j)∈Zi
k1}

λ̂i
j , wi

k2 =
∑

{j|Zi(j)∈Zi
k2}

λ̂i
j . (7)

We split T i into T i
1 and T i

2 across the edge k̂ = arg mink |wi
k1 − 1

2 |, i.e., the edge where the weight on the one
side and the weight on the other side are closest to 50%.

Remark 4: Thus in total we find up to 2|Id| possible branches. In this study we give no answer to the
question on which variable to split. However, this decision – namely whether or how to join the branches
in an optimization algorithm in order to find a division of the search space after computing T i

1, T i
2 – may

seriously affect the performance of the algorithm and depends on how the algorithm handles the resulting
subproblems. Section 5 presents one possibility of a branching strategy.

Remark 5: Using the minimum spanning tree is not scaling invariant as the results depend on distances
between the discrete points Zi(T i). Hence the user of the method should use a scaling of the variables where
distances between the discrete points have a reasonable meaning.

A particular strength of our approach is that we do not require information about F except from the
function evaluations F1, . . . , FN0 , so black box functions F can be handled which is often occurring in real-life
applications.

18 M. Fuchs and A. Neumaier: A Splitting Technique for Discrete Search based on Convex Relaxation

4 Implementation

We have implemented our approach in Matlab. The implementation is available online at www.martin-fuchs.
net/downloads.php. To solve (5), we use the public domain package CVX [6]. The following functions realize
the approach presented in Section 3.

• CONVRELAX.m

function [zrel,lambda,mue,solverstatus]=convrelax(z,f,Z,isdiscrete,e,c,A,p)

This function solves problem (5) using CVX [6].

z corresponds to




z1
1 . . . znz

1
...

. . .
...

z1
N0

. . . znz

N0


.

f corresponds to




F 1
1 . . . Fm

1
...

. . .
...

F 1
N0

. . . Fm
N0


.

Z{i} corresponds to τ i.
isdiscrete is an 1× n0 boolean vector with ith entry 1 iff i ∈ Id.
e, c, A, p correspond to ε, c, A, p.
zrel corresponds to the solution of (5).
lambda{i} corresponds to λ̂i.
mue corresponds to µ.
solverstatus is the status of CVX. It helps adjusting e.

• CONVRELSPLIT.m

function [Zsplit,splitperm,mstsplit]=convrelsplit(lambda,Z,isdiscrete,mst)

This function performs the splitting as described in the last section.
lambda, Z, isdiscrete as above,
mst{i} contains the minimum spanning tree of Zi(T i).
Zsplit{i,1}, Zsplit{i,2} are the splits of τ i.
splitperm{i,1}, splitperm{i,2} are the splits T i

1, T i
2.

mstsplit{i,1}, mstsplit{i,2} are the minimum spanning trees belonging to the splits T i
1, T i

2.

5 A Simple Solver Strategy

To demonstrate our splitting method in examples (cf. Section 6) we have also implemented it in a simple
solver with the following branching strategy: We round the relaxed solution ẑ of (5) to the next feasible point
of (1) ẑround := arg min{z∈Z(T)} ‖z − ẑ‖2 and start from ẑround a linesearch on T. The function evaluations
during linesearch are used in two ways.

First, we use them to determine the coordinate i of θ = (θ1, θ2, . . . , θn0) for which devmax(i) is maximal,
where devmax(i) is the maximum deviation of the function values while varying θi in the linesearch. Then
we split the original T = T 1 × · · · × Tn0 only in this coordinate and get two branches T1, T2, i.e., T1 =
T 1 × · · · × T i

1 × · · · × Tn0 , T2 = T 1 × · · · × T i
2 × · · · × Tn0 , where T i

1, T i
2 are the results from our splitting

method in Section 3.
Second, we select T1 for the next iteration step if the best point found during linesearch comes from T1,

otherwise we select T2 for the next iteration step. Having selected a branch for the next step we iterate
branching and linesearch until satisfaction. As a stopping criterion one may choose, e.g., that the optimal
solution found by the linesearch has not been improved for Niter times.

This simple strategy is already suited to demonstrate the usefulness of our splitting routine in Section 6.
It can probably be improved by a more intelligent branch selection for the next iteration step. Implementing
a more sophisticated solver that makes use of our splitting is a current research topic out of the scope of this
paper.

Journal of Uncertain Systems, Vol.4, No.1, pp.14-21, 2010 19

6 Illustrative Examples

In this section we present two examples of application of our method. The first example is an illustration
of the method, and we include this example under the filename example.m in the package containing our
method downloadable at www.martin-fuchs.net/downloads.php. The second example is more complicated
and arises in real-life spacecraft system design, cf. [12].

6.1 A Simple Illustration

Let T = T 1×T 2×T 3, T 1 = {1, . . . , 7}, T 2 = [0, 2], T 3 = {1, . . . , 10}, Id = {1, 3}, Ic = {2}, let the associated
table τ1 be as shown in Table 2 and τ3 = (1, 2, . . . , 10)T . The function F from our problem statement is given
by

F (z) = F (v1
1 , v1

2 , v2
1 , v3

1) = (v1
1 +

1
2
)2 + (v1

2 −
3
4
)2 + exp(v2

1) + (v3
1 − 10)2. (8)

The optimal solution of (1) with these specifications is obviously given as θ = (5, 0, 10). Relaxing the discrete
search space to a continuous space, the solution of (1) is obtained at ẑ = (− 1

2 , 3
4 , 0, 10).

Table 2: Tabulated data Z1(T 1)

θ1 Zi(θi)
1 4 0
2 4 1
3 6 0
4 5 3
5 -4 0
6 -8 0
7 -4 2

We solve problem (5) with N0 = 20, c = 1, A = 1, ε = 102 two times for p = 1 and p = 2, as described in
Remark 3 since F (z) ∈ R1.

We look for splittings of T i, i ∈ Id = {1, 3}. The graph of the minimum spanning tree of Z1(T 1) is shown
in Figure 1.

Figure 1: Graph of the minimum spanning tree of Z1(T 1)

The convex combination with fixed λ̂1 = (1/8, 1/8, 1/8, 1/8, 1/6, 1/6, 1/6) would give

7∑

j=1

λ̂1
jZ

1(j) = (−0.29, 0.83), (9)

which is close to (ẑ1, ẑ2), so our implemented method should find a weighting similar to λ̂1. This weighting
would apparently lead to a split of Z1(T 1) across the edge k = (1—5) since

∑
j∈{1,2,3,4} λ̂1

j =
∑

j∈{5,6,7} λ̂1
j =

20 M. Fuchs and A. Neumaier: A Splitting Technique for Discrete Search based on Convex Relaxation

0.5. Thus it is not surprising that our implemented method actually splits T 1 into T 1
1 = {1, 2, 3, 4} and

T 1
2 = {5, 6, 7} in most cases. Sometimes it splits off the leaf 7, i.e., T 1

1 = {1, 2, 3, 4, 5, 6} and T 1
2 = {7}, or

it finds T 1
1 = {1, 3, 5, 6, 7}, T 1

2 = {2, 4}, depending on the approximation and the convex combination found
from (5), determined by the function evaluations F1, . . . , FN0 .

The split of T 3 is expected to split off the leaf 10 since F is strictly monotone decreasing in v3 = z4 ∈
[1, 10] resulting in a value of λ̂3

10 close to 1. Except from few cases where we find T 3
1 = {1, 2, 3, 4, 5, 6, 7, 8},

T 3
2 = {9, 10}, we find the expected splitting of T 3 into T 3

1 = {1, 2, 3, 4, 5, 6, 7, 8, 9} and T 3
2 = {10} with our

implemented method.
We have also used the solver strategy described in Section 5 to find the optimum θ = (5, 0, 10) (this is

not contained in example.m). In the first iteration we split T 3 and find the branch Tnew = T 1 × T 2 × T 3
new,

T 3
new = {10} for the next iteration step. In the following iterations T 1 is reduced to {5, 6, 7}, then to {5, 6},

and finally to {5}, and local search confirms the optimum θ = (5, 0, 10).

6.2 A Real-life Application

This example is a problem of optimization under uncertainty in spacecraft system design, described in [12].
After reasonable simplification, the problem can be formulated as in (4), where θ ∈ R10 is a 10-dimensional
design point, F (Z(θ)) is a Matlab routine computing the worst case for the total mass of the spacecraft at
the design point θ under all admissible uncertainties. That means one looks for the design with the minimal
total mass, taking into account possible uncertainties.

In [12] heuristics based on Snobfit [8] was used which suggested a candidate for the optimal solution
in each iteration step. From this candidate one performs a local search and iterates afterwards until no
improvement of the optimal solution has been found 4 times in a row. This Snobfit based search is done 20
times independently with 20 different random starting ensembles to check the reliability of the putative global
optimum found. However, Snobfit is not developed to deal with integers, so integer variables θi, i ∈ Id

are treated as continuous variables and rounded to the next integer values. Hence the optimum candidates
suggested by Snobfit are suboptimal, and the local search gives the most significant improvement towards
the optimal solution. The global optimum was found in 3 out of 20 runs. On an average one run required
about 2500 evaluations of F .

We have applied the solver strategy described in Section 5 to this example and we can confirm the resulting
global optimum. The reliability of our approach, however, is significantly better. In 5 independent runs we
have found the optimum 4 times. One run failed because it did not have a single feasible point in the set of
initial function evaluations. One run also required about 2500 function evaluations on an average. Hence at
the same level of reliability we have found the solution with much less effort.

References

[1] Achterberg, T., T. Koch, and A. Martin, Branching rules revisited, Operations Research Letters, vol.33, no.1,
pp.42–54, 2005.

[2] Alexandrov, N., and M. Hussaini, Multidisciplinary design optimization: State of the art, Proceedings of the
ICASE/NASA Langley Workshop on Multidisciplinary Design Optimization, 1997.

[3] Floudas, C., Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications, Oxford University Press,
1995.

[4] Fuchs, M., D. Girimonte, D. Izzo, and A. Neumaier, Robust intelligent systems, chapter Robust and Automated
Space System Design, Springer, pp.251–272. 2008.

[5] Fuchs, M., and A. Neumaier, Autonomous robust design optimization with potential clouds, International Journal
of Reliability and Safety, vol.3, no.1-3, pp.23–34, 2009.

[6] Grant, M., and S. Boyd, CVX: A system for disciplined convex programming, http://www.stanford.edu/~boyd/
cvx/cvx_usrguide.pdf, http://www.stanford.edu/~boyd/cvx/, 2009.

[7] Huyer, W., and A. Neumaier, Global optimization by multilevel coordinate search, Journal of Global Optimization,
vol.14, no.4, pp.331–355, 1999.

[8] Huyer, W., and A. Neumaier, SNOBFIT – Stable noisy optimization by branch and fit, ACM Transactions on
Mathematical Software, vol.35, no.2, 2008.

Journal of Uncertain Systems, Vol.4, No.1, pp.14-21, 2010 21

[9] Jones, D., C. Perttunen, and B. Stuckman, Lipschitzian optimization without the Lipschitz constant, Journal of
Optimization Theory and Applications, vol.79, no.1, pp.157–181, 1993.

[10] Leyffer, S., Deterministic methods for mixed integer nonlinear programming, Ph.D. thesis, University of Dundee,
Department of Mathematics & Computer Science, 1993.

[11] Nemhauser, G., and L. Wolsey, Integer and Combinatorial Optimization, Wiley-Interscience, 1988.

[12] Neumaier, A., M. Fuchs, et al., Application of clouds for modeling uncertainties in robust space system design,
European Space Agency, 2007.

[13] Parker, R., and R. Rardin, Discrete Optimization, Academic Press, 1988.

[14] Tawarmalani, M., and N. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and
computational study, Mathematical Programming, vol.99, no.3, pp.563–591, 2004.

[15] Weisstein, E., Minimum spanning tree, MathWorld – A Wolfram Web Resource, 2008. Available on-line at:
http://mathworld.wolfram.com/MinimumSpanningTree.html.

80 S. Doria: Different Types of Convergences for Random Variables

Theorem 8 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B with positive and
finite Hausdorff outer measure in its dimension denote by µ = P (A|B) the restriction to the Borel σ-field
of the upper conditional probability defined as in Theorem 2. Let L∗(B) be the class of all Borel measurable
random variables on B. Then the convergence in µ-distribution of a sequence of random variables of L∗(B)
to a random variable X is equivalent to the pointwise convergence of expectation functionals on all bounded
and continuous function f that is limn→∞

∫
fdµn =

∫
fdµ.

Proof: If Xn and X are Borel-measurable random variables and H is a Borelian set then the sets X−1
n (H)

and X−1(H) are also Borelian sets; moreover since every Hausdorff s-dimensional outer measure is countably
additive on the Borel σ-field then the (upper) conditional probabilities µn and µ induced respectively by Xn

and X on (<,F) are probability measures. Then convergence in µ-distribution is equivalent to the pointwise
convergence of expectation functionals on all bounded and continuous function f .

6 Conclusions

This paper investigates the relations among different types of convergence for random variables when they
are based on an upper probability approach where conditional upper expectations with respect to Hausdorff
outer measures are used whenever we have to condition on a set with probability zero.

Upper (lower) conditional previsions defined with respect to Hausdorff outer measures are proven to be
the upper (lower) envelopes of all linear extensions to the class of all random variables of the restriction to
the Borel-measurable random variables of the given upper conditional previsions.

It is proven that the relations among different types of convergences of random variables defined with
respect to upper conditional probability defined by Hausdorff outer measures are the same that hold if con-
vergences are defined with respect to a probability measure. When the conditioning event has finite Hausdorff
outer measure in its dimension these results are obtained because Hausdorff outer measures are Borel regular
outer measures and so continuous from below and continuous from above on the Borel σ-field. In general if
upper conditional probability is defined as natural extension of a coherent merely finitely additive probability
defined on a σ-field we have that µ-stochastically convergence does not imply convergence in µ-distribution
since in this case the upper conditional probability is not continuous from above.

References

[1] Billingsley, P., Probability and Measure, Wiley, 1986.

[2] Couso, I., S. Montes, and P. Gil, Stochastic convergence, uniform integrability and convergence in mean on fuzzy
measure spases, Fuzzy Sets and Systems, vol.129, pp.95–104, 2002.

[3] de Cooman, G., M.C.M. Troffaes, and E. Miranda, n-Monotone lower previsions and lower integrals, Proceedings
of the Fourth International Symposium on Imprecise Probability: Theories and Applications, pp.145–154, 2005.

[4] Doria, S., Probabilistic independence with respect to upper and lower conditional probabilities assigned by Haus-
dorff outer and inner measures, International Journal of Approximate Reasoning, vol.46, pp.617–635, 2007.

[5] Denneberg, D., Non-additive Measure and Integral, Kluwer Academic Publishers, 1994.

[6] Falconer, K.J., The Geometry of Fractals Sets, Cambridge University Press, 1986.

[7] Rogers, C.A., Hausdorff Measures, Cambridge University Press, 1998.

[8] Seidenfeld, T., M. Schervish, and J.B. Kadane, Improper regular conditional distributions, The Annals of Prob-
ability, vol.29, no.4, pp.1612–1624, 2001.

[9] Walley, P., Statistical Reasoning with Imprecise Probabilities, Chapman and Hall, London, 1991.

