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Abstract 
 

This paper discusses a series of imprecise decision models and their corresponding computational aspects arising in 
computational decision analysis. The imprecise decision models relax the traditional point estimates into intervals and 
incorporate various types of vague information represented as linear constraints from a decision-maker. When the 
principle of maximizing expected utility is applied as the decision rule, the evaluations of these models become non-
convex optimization problems and require some global optimization strategies. This paper presents a class of global 
optimization algorithms for solving such non-convex programs. We take advantage of polar cuts and the disjoint 
structural property of the imprecise decision models to develop generalized cutting plane methods that are different 
from the traditional class of branch and bound approaches.  

 © 2010 World Academic Press, UK. All rights reserved. 
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1 Introduction 

 
Most classical decision analysis approaches consist of a set of straightforward decision rules applied to precise 
estimates of weights, probabilities, and/or utilities no matter how unsure a decision-maker is of his estimates. The 
requirement for numerically precise data has been considered unrealistic by an increasing number of researchers and 
decision-makers. Techniques allowing imprecision have been suggested, among which the interval methods have 
been widely utilized to strengthen other decision models that are built upon the principle of maximizing the expected 
utility (PMEU), e.g., [7, 8, 9, 13, 16, 17]. When PMEU is applied, disjoint bilinear programming (DBLP) programs 
such as ∑  or ∑  where 

ijijij upα kikki uwα ijα  or  are coefficients, are obtained while searching for the best alternatives 
if both interval probabilities or weights and interval utilities are represented by variables. When modeling multi-
criteria problems that also have uncertain events, combining these two kinds of decision models gives rise to multi-
criteria probabilistic models with trilinear expressions such as 

kiα

∑ ∑ )( kijkijkkij upwα , and yields computationally hard 
disjoint trilinear programming (DTLP) programs together with constraints on weights, probabilities, and utility values. 
Moreover, for decision situations that possess disjoint probability chain property, adopting PMEU may even lead to 
disjoint multi-linear programming (DMLP) programs. 

Although optimization techniques have been developed rapidly in recent years, much of the area of optimization 
has been devoted to solving large problems. Nevertheless, the particular programs arising in imprecise computational 
decision analysis require approaches for solving sequences of related smaller global optimization problems in 
interactive time because in mathematical programming, DBLP, DTLP and DMLP all exhibit non-convexity. 
Therefore, some global optimization strategies that iterate between a global phase and a local phase in search of the 
global optimum are necessary. Two main branches of deterministic approaches for handling such non-convex 
programs are cutting plane methods [11, 12, 19, 20, 21], and branch and bound methods [1, 2, 4, 14, 15, 18]. 
Combined approaches have also been suggested [3, 10]. 

This paper intends to discuss a series of imprecise decision models and their corresponding computational 
aspects. A class of generalized cutting plane methods is developed by taking advantage of polar cuts and the disjoint 
structural property of the imprecise decision models. The following section presents an imprecise decision framework 
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that can be readily transformed into DBLP and the fundamental technique for solving DBLP. Thereafter, we extend 
the decision framework into an imprecise probabilistic multi-criteria decision model, transform it into DTLP, and 
discuss the corresponding global optimization algorithm in great detail. The fourth section presents an imprecise 
multilevel probability chain decision model that can be transformed into DMLP, and discusses the global 
optimization algorithm extended from the third section. The final section concludes this paper and indicates further 
research topics. 
 
2   Disjoint Bilinear Programming 
 
2.1  A Bilinear Imprecise Decision Model 
 
In interval decision analysis, a decision-maker is often encouraged to be deliberately imprecise in his subjective 
judgements. Input sentences in decision problems consisting of discrete alternatives with events and consequences, 
e.g., interval estimates and qualitative information, are translated into linear constraints. For instance, the probability 
(or utility) of a consequence  being between the numbers  and  is expressed as  (or ijc ka kb ],[ kkij bap ∈ ],[ kkij bau ∈ ). 

Relations can be handled similarly: a measure of  is greater than a measure of  is expressed as  (or 
analogously ). In this way, each statement is represented by one or more constraints. 

ijc klc klij pp ≥

klij uu ≥
Definition 1: An information frame represents a decision situation with m alternatives, each alternative having 

 consequences, as a structure mimi ,...,1, = ,,...,1,,...,1,,,}}{{,, mimjUPcUPC immij i
∈∈=  where each  denotes a 

consequence, P is a finite list of linear constraints over -variables denoting probabilities over the consequences , 
and U is a finite list of linear constraints over -variables denoting utilities over the consequences . 

ijc

ijp ijc

iju ijc
 

 
Figure 1: A bilinear imprecise decision model 

 
Suppose we have a decision situation as shown in Figure 1 where D1 is a decision node, E1 and E2 are 

probability nodes, representing indeterminism, with associated probability distributions, and the leaves are 
consequence nodes with convex sets of associated value or utility functions. This decision situation can be mapped 
into an information frame UPcUPC mmij i

,,}}{{,, =  with 2,2 1 == mm  and 42 =m . 

This structure is then populated with user statements represented as linear inequalities. Since a vector in the 
polytope can be considered to represent a distribution, a probability base P can be interpreted as constraints defining 
the set of all possible probability measures over the consequences. Analogously, a utility base U consists of 
constraints defining the set of all possible utility functions over the consequences. These two bases together with a 
tree structure constitute the information frame. 
Definition 2: Given an information frame UPc mmij i

,,}}{{ , the expected utility of an alternative  is 

, where  and  are variables in P and U, respectively;  denotes the probability of  

occurring given that alternative  is chosen; and  denotes the corresponding utility. 

iA

∑∈
=

imj ijiji upAE )( ijp iju ijp ijc

iA iju
Using precise numbers, evaluating the expected utility of an alternative is rather straightforward. Nevertheless, 

when numerically imprecise information is involved, the expected utility has to be evaluated with respect to P and U. 
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By considering all possible solution vectors, a range of expected utilities for each alternative can be received. Once 
we have a well-defined information frame and apply PMEU as the decision rule, we need to calculate the minimal 
and maximal expected utilities for each alternative. 

Firstly, when imprecise information represented as linear constraints exists within either P or U, to evaluate the 
decision model is reduced to linear programming (LP) problems that can be readily solved with modern optimization 
techniques [8]. Secondly, as imprecise information exists in both P and U concerning certain criterion, the evaluation 
of a decision model under this criterion based on PMEU results in a simplified DBLP program in the sense that it 
only contains cross product terms such as ∑  but no linear terms. For example, if we need to evaluate the second 

alternative in Figure 1, we have to calculate 
pv

∑ =

4

1 22minmax/
j jjup  subject to disjoint linear constraints concerning P 

and U, respectively. It should be noted that for this bilinear imprecise decision model, we only allow a decision-
maker to issue his imprecise statements with respect to each alternative such as 3.02.0 1211 ≤+≤ pp , but exclude the 
cross linear constraints among different alternatives such as 3.02.0 2111 ≤+≤ pp . Then, this decision model can be 
transformed into DBLP that is mathematically stated as 

}.0,:{},0,:{..

),(min))((),(min

220110
21 ≥≤∈=≥≤∈=

++=⇔++=

ybyARyYxbxARxXts

Cyxydxcyxfdycdxcyxf
nn

ttt
y

t
yx

t
x                                (1) 

In (1),  and  represent the linear constraints populated in P and U, respectively. 11 bxA ≤ 22 byA ≤
 

2.2  Evaluation of DBLP 
 
2.2.1  Local Optimization 
 
The most important property of DBLP is that, even though  may not be quasi-concave, there exists an extreme 
point 

),( yxf

0Xx ∈  and an extreme point 0Yy∈  such that ),( yx  is an optimal solution of DBLP [1]. This solution property 
and the structure of DBLP itself suggest an LP based vertex following algorithm that converges to a Karush-Kuhn-
Tucker point [12]. 
Definition 3: Consider  subject to )(min: xfP Sx∈ , where S is a compact polyhedral set and f is non-convex.  A 
local star minimizer (LSM) of P is defined as a point x  such that )()( xfxf ≤  for each )(xNx S∈ , where )(xNS  
denotes the set of extreme points in S that are adjacent to x . 

For DBLP, an extreme point is adjacent to ),( yx  if and only if it is of the form either ),( yxi  or ),( iyx , where 
)(

0
xNx X

i ∈  and )(
0

yNy Y
i ∈ . 

Definition 4: An extreme point ),( yx  is called a pseudo-global minimizer (PGM) if ),(),( yxfyxf ≤  for each 

0)( XxBx ∩∈ δ  and for each , where 0Yy∈ )(xBδ  is a δ neighborhood around x . 
With the above property and definition, we can have an LP based mountain climbing procedure to obtain a PGM 

of DBLP.  
Algorithm 1: 

(a) Find a feasible extreme point iXx 0
1~ ∈ , where  represents the reduced feasible region in  iteration after 

all cuts have been added. 

iX 0
thi

(b) (1) Solve: }|),~(min{ 0
1 Yyyxf ∈  to yield an optimal 1~y ; 

(2) Solve: }|)~,(min{ 0
1 iXxyxf ∈  to yield an optimal 2~x ;  

Set  and repeat step (b) until it converges to an LSM 21 ~~ xx ← ),( yx . 
(c) Suppose x  is non-degenerate and let )(ˆ xNx∈  be such that 

),(),(min),ˆ(min)ˆ,ˆ(
00

yxfyxfyxfyxf YyYy =<= ∈∈
. 

Go to step (b(2)) with yy ˆ~1 ← . 
(d) Terminate with ),( yx  as a PGM. 
Algorithm 1 is relatively easy to implement and there are other approaches concentrating on the location of 

different types of extreme point [10, 19]. However, in this paper, we will not step into the details of other local 
optimization methods since we focus on the utilization and generalization of such local algorithms in search of the 
global optimum. The incorporation of other approaches is supposed to be similar. 
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2.2.2 Generation of a Cutting Plane 
 

Given a PGM ),( yx  located by Algorithm 1, we employ polar cuts to cut off local vertex solutions. Assume x  is a 
non-degenerate extreme point of ; let 0X Njx j ∈, , be the  nonbasic variables at 1n x , where N  is the index set for the 

nonbasic variables.  Then  has precisely  distinct edges incident to 0X 1n x .  Each half line 

Njaxxx jj
jj ∈≥−== },0,:{ λλξ  contains exactly one such edge [5]. 

Definition 5: The generalized reverse polar of  for a given scalar 0Y α  is given by }),(:{)(0 αα ≥= yxfxY  for all 
. 0Yy∈

Let ),( yx  be a PGM, let the rays  be defined as above, let jξ α  be the current best objective value (CBOV) of 
, and let ),( yxf jλ  be defined by 

αλλλ ≥−= ),(:max{ yaxf j
j

jj  for all }0Yy∈  if .                                 (2) )(0 αξ Yj ⊄

As for the case when , we simply set )(0 αξ Yj ⊂ jλ  to ∞  rather than employing the negative extension of polar 

cuts [19] because in that case, the following approach to compute jλ  cannot be used any longer. The inequality 

1/ ≥∑ ∈Nj jjx λ  determines a valid cutting plane. Each jλ  can be computed by an approach on the basis of LP duality 

theory that costs only one LP iteration. Consider (1) and (2), in which we need to obtain 

}.0,|])()([min:max{

}0,|),(:max{

22

22

≥≤≥−++−

=≥≤≥−

ybyACyaxydaxc

ybyAyaxf
t

j
jt

j
jt

yj

j
j

j

αλλλ

αλλ
 

Using LP duality theory, the foregoing can be rewritten as 

}.0,|][min:max{

}0),(|])([max:max{

22

22

≤+≤+−≤−=

≤−+≤≥+−

udxCuAaCxcubac

uaxCduAubaxc
tt

j
jttt

j
jt

uj

j
jttt

j
jt

uj

λαλλ

λαλλ
 

In matrix form, this expression asks for the maximal jλ  in 

.0,..

max

2

2

,

≤⎥
⎦

⎤
⎢
⎣

⎡

+
−

≤⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
u

dxC
xc

uAaC
bac

ts
t

t
j

tjt

tjt

juj

αλ

λλ

                                                    (3) 

Hence, we can obtain jλ  when  by solving just one LP program. )(0 αξ Yj ⊄
 
2.2.2 Global Optimization 
 
At this stage, we are able to present a global optimization algorithm for solving DBLP by using Algorithm 1 and 
polar cuts. 
Algorithm 2: 

(a) Let CBOV, +∞=0obj ; let the initial best feasible solution .  Set  and . φ=)}ˆ,ˆ{( 00 yx 1=i 00 XX i =

(b) If , terminate with  as the global minimum and  as its corresponding global      
minimizer. 

φ=iX 0 1−iobj )ˆ,ˆ( 11 −− ii yx

(c) Find a PGM ),( ii yx  by using Algorithm 1, and set the corresponding  
)},(,min{arg)ˆ,ˆ()},,(,min{ 11

ii
i

iiii
ii yxfobjyxyxfobjobj −− == . 

(d) Compute jλ s by solving LP programs if , and set )(0 αξ Yj ⊄ jλ s to ∞  if . Generate a polar cut 

and define 
)(0 αξ Yj ⊂

)(0
1

0
iii xHXX ++ ∩= . 

(e) If there exists no jλ  such that , terminate with  as the global minimum and  as its 
corresponding global minimizer. 

)(0 αξ Yj ⊄ iobj )ˆ,ˆ( ii yx

(f) Set , and return to (b). 1+← ii
According to the stopping rules, Algorithm 2 yields an exact global minimum for DBLP. 
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Convergence Proof: First, note that Algorithm 1 is finite so step (c) in Algorithm 2 yields exact solutions. Consider 
the sequence of PGMs )},{( ii yx  generated and let )( ixH  be the cutting plane that eliminates ix . In step (d) of  
iteration, the algorithm is terminated as the consequence of introducing polar cuts, and the algorithm is terminated if 

thi

φ=∩ + )(0
ii xHX . Otherwise, the cut )( ixH  is applied and a new PGM ),( 11 ++ ii yx  is found where 

)(0
1 iii xHXx ++ ∩∈  and )( ii xHx +∉ . 

It is possible for the process not to terminate by any of the stopping rules in Algorithm 2. An infinite sequence 
would then be generated, and we need to show that the sequence }{ ix  has a limit point  such that *x

φ=∩ +
→∞ )(lim 0

ii
i xHX . 
Since  is a compact set, there exists a limit point  such that for a given 0X *x 0≥ε  and a positive integer ν , 

ε≤− *xxi  for infinitely many ν≥i .  If φ≠∩ + )(0
ii xHX  for all ν≥i , then all subsequent PGMs ), ll yx(  

generated will satisfy the condition )( νxHxl +∈  for all ν>l .  From the definition of a PGM,  and 0
** )( XxBx ∩∈ δ

)( *xBxl
δ∉  for some 0>δ . Hence, δ≥− *xxl  for all ν>l . This contradicts the statement that  is a limit point. 

Therefore, 

*x

φ=∩ +
→∞ )(lim 0

ii
i xHX  and the cutting plane algorithm is terminated.  

 

3   Disjoint Trilinear Programming 
 
3.1   A Probabilistic Multi-Criteria Decision Model 
 
The imprecise bilinear decision model handles a decision situation with respect to only one criterion. However, in 
many decision situations it is necessary to study a decision problem from more than one perspective using multiple 
criteria. There are several multi-criteria models, ranging from value function based methods over goal and reference 
point methods to outranking methods. For this PMEU-based model, an additive multi-attribute utility theory (MAUT) 
approach is employed, in which the expected utilities of each alternative are weighted together according to 
importance weights. 

Consider n information frames under n criteria and suppose that the imprecise statements concerning importance 
weights are collected in a set W with -variables. kw
Definition 6: An extended information frame represents a decision situation with m alternatives. Each alternative is 
assessed under n criteria nk ,...,1∈ , and each criterion has an information frame kkmmkijk UPcI

kki
,,}}{{= , as a 

structure }{, kIW  where W is a finite list of linear constraints over -variables denoting weights over the criteria. kw
Since the additive model is PMEU-based, evaluation rules are based on an additive extension of the expected 

utility. 
Definition 7: Given an extended information frame nkIW k ,...,1,}{, ∈ , the weighted expected utility of an 

alternative  is , where  and  are variables in  and , respectively;  

denotes the probability of  occurring given that  is taken; and  denotes the corresponding utility valued 
under criterion k. 

iA ∑ ∑= =
=

n

k

m

j kijkijki
i upwAG

1 1
)()( kijp kiju kP kU kijp

kijc iA kiju

When imprecise information exists in weights, probabilities, and utilities, the evaluation of weighted expected 
utility in an extended information frame results in DTLP that is mathematically stated as: 

}.0,:{

}0,:{

}0,:{..

))()((),,(min

330

220

110

3

2

1

≥≤∈=

≥≤∈=

≥≤∈=

+++=

zbzARzZ

ybyARyY

xbxARxXts

dzcdycdxczyxf

n

n

n

z
t
zy

t
yx

t
x

                                                      (4) 

In (4),  and  represent the linear constraints populated in P, U and W, respectively. To 
receive a range of the weighted expected utilities for each alternative under n criteria, we need to calculate both 
minimal and maximal values. When the received ranges for two alternatives overlap, a decision-maker is suggested to 
provide more information for the ranges to become separated, and thus indicate a preference order. 

2211 , byAbxA ≤≤ 33 bzA ≤

 



Journal of Uncertain Systems, Vol.4, No.1, pp.4-13, 2010                                                                                                                 9 

3.2   Evaluation of DTLP 
 
3.2.1  Local Optimization  
 
For DTLP, because of the disjoint constraint sets concerning P, U and W, respectively, the solution property of DBLP 
can be extended. 
Theorem 1: If  and  are nonempty and bounded, then DTLP has an optimal solution  in which 

 and 
00 ,YX 0Z ),,,( *** zyx

**, yx *z  are basic feasible solutions of  and , respectively. 00 ,YX 0Z
Proof: Let zyx ,,  be an optimal solution. First, consider the LP problem concerning x, }|),,(min{ 0Xxzyxf ∈ , and 

let  be its optimal basic solution. Then we have *x ),,(),,( * zyxfzyxf ≤ . Next, consider the LP problem concerning 

y, }|),,(min{ 0
* Yyzyxf ∈ , and let  be its optimal basic solution. By the same argument, we have *y

),,(),,( *** zyxfzyxf ≤ . Finally, consider the LP problem concerning z, , and let }|),,(min{ 0
** Zzzyxf ∈ *z  be its 

optimal basic solution. Then we have ),,(),,( ***** zyxfzyxf ≤ . Therefore,  and **, yx *z  are basic feasible solutions 
of  and , respectively.  00 ,YX 0Z

Based on this solution property and the knowledge in DBLP, we can have the following local optimization 
algorithm to locate a PGM of DTLP. 
Algorithm 3: 

(a) Find feasible extreme points iXx 0
1~ ∈  and 0

1~ Yy ∈ . 

(b) (1)Solve: }|),~,~(min{ 0
11 Zzzyxf ∈ , to yield an optimal 1~z ;  

(2) Solve: }|)~,~,(min{ 0
11 iXxzyxf ∈ , to yield an optimal 2~x ; 

(3)Solve: }|)~,,~(min{ 0
12 Yyzyxf ∈ , to yield an optimal 2~y ; 

Set 2121 ~~,~~ yyxx ←←  and repeat (b) until it converges to an LSM ),,( zyx . 
(c) Suppose x  is non-degenerate and let )(ˆ xNx∈  be such that 

),,(),,ˆ(min),ˆ,ˆ(
0

zyxfzyxfzyxf Yy <= ∈
. 

Go to (b(2)) with zzyy ←← 11 ~,ˆ~ . 
(d) Suppose x  is non-degenerate and let )(ˆ xNx∈  be such that 

),,(),,ˆ(min)ˆ,,ˆ(
0

zyxfzyxfzyxf Zz <= ∈
. 

Go to (b(2)) with zzyy ˆ~,~ 11 ←← . 
(e) Terminate with ),,( zyx  as a PGM. 
 

3.2.2 Global Optimization 
 

Given a PGM ),,( zyx  of DTLP, we need to develop a generalized cutting plane method to obtain the global optimum. 
As a result of the independency between  and , we can develop a generalized cutting plane method solving 
DTLP. 

00 ,YX 0Z

Algorithm 4: 
(a) Let CBOV, +∞=0obj , let the initial best feasible solution . Set  and . φ=)}ˆ,ˆ,ˆ{( 000 zyx 1=i 00 XX i =
(b) If , terminate with  as the global minimum and the solution  as its corresponding 

global minimizer. 
φ=iX 0 1−iobj )ˆ,ˆ,ˆ( 111 −−− iii zyx

(c) Find a PGM in  by using Algorithm 3, and set the corresponding iX 0

)},,(,min{arg)ˆ,ˆ,ˆ()},,,(,min{ 11
iii

i
iiiiii

ii zyxfobjzyxzyxfobjobj −− == . 

(d) Compute jYλ  concerning , and compute 0Y jZλ  concerning  for all 0Z Nj∈ . 

(e) If either there exists no jYλ  such that  or )(0 αξ Yj ⊄ jZλ  such that , terminate with  as the 

global minimum and  as its corresponding global minimizer. 
)(0 αξ Zj ⊄ iobj

)ˆ,ˆ,ˆ( iii zyx
(f) Let },min{ jZjYj λλλ =  for all Nj∈ , generate a polar cut, and let )(0

1
0

iii xHXX ++ ∩= . 
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(g) Set , and return to (b). 1+= ii
The fundamental idea in Algorithm 4 is that at a local minimizer in , we compute iX 0 jYλ  and jZλ  concerning  

and , respectively, and choose the smaller one as 
0Y

0Z jλ  for each edge. This will guarantee the global optimality as 
what we have done in DBLP. Convergence of Algorithm 4 can be proved analogously to the previous work. 
Proposition: Given an extended information frame,  and  can be computed by DTLP 
optimization. This way, weighted expected utility ranges can be obtained for each alternative. 

)(max iAG )(min iAG

This follows from the observation that the problem structure of evaluating PMEU with respect to an extended 
information frame coincides with the formulation of (4). 
 

4  Disjoint Multi-Linear Programming 
 
4.1 A Multilevel Decision Model 

 
With appropriate modifications to an information frame, a well defined decision structure as shown in Figure 2 can be 
obtained, in which we have a sequence of chance nodes representing uncertainty. Nevertheless, P is now broken into 
several disjoint parts, e.g., and , with respect to each level. 21, PP 3P

 
Figure 2: A multi-linear decision model 

 
To calculate the expected utility, we have 

.
))())()(()(

62412523124342211333221123221111312111

624523124343332223213121111

uppuppupppupppupppuppp
upuppupuppupupppAE

+++++=
+++++=                    (5) 

As imprecise information prevails, we translate it into linear constraints within each level. It should be noted that 
currently we only allow constraints from the same level rather than different levels. For example, the interval 
statement  is considered proper, while the interval statement 3.02.0 2321 ≤+≤ pp 3.02.0 3111 ≤+≤ pp  is considered 
improper since  and  are from level 1 and level 2, respectively, and this will destroy the disjoint structural 
property. In other words, imprecise statements are supposed to be confined within each level. 

11p 31p

To evaluate the alternative by using PMEU with imprecise information, we have to compute two extreme values, 
i.e., maximum and minimum, of (5) subject to disjoint linear constraints in order to receive a range of expected utility 
for the alternative. This will result in a special case of DMLP that is intrinsically hard to solve. 

If we take , and , then the imprecise multilevel decision 
model (5) can be transformed into the following DMLP model as 

nipppx t
iniii i

,...,1,),...,( 1 === t
nn u

uux ),...,( 11 =+

.1,...,1},0,:{..

),...,(min
111

+=≥≤∈=

= ∑ ∏= ∈+

nixbxARxXts

xxxf

iiii
n

ii

T

t Jj jn

i

t                                             (6) 

In (6),  denotes the index set, and we can have at most one decision variable from  for each . Taking (5) 
as an example, there exists at most one decision variable from each level within each product term. This property of 
the objective function and the disjoint linear constraint sets, s, demonstrate the disjoint property of DMLP, and 
therefore, its solution property is similar to that of DTLP. 

tJ ix tJ

iX
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4.2  Evaluation of DMLP 
 

4.2.1  Local Optimization 
 

Based on the solution property of DMLP and the knowledge in DBLP and DTLP, we can have the following local 
optimization algorithm to locate a PGM of DMLP, in which  denotes the feasible region of  in  iteration; 
and 

k
nX 1+ 1+nX thk

)( 1+nxN  denotes the set of extreme points in  that are adjacent to k
nX 1+ 1+nx . 

Algorithm 5: 
(a) Find feasible extreme points niXx ii ,...,1,~1 =∈ . 
(b) (1) Solve: }|),~,...,~(min{ 111

11
1

k
nnnn Xxxxxf +++ ∈  to yield 1

1
~

+nx . 

(2) Solve: }|),~,...,~,(min{ 11
1

1
1
21 Xxxxxf n ∈+  to yield 2

1
~x . 

(3) Solve: }|),~,...,~,,~(min{ 22
1

1
1
32

2
1 Xxxxxxf n ∈+  to yield 2

2
~x . 

M  
(n+1) Solve: }|),~,,~,...,~(min{ 1

1
2

1
2

1 nnnnn Xxxxxxf ∈+−  to yield 2~
nx . 

Set nixx ii ,...,1,~~ 21 =← , and repeat (b) until the solution converges to an LSM ),...,( 11 +nxx . 
(c) Suppose 1+nx  is non-degenerate, and for each nixi ,...,1, = , let )(ˆ 11 ++ ∈ nn xNx  be such that 

),...,()ˆ,,...,,,,...,(min)ˆ,,...,,ˆ,,...,( 1111111111 +++−∈++− <= nnniiiXxnniii xxfxxxxxxfxxxxxxf
i

. 

Go to (b(1)) with niiixx ii ,...,1,1,...,1,~1 +−=←  and ii xx ˆ~1 ← . 
(d) Terminate with ),...,( 11 +nxx  as a PGM. 
 

4.2.2 Global Optimization 
 

Now we can develop the generalized cutting plane method for solving DMLP by taking advantage of its disjoint 
property. As before, for the generalized reverse polar, if NjniX i

j ∈=⊂ ,,...,1),(αξ , we simply set ∞=jλ  other 
than employing the negative extension of polar cuts. 
Algorithm 6: 

(a) Let CBOV, +∞=0obj , let the initial best feasible solution , and set . φ=+ )}ˆ,...,ˆ{( 0
1

0
1 nxx 1=k

(b) If , terminate with  as the global minimum and  as its corresponding global 
solution. 

φ=+
k
nX 1 1−kobj )ˆ,...,ˆ( 1

1
1

1
−
+

− k
n

k xx

(c) Find a PGM in  by using Algorithm 5, and set the corresponding k
nX 1+

)},...,(,min{arg)ˆ,...,ˆ()},,...,(,min{ 11111111
k
n

k
k

k
n

kk
n

k
kk xxfobjxxxxfobjobj +−++− == . 

(d) Compute 
ijXλ  with respect to  for all iX niNj ,...,1, =∈ . 

(e) If there exists no 
ijXλ  such that , terminate with  as the global minimum and 

 as its corresponding global minimizer. 
niobjX ki

j ,...,1),( =⊄ξ kobj

)ˆ,...,ˆ( 11
k
n

k xx +

(f) Let }min{
ijXj λλ =  for all niNj ,...,1, =∈ , generate a polar cut, and let )( 11

1
1

k
n

k
n

k
n xHXX +

+
+

+
+ ∩= . 

(g) Set , and return to (b). 1+= kk
The basic idea in Algorithm 6 is similar to those explained in Algorithm 4 and its convergence can be proved 

analogously to the previous work. 
 

5   Conclusions and Further Research 
 
In this paper, we have discussed three types of imprecise decision models arising in computational decision analysis, 
the corresponding solution property of DBLP, DTLP and DMLP, and their global optimization algorithms. Being 
based on only LP operations, they do not contain traditional nonlinear computational elements. Even though we have 
gained some computational experience in Algorithm 2; see [3, 4, 10, 12], Algorithm 4 and Algorithm 6 still need 
further investigations and modifications with respect to their computational performance benchmark against the 
general-purpose designed branch and bound methods [14, 15]. 
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As for the optimization algorithms themselves, there are several aspects for further development and 
improvement. 

Firstly, it is possible to incorporate certain lower bounding techniques in branch and bound procedures to fathom 
the rest of the feasible region and achieve faster convergence [10]. For example, we are able to obtain an interval such 
as  for each variable. Then using the arithmetic intervals [1, 2, 14], the convex envelope of a trilinear 
term 

UL xxx ≤≤
xyz  subject to box constraints can be calculated as 

. 
Each bilinear term can be further lower bounded by the maximum of two linear constraints, and we need to 

compute the maximum of 32 linear constraints to obtain an underestimate of xyz . In that case, both algorithms may 
be further improved to achieve fast convergence. 

Secondly, the generation of a cutting plane at a degenerate extreme point as in Algorithms 2, 4 and 6 can be 
further investigated since it is a common situation in computational decision analysis [5, 6]. 

Finally, we may incorporate the negative extension of polar cuts when  in order to generate more 
efficient cutting planes, and focus on the extreme points belonging to the original feasible set that are candidates for 
the global solution rather than those induced by the generated cutting planes [19]. 

)(0 αξ Yj ⊂
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Theorem 8 Let (Ω, d) be a metric space and let B be a partition of Ω. For every B ∈ B with positive and
finite Hausdorff outer measure in its dimension denote by µ = P (A|B) the restriction to the Borel σ-field
of the upper conditional probability defined as in Theorem 2. Let L∗(B) be the class of all Borel measurable
random variables on B. Then the convergence in µ-distribution of a sequence of random variables of L∗(B)
to a random variable X is equivalent to the pointwise convergence of expectation functionals on all bounded
and continuous function f that is limn→∞

∫
fdµn =

∫
fdµ.

Proof: If Xn and X are Borel-measurable random variables and H is a Borelian set then the sets X−1
n (H)

and X−1(H) are also Borelian sets; moreover since every Hausdorff s-dimensional outer measure is countably
additive on the Borel σ-field then the (upper) conditional probabilities µn and µ induced respectively by Xn

and X on (<,F ) are probability measures. Then convergence in µ-distribution is equivalent to the pointwise
convergence of expectation functionals on all bounded and continuous function f .

6 Conclusions

This paper investigates the relations among different types of convergence for random variables when they
are based on an upper probability approach where conditional upper expectations with respect to Hausdorff
outer measures are used whenever we have to condition on a set with probability zero.

Upper (lower) conditional previsions defined with respect to Hausdorff outer measures are proven to be
the upper (lower) envelopes of all linear extensions to the class of all random variables of the restriction to
the Borel-measurable random variables of the given upper conditional previsions.

It is proven that the relations among different types of convergences of random variables defined with
respect to upper conditional probability defined by Hausdorff outer measures are the same that hold if con-
vergences are defined with respect to a probability measure. When the conditioning event has finite Hausdorff
outer measure in its dimension these results are obtained because Hausdorff outer measures are Borel regular
outer measures and so continuous from below and continuous from above on the Borel σ-field. In general if
upper conditional probability is defined as natural extension of a coherent merely finitely additive probability
defined on a σ-field we have that µ-stochastically convergence does not imply convergence in µ-distribution
since in this case the upper conditional probability is not continuous from above.
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