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Abstract

This paper discusses a series of imprecise decision models and their corresponding computational aspects arising in
computational decision analysis. The imprecise decision models relax the traditional point estimates into intervals and
incorporate various types of vague information represented as linear constraints from a decision-maker. When the
principle of maximizing expected utility is applied as the decision rule, the evaluations of these models become non-
convex optimization problems and require some global optimization strategies. This paper presents a class of global
optimization algorithms for solving such non-convex programs. We take advantage of polar cuts and the disjoint
structural property of the imprecise decision models to develop generalized cutting plane methods that are different
from the traditional class of branch and bound approaches.
© 2010 World Academic Press, UK. All rights reserved.
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1 Introduction

Most classical decision analysis approaches consist of a set of straightforward decision rules applied to precise
estimates of weights, probabilities, and/or utilities no matter how unsure a decision-maker is of his estimates. The
requirement for numerically precise data has been considered unrealistic by an increasing number of researchers and
decision-makers. Techniques allowing imprecision have been suggested, among which the interval methods have
been widely utilized to strengthen other decision models that are built upon the principle of maximizing the expected
utility (PMEU), e.g., [7, 8, 9, 13, 16, 17]. When PMEU is applied, disjoint bilinear programming (DBLP) programs
such as > e pu; O > awu, where a, O o, are coefficients, are obtained while searching for the best alternatives

if both interval probabilities or weights and interval utilities are represented by variables. When modeling multi-
criteria problems that also have uncertain events, combining these two kinds of decision models gives rise to multi-
criteria probabilistic models with trilinear expressions such as > 2 W O PiUi) and yields computationally hard

disjoint trilinear programming (DTLP) programs together with constraints on weights, probabilities, and utility values.
Moreover, for decision situations that possess disjoint probability chain property, adopting PMEU may even lead to
disjoint multi-linear programming (DMLP) programs.

Although optimization techniques have been developed rapidly in recent years, much of the area of optimization
has been devoted to solving large problems. Nevertheless, the particular programs arising in imprecise computational
decision analysis require approaches for solving sequences of related smaller global optimization problems in
interactive time because in mathematical programming, DBLP, DTLP and DMLP all exhibit non-convexity.
Therefore, some global optimization strategies that iterate between a global phase and a local phase in search of the
global optimum are necessary. Two main branches of deterministic approaches for handling such non-convex
programs are cutting plane methods [11, 12, 19, 20, 21], and branch and bound methods [1, 2, 4, 14, 15, 18].
Combined approaches have also been suggested [3, 10].

This paper intends to discuss a series of imprecise decision models and their corresponding computational
aspects. A class of generalized cutting plane methods is developed by taking advantage of polar cuts and the disjoint
structural property of the imprecise decision models. The following section presents an imprecise decision framework
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that can be readily transformed into DBLP and the fundamental technique for solving DBLP. Thereafter, we extend
the decision framework into an imprecise probabilistic multi-criteria decision model, transform it into DTLP, and
discuss the corresponding global optimization algorithm in great detail. The fourth section presents an imprecise
multilevel probability chain decision model that can be transformed into DMLP, and discusses the global
optimization algorithm extended from the third section. The final section concludes this paper and indicates further
research topics.

2 Disjoint Bilinear Programming
2.1 A Bilinear Imprecise Decision Model

In interval decision analysis, a decision-maker is often encouraged to be deliberately imprecise in his subjective
judgements. Input sentences in decision problems consisting of discrete alternatives with events and consequences,
e.g., interval estimates and qualitative information, are translated into linear constraints. For instance, the probability
(or utility) of a consequence G being between the numbers a, and b, is expressed as p; €la.b] (or uy € [a..b, 1)

Relations can be handled similarly: a measure of o is greater than a measure of c,, is expressed as P = Py (or
analogously Uy 2 Uy ). In this way, each statement is represented by one or more constraints.
Definition 1: An information frame represents a decision situation with m alternatives, each alternative having
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Figure 1: A bilinear imprecise decision model

Suppose we have a decision situation as shown in Figure 1 where D1 is a decision node, E1 and E2 are
probability nodes, representing indeterminism, with associated probability distributions, and the leaves are
consequence nodes with convex sets of associated value or utility functions. This decision situation can be mapped
into an information frame (c,pU)= <{{c“,}mi}m, p7U> with m=2,m =2 and m, =4.

This structure is then populated with user statements represented as linear inequalities. Since a vector in the
polytope can be considered to represent a distribution, a probability base P can be interpreted as constraints defining
the set of all possible probability measures over the consequences. Analogously, a utility base U consists of
constraints defining the set of all possible utility functions over the consequences. These two bases together with a
tree structure constitute the information frame.

Definition 2: Given an information frame <{{Cij}m‘}mlp’u> , the expected utility of an alternative A is

E(A) =Y pu, where P and u; are variables in P and U, respectively; P denotes the probability of o
jem, FiiTi
occurring given that alternative A is chosen; and Uy denotes the corresponding utility.

Using precise numbers, evaluating the expected utility of an alternative is rather straightforward. Nevertheless,
when numerically imprecise information is involved, the expected utility has to be evaluated with respect to P and U.
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By considering all possible solution vectors, a range of expected utilities for each alternative can be received. Once
we have a well-defined information frame and apply PMEU as the decision rule, we need to calculate the minimal
and maximal expected utilities for each alternative.

Firstly, when imprecise information represented as linear constraints exists within either P or U, to evaluate the
decision model is reduced to linear programming (LP) problems that can be readily solved with modern optimization
techniques [8]. Secondly, as imprecise information exists in both P and U concerning certain criterion, the evaluation
of a decision model under this criterion based on PMEU results in a simplified DBLP program in the sense that it
only contains cross product terms such as > pv but no linear terms. For example, if we need to evaluate the second

alternative in Figure 1, we have to calculate max/minz‘_‘lpzjuzj subject to disjoint linear constraints concerning P
=
and U, respectively. It should be noted that for this bilinear imprecise decision model, we only allow a decision-
maker to issue his imprecise statements with respect to each alternative such as 0.2 < p,, + p,, < 0.3, but exclude the
cross linear constraints among different alternatives such as 0.2 < p,, + p,, <0.3. Then, this decision model can be
transformed into DBLP that is mathematically stated as
H t t H t t t
min f(x,y) =(c,x+d,)(c,y+d,) < min f(x,y)=c'x+d'y+xCy
st.X, ={xeR™: Ax<b,x>0}Y,={yeR™:Ay<h,,y>0}.
In(1), Ax<b and A,y <b, represent the linear constraints populated in P and U, respectively.

M

2.2 Evaluation of DBLP

2.2.1 Local Optimization

The most important property of DBLP is that, even though f (x,y) may not be quasi-concave, there exists an extreme
point X e X, and an extreme point y Y, such that (x,y) is an optimal solution of DBLP [1]. This solution property

and the structure of DBLP itself suggest an LP based vertex following algorithm that converges to a Karush-Kuhn-
Tucker point [12].
Definition 3: Consider P :min f (x) subject to x e S, where S is a compact polyhedral set and f is non-convex. A

local star minimizer (LSM) of P is defined as a point x such that f(X) < f(x) for each x e N, (x), where N, (X)
denotes the set of extreme points in S that are adjacent to x.

For DBLP, an extreme point is adjacent to (x,y) if and only if it is of the form either (x',y) or (x,y'), where
X €Ny, (x) and y' e N, ()
Definition 4: An extreme point (x,y) is called a pseudo-global minimizer (PGM) if f(x,y) < f(x,y) for each
x € B;(X) N X, and for each y Y, , where B, (x) is a o neighborhood around X.

With the above property and definition, we can have an LP based mountain climbing procedure to obtain a PGM
of DBLP.
Algorithm 1:

(a) Find a feasible extreme point X' e X;, where X/ represents the reduced feasible region in i" iteration after

all cuts have been added.

(b) (1) Solve: min{f (X", y)|y Y,} to yield an optimal y*;
(2) Solve: min{f (x,¥")| x e X } to yield an optimal X%
Set X* « X* and repeat step (b) until it converges to an LSM (X, y).

(c) Suppose X is non-degenerate and let % € N(x) be such that

f(%9)=min,, f(%y)<min f(Xy)=f(xy)

Go to step (b(2)) with y* « §.

(d) Terminate with (X,y) as a PGM.

Algorithm 1 is relatively easy to implement and there are other approaches concentrating on the location of
different types of extreme point [10, 19]. However, in this paper, we will not step into the details of other local
optimization methods since we focus on the utilization and generalization of such local algorithms in search of the
global optimum. The incorporation of other approaches is supposed to be similar.
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2.2.2 Generation of a Cutting Plane

Given a PGM (X, y) located by Algorithm 1, we employ polar cuts to cut off local vertex solutions. Assume x is a
non-degenerate extreme point of X ; let X, jeN be the n, nonbasic variables at x, where N is the index set for the
nonbasic variables. Then X, has precisely n, distinct edges incident to x . Each half line
& ={x:x=x-a'4,4, >0}, je N contains exactly one such edge [5].
Definition 5: The generalized reverse polar of Y, for a given scalar ¢ is given by Y (a) ={x: f (x,y) > ¢} for all
yeY,-
Let (x,y) be a PGM, let the rays & be defined as above, let & be the current best objective value (CBOV) of
f(x,y),and let 2, be defined by
A, =max{}, : f(x-a'a,y)2a foral yeY}if & 2 Y (a). @)
As for the case when &1 Y (a) , we simply set ,TJ to oo rather than employing the negative extension of polar
cuts [19] because in that case, the following approach to compute ZJ cannot be used any longer. The inequality
zjeﬁxj 17, 21 determines a valid cutting plane. Each IJ can be computed by an approach on the basis of LP duality
theory that costs only one LP iteration. Consider (1) and (2), in which we need to obtain
max{4;: f(x-a'l;,y)>a|Ay<bh, y>0}=
max{4; :min [c'(Xx-a’4,)+d'y+(x—-a’4,)'Cyl > a | A,y <b,,y > O}.
Using LP duality theory, the foregoing can be rewritten as
max{4; :max,[c' (X-a’4,) +bu]l>a | Au<d +C'(Xx—a'4;),u<0}
=max{4; :min,[c'a’A, —-bju]<c'Xx—a|C'a’A, + Au<C'Kx+d,u<0}
In matrix form, this expression asks for the maximal /1j in

max, , 4,

t=i  _pnt 2 tg _ 3)
st © & o, | 44 <| €X “,uso.
ca' A |u C'x+d

Hence, we can obtain ,TJ when £ ¢ Y, («) by solving just one LP program.

2.2.2 Global Optimization

At this stage, we are able to present a global optimization algorithm for solving DBLP by using Algorithm 1 and
polar cuts.
Algorithm 2:

(a) Let CBOV, obj, = +o; let the initial best feasible solution {(X°,J°)}=¢. Seti=1and X} = X,.

(b) If X} =¢ , terminate with obj_, as the global minimum and ()A(H,)A/H) as its corresponding global
minimizer.

(c) FindaPGM (x',y") by using Algorithm 1, and set the corresponding

obj; = min{obj, ,, f (X', y)}, (X', ') = argmin{obj, . f (X', y")}-

(d) Compute ,TJ s by solving LP programs if £ ¢ Y (), and set ,TJ sto oo if &1 <Y, (). Generate a polar cut
and define X* = X! A H*(x").

() If there exists no 7, such that &' ¢ Y, (a), terminate with obj; as the global minimum and (%', y") as its

corresponding global minimizer.
(f) Seti<«i+1,andreturnto (b).
According to the stopping rules, Algorithm 2 yields an exact global minimum for DBLP.
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Convergence Proof: First, note that Algorithm 1 is finite so step (c) in Algorithm 2 yields exact solutions. Consider
the sequence of PGMs {(x', y')} generated and let H (x') be the cutting plane that eliminates x'. In step (d) of i"
iteration, the algorithm is terminated as the consequence of introducing polar cuts, and the algorithm is terminated if
XiAH*(x')=¢ . Otherwise, the cut H(x') is applied and a new PGM (x'* y'*) is found where
X e X nH(x") and X' ¢ H*(X').

It is possible for the process not to terminate by any of the stopping rules in Algorithm 2. An infinite sequence
would then be generated, and we need to show that the sequence {x'} has a limit point x" such that
e XoMH' (X)) = ¢

Since X, is a compact set, there exists a limit point x™ such that for a given ¢ >0 and a positive integer v,

lim

Yi—X*HSa“ for infinitely many i>v. If XiAH*(X')=¢ for all i>v, then all subsequent PGMs (x',y")
generated will satisfy the condition x' € H*(x") for all I >v. From the definition of a PGM, x" € B,(x") n X, and
> ¢ forall | >v . This contradicts the statement that x” is a limit point.

X' ¢ B,(x") for some 5 >0. Hence, |x' —x"

Therefore, lim_,, X; nH*(X') = ¢ and the cutting plane algorithm is terminated.

3 Disjoint Trilinear Programming

3.1 A Probabilistic Multi-Criteria Decision Model

The imprecise bilinear decision model handles a decision situation with respect to only one criterion. However, in
many decision situations it is necessary to study a decision problem from more than one perspective using multiple
criteria. There are several multi-criteria models, ranging from value function based methods over goal and reference
point methods to outranking methods. For this PMEU-based model, an additive multi-attribute utility theory (MAUT)
approach is employed, in which the expected utilities of each alternative are weighted together according to
importance weights.

Consider n information frames under n criteria and suppose that the imprecise statements concerning importance
weights are collected in a set W with w, -variables.

Definition 6: An extended information frame represents a decision situation with m alternatives. Each alternative is
assessed under n criteria k €1,...,n, and each criterion has an information frame |, :<{{ckij}mk,}mk,Pk,Uk>, as a
structure <W,{|k}> where W is a finite list of linear constraints over w, -variables denoting weights over the criteria.

Since the additive model is PMEU-based, evaluation rules are based on an additive extension of the expected
utility.
Definition 7: Given an extended information frame <W,{|k}>,k el...,n, the weighted expected utility of an

alternative A is G(A)=ZE W, (O™ Pl - where p,. and u, are variables in B and U, , respectively; p,,
=1 j=1 Pkij =k

k 1
denotes the probability of Cyi occurring given that A is taken; and Uy denotes the corresponding utility valued

under criterion k.
When imprecise information exists in weights, probabilities, and utilities, the evaluation of weighted expected
utility in an extended information frame results in DTLP that is mathematically stated as:

min f(x,y,2) = (c,x+d,)(c,y +d,)(c;z+d,)
st.X, ={xeR™: Ax<b, x>0} 4)

Y,={yeR™:Ayy<b, y>0}
Z,={zeR™:Az<b,,z>0}
In (4), Ax<b,A)y<b, and Az <b, represent the linear constraints populated in P, U and W, respectively. To

receive a range of the weighted expected utilities for each alternative under n criteria, we need to calculate both
minimal and maximal values. When the received ranges for two alternatives overlap, a decision-maker is suggested to
provide more information for the ranges to become separated, and thus indicate a preference order.
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3.2 Evaluation of DTLP
3.2.1 Local Optimization

For DTLP, because of the disjoint constraint sets concerning P, U and W, respectively, the solution property of DBLP
can be extended.
Theorem 1: If X,,Y, and z, are nonempty and bounded, then DTLP has an optimal solution (x",y",z",) in which

x",y" and z" are basic feasible solutions of XY, and Z_, respectively.
Proof: Let x,y,z be an optimal solution. First, consider the LP problem concerning X, min{f (x,y,Z) | x € X}, and

let X be its optimal basic solution. Then we have f(x",y,z) < f(X,V,z). Next, consider the LP problem concerning

Y, min{f(x",y,2)|yeY,}, and let y~ be its optimal basic solution. By the same argument, we have
f(x",y",z) < f(x",y,2). Finally, consider the LP problem concerning z, min{f (x",y",z)|z € Z,}, and let z" be its
optimal basic solution. Then we have f(x",y",z") < f(x",y",z). Therefore, x",y" and z" are basic feasible solutions
of X,,Y, and z, respectively.
Based on this solution property and the knowledge in DBLP, we can have the following local optimization
algorithm to locate a PGM of DTLP.
Algorithm 3:
(a) Find feasible extreme points X* e X and §* e, .
(b) (D)Solve: min{f (x*,y*,2)|z € Z,}. to yield an optimal Z*;
(2) Solve: min{f (x,y*,Z*)| x e X}}, to yield an optimal X?;
(3)Solve: min{f (X?,y,z")| y eY,}. to yield an optimal ¥?;
Set X' « X?,y* « y? and repeat (b) until it converges to an LSM (X, ,2) .
(c) Suppose X is non-degenerate and let X € N(x) be such that
f(X,9,2)=min f(Xy,2)<f(X,y,2)-
Go to (b(2)) with §* « §,7' « 7.
(d) Suppose X is non-degenerate and let X € N (X) be such that
f(X,y,2)=min,_, f(Xy,2)<f(X,y,2)
Goto (b(2)) with §' « 7,7  « 7.
(e) Terminate with (X,y,z) as a PGM.

3.2.2 Global Optimization

Given a PGM (X,y,z) of DTLP, we need to develop a generalized cutting plane method to obtain the global optimum.
As a result of the independency between XY, and Z, we can develop a generalized cutting plane method solving

DTLP.
Algorithm 4:

(a) Let CBOV, obj, =+, let the initial best feasible solution {(x°, §°,2°)}=¢. Seti=1 and X = X,.

(b) If X} = ¢, terminate with obj,_, as the global minimum and the solution (%", §"*,7"") as its corresponding
global minimizer.

(c) FindaPGMin X} by using Algorithm 3, and set the corresponding

obj, = min{obj_,, f (X', ¥',Z")}, (X', ¥',Z") = argmin{obj_,, f (X', ¥',Z")}.
(d) Compute ZJ.Y concerning Y, , and compute /sz concerning z, forall jeN.
(e) If either there exists no 2, such that &/ Y, (a) or 4;, such that & & Z,(a), terminate with obj; as the

global minimum and (%', §',7") as its corresponding global minimizer.
(f) Let 2, =min{A,,,4,,} forall je N, generate a polar cut, and let X" = X;"H"(X').
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(9) Seti=i+1,and return to (b).
The fundamental idea in Algorithm 4 is that at a local minimizer in X |, we compute ,TJ.Y and /sz concerning Y,
and z, respectively, and choose the smaller one as A1 for each edge. This will guarantee the global optimality as

what we have done in DBLP. Convergence of Algorithm 4 can be proved analogously to the previous work.
Proposition: Given an extended information frame, maxG(A) and minG(A) can be computed by DTLP

optimization. This way, weighted expected utility ranges can be obtained for each alternative.
This follows from the observation that the problem structure of evaluating PMEU with respect to an extended
information frame coincides with the formulation of (4).

4 Disjoint Multi-Linear Programming

4.1 A Multilevel Decision Model

With appropriate modifications to an information frame, a well defined decision structure as shown in Figure 2 can be
obtained, in which we have a sequence of chance nodes representing uncertainty. Nevertheless, P is now broken into
several disjoint parts, e.g., B, P,and P,, with respect to each level.

—] v
o )
'\...._../ Paz
Py HU:
P33 i
'.::_/'::\
:M-““' \\.,_,../ Paa
—q v,
_.Lq-u
: ® 24 g

Figure 2: A multi-linear decision model

To calculate the expected utility, we have
E(Al) = pll( pzl( p31ul + p32u2) + p22(p33u3 + p34u4)) + p12(p23u5 + p24u6)) (5)
= P11 P2 PayUy + Piy Poy PayUs + Py Pop PasUs + Piy P PagUy + Prp PosUs + Pro PogUs-
As imprecise information prevails, we translate it into linear constraints within each level. It should be noted that

currently we only allow constraints from the same level rather than different levels. For example, the interval
statement 0.2 < p,, + p,; < 0.3 is considered proper, while the interval statement 0.2 < p,, + p,, < 0.3 is considered

improper since p,, and p, are from level 1 and level 2, respectively, and this will destroy the disjoint structural

property. In other words, imprecise statements are supposed to be confined within each level.

To evaluate the alternative by using PMEU with imprecise information, we have to compute two extreme values,
i.e., maximum and minimum, of (5) subject to disjoint linear constraints in order to receive a range of expected utility
for the alternative. This will result in a special case of DMLP that is intrinsically hard to solve.

If we take x, = p, = (py,es Py, )i =1...,n, and x_., =(u,,..,u, )", then the imprecise multilevel decision
model (5) can be transformed into the following DMLP model as

min £ 04, %) = D T %) )

st.X; ={x, e R" : Ax; <b,x, >0},i=1..,n+1
In (6), J, denotes the index set, and we can have at most one decision variable from x. for each J, . Taking (5)

as an example, there exists at most one decision variable from each level within each product term. This property of
the objective function and the disjoint linear constraint sets, X, s, demonstrate the disjoint property of DMLP, and

therefore, its solution property is similar to that of DTLP.
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4.2 Evaluation of DMLP
4.2.1 Local Optimization

Based on the solution property of DMLP and the knowledge in DBLP and DTLP, we can have the following local
optimization algorithm to locate a PGM of DMLP, in which X ¥, denotes the feasible region of X in k" iteration;

and N(x,,) denotes the set of extreme points in X ¥

n+l
Algorithm 5:
(@) Find feasible extreme points iil e X;,i=1..,n.

(b) (1) Solve: min{f (X.,..., X", X,,) | X,., € XX} toyield X'
(2) SOIVE: min{f(xll-)zZlv " n+1!) I Xl € X } tO yIEId Xl
(3) Solve: min{f (X2, %,,Xs,..., Xoys) | X, € X,} to yield X7.

that are adjacent to X,

(n+1) Solve: min{f (x,.. )| x, € X,} toyield X

" nl' n' n+1’

Set X'« X7%,i=1,...,n, and repeat (b) until the solution converges toan LSM (X,,...,X.,,) -
(c) Suppose X, is non—degenerate and for each x,i=1,..,n,let X , e N(X ) be such that
1:(Xl' " | -1 X|1X|+1' 'Xn’ )’inﬂ) = minxex 1:(Xl' " | -1 X|1X|+1' ’Xn’ )’iml) < f(yll"" Xn+1) :

Go to (b(1)) with X' « X,i =1,...,i—1i+1,...,n and X' « X..
(d) Terminate with (X,,...,X,,,;) asaPGM.

4.2.2 Global Optimization

Now we can develop the generalized cutting plane method for solving DMLP by taking advantage of its disjoint
property. As before, for the generalized reverse polar, if £/ = X, (a),i=1,...,n, je N, we simply set ,TJ = oo Other

than employing the negative extension of polar cuts.

Algorithm 6:

(@) Let CBOV, obj, =+, let the initial best feasible solution {(x?,..., n+1)} ¢,andset k=1.

(b) If X¥, =¢, terminate with obj, , as the global minimum and ( <*,..,X5]) as its corresponding global
solution.

(c) FindaPGM in x* by using Algorithm 5, and set the corresponding
obj, = min{obj, ,, f(xlk""' Kr::l)}!()’q("'" i:u) = arg min{obj, ,, f(xlk,.__' X:Jrl)}'
(d) Compute ZJX. with respect to X; forall je N,i=1,..,n.
(e) If there exists no 4, such that£! & X, (obj,),i =1,...,n, terminate with obj, as the global minimum and
(X,..., XE,)) asits correspondlng global minimizer.
(f) Let ,1j = mm{,zjxi} forall jeN,i=1...,n, generate a polar cut, and let X **' = X ¥

n+l n+l
(9) Set k =k +1, and return to (b).
The basic idea in Algorithm 6 is similar to those explained in Algorithm 4 and its convergence can be proved
analogously to the previous work.

AH (%)

5 Conclusions and Further Research

In this paper, we have discussed three types of imprecise decision models arising in computational decision analysis,
the corresponding solution property of DBLP, DTLP and DMLP, and their global optimization algorithms. Being
based on only LP operations, they do not contain traditional nonlinear computational elements. Even though we have
gained some computational experience in Algorithm 2; see [3, 4, 10, 12], Algorithm 4 and Algorithm 6 still need
further investigations and modifications with respect to their computational performance benchmark against the
general-purpose designed branch and bound methods [14, 15].
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As for the optimization algorithms themselves, there are several aspects for further development and
improvement.

Firstly, it is possible to incorporate certain lower bounding techniques in branch and bound procedures to fathom
the rest of the feasible region and achieve faster convergence [10]. For example, we are able to obtain an interval such

as X" < x < x" for each variable. Then using the arithmetic intervals [1, 2, 14], the convex envelope of a trilinear
term XYZ subject to box constraints can be calculated as

.!'y;I‘ + .?'g‘r‘; + .r"r'lr;.;

—aylk — plyrl — plyls 4 phytat
ryzl + oz + 2Uyz

I B b MR
TYz > max KA
Yzt Fryr+royr

P g O LR L 8
ryz” + oz + 2ty

_-I',f_.ftl-l'r: _ ‘!.Ly;fr _ .?.Lyf'; + .I'Ly'r: ..‘E"

Each bilinear term can be further lower bounded by the maximum of two linear constraints, and we need to
compute the maximum of 32 linear constraints to obtain an underestimate of XYyZ. In that case, both algorithms may

be further improved to achieve fast convergence.
Secondly, the generation of a cutting plane at a degenerate extreme point as in Algorithms 2, 4 and 6 can be
further investigated since it is a common situation in computational decision analysis [5, 6].

Finally, we may incorporate the negative extension of polar cuts when §j < Y, (@) in order to generate more

efficient cutting planes, and focus on the extreme points belonging to the original feasible set that are candidates for
the global solution rather than those induced by the generated cutting planes [19].
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Theorem 8 Let (0, d) be a metric space and let B be a partition of Q. For every B € B with positive and
finite Hausdorff outer measure in its dimension denote by p = P(A|B) the restriction to the Borel o-field
of the upper conditional probability defined as in Theorem 2. Let L*(B) be the class of all Borel measurable
random variables on B. Then the convergence in u-distribution of a sequence of random variables of L*(B)
to a random variable X is equivalent to the pointwise convergence of expectation functionals on all bounded
and continuous function f that is lim,_—c [ fdp, = | fdp.

Proof: If X,, and X are Borel-measurable random variables and H is a Borelian set then the sets X, !(H)
and X ~1(H) are also Borelian sets; moreover since every Hausdorff s-dimensional outer measure is countably
additive on the Borel o-field then the (upper) conditional probabilities u,, and p induced respectively by X,
and X on (R,F) are probability measures. Then convergence in u-distribution is equivalent to the pointwise
convergence of expectation functionals on all bounded and continuous function f.

6 Conclusions

This paper investigates the relations among different types of convergence for random variables when they
are based on an upper probability approach where conditional upper expectations with respect to Hausdorff
outer measures are used whenever we have to condition on a set with probability zero.

Upper (lower) conditional previsions defined with respect to Hausdorff outer measures are proven to be
the upper (lower) envelopes of all linear extensions to the class of all random variables of the restriction to
the Borel-measurable random variables of the given upper conditional previsions.

It is proven that the relations among different types of convergences of random variables defined with
respect to upper conditional probability defined by Hausdorff outer measures are the same that hold if con-
vergences are defined with respect to a probability measure. When the conditioning event has finite Hausdorff
outer measure in its dimension these results are obtained because Hausdorff outer measures are Borel regular
outer measures and so continuous from below and continuous from above on the Borel o-field. In general if
upper conditional probability is defined as natural extension of a coherent merely finitely additive probability
defined on a o-field we have that u-stochastically convergence does not imply convergence in p-distribution
since in this case the upper conditional probability is not continuous from above.
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