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Abstract

In this paper, we use power series method to solve fuzzy Cauchy differential equations of first order.
Theoretical consideration is discussed and some examples are presented to show the ability of the method
for fuzzy Cauchy differential equations. We use Matlab for numerical calculations.
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1 Introduction

Fuzzy differential equations (FDEs) have been applied extensively in recent years to model uncertainty in
mathematical models. First-order ordinary differential equations, in particular Fuzzy Cauchy differential
equations, are one of the simplest FDEs which may appear in many applications. Finding a solution to FDE
which satisfies necessary existence and uniqueness conditions is our main goal in this paper. Since it is too
complicated to find an exact solution, numerical methods are more suitable for mentioned problems.

The concept of a fuzzy derivative was first introduced by Chang and Zadeh [7] it was followed by Dubois
and Prade [8] , who defined and used the extension principle. Kandel and Byatt [10, 15, 16] applied the
concept of fuzzy differential equation (FDE) to the analysis of fuzzy dynamical problems. Puri and Ralescu
in [20] defined the Concept of H-differentiabillity and Seikkala generalized it in [21]. Kaleva [12, 14], Seikkala
[21], He and Yi [11], Kloeden [17], Menda [19] and finally, Friedman, Ma and Kandel [9], concentrated on
fuzzy Cauchy problems. Furthermore, some numerical methods for solving FDE are discussed in [18, 2, 1, 9].

In this paper, using power series expansion, a numerical procedure is presented. In section 2, first we
briefly introduce preliminary topics such as fuzzy number, fuzzy function and fuzzy derivative, and then a
fuzzy Cauchy problem is defined. In order to obtain numerical solutions, a method based upon Power series
is explained in section 3. In section 4, the mentioned method has been applied to two examples, finally we
compare our method with another one.

2 Preliminaries

2.1 Notations and Definitions

We consider the fuzzy sets with respect to a nonempty base set Rn . To each x ∈ Rn , we assign a mem-
bership value u(x) taking values in [0, 1]. Therefore for nonmembership, we have u (x) = 0 , 0 < u (x) ≤ 1
corresponding to partial membership and u (x) = 1 , to full membership.

Assumption 2.1 In this paper, a fuzzy set u ∈ Rn is a function u : Rn → [0, 1] which satisfies the following
conditions:

(i) u is normal; meaning there exists x0 ∈ Rn such that u (x0) = 1;
(ii) u is fuzzy convex ; meaning for x, y ∈ Rn, 0 ≤ λ ≤ 1 ,

u (λx + (1− λ) y) ≥ min (u (x) , u (y)) ;

(iii) u is upper semi-continuous;
(iv) [u]0 = cl{x ∈ Rn;u (x) > 0} is compact.

We denote the set of all subsets of Rn which satisfy conditions (i)-(iv), by En.
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Definition 2.2 Let u be an arbitrary upper semicontinuous normal convex fuzzy number with bounded α-level
interval. For 0 < α ≤ 1 , we denote α-level set by [u]α and define it as:

[u]α = {x ∈ Rn;u (x) ≥ α}.

Obviously this is a closed and bounded interval
[
u1(α), u2(α)

]
where,

u1(α) = min{x|x ∈ [u]α}, u2(α) = max{x|x ∈ [u]α} (1)

Remark 2.3 For any u, v ∈ En and k ∈ R addition and multiplication by k are defined as follows:

[u + v]α = [u]α + [v]α

[ku]α = k [u]α

here 0 ≤ α ≤ 1 .

Definition 2.4 A triangular fuzzy number is defined as a fuzzy set in En which is specified by an ordered
triple (u1, u2, u3) ∈ R3 with u1 ≤ u2 ≤ u3 such that [u]0 = [u1, u3] and [u]1 = {u2} then for 0 ≤ α ≤ 1 we
have

[u]α = [u2 − (1− α) (u2 − u1) , u2 + (1− α) (u3 − u2)] .

Definition 2.5 A mapping f : I → En for some interval I is called a fuzzy process. Therefore according to
(1), its α-level set can be written as follows:

[f (t)]α = [f1 (t, α) , f2 (t, α)] .

Definition 2.6 For arbitrary u, v ∈ En the quantity

D (u, v) = sup
0≤α≤1

d ([u]α , [v]α)

is the distance between u and v , where d is the Hausdorff metric in En.

Remark 2.7 It can be shown that (En, D) is a complete metric space. See [10].

2.2 Derivatives

Prior to entering the problem, it is necessary to introduce two types of fuzzy derivatives which will be mainly
applied in this paper.

Definition 2.8 For u, v ∈ En , w ∈ En is called the Hukuhara difference of u and v if u = v + w , and it is
denoted by w = uHv .

Therefore using this difference, differentiability of a fuzzy function can be defined as:

Definition 2.9 A function F : [a, b] → En is differentiable at t0 ∈ (a, b) if there exists F ′ (t0) ∈ En such that
the limits

lim
h→0+

F (t0 + h) H F (t0)
h

and lim
h→0+

F (t0) H F (t0 − h)
h

exist and are equal to F ′ (t0) .

The above definition is a straightforward generalization of the Hukuhara differentiability of a set-valued
function. So if F is differentiable at t0 ∈ (a, b), then all its α-levels Fα(t) = [F (t)]α are Hukuhara differentiable
at t0 and [F ′(t0)]α = DFα(t0), where DFα denotes the Hukuhara derivative of Fα, for more details see [12, 13].

Definition 2.10 For any function f : [a, b] → En, the Seikkala derivative (see [21, 6]) SDf (t) is defined by

[SDf (t)]α = [f ′1 (t, α) , f ′2 (t, α)] , 0 < α ≤ 1.

Remark 2.11 For any t ∈ [a, b] , [SDf (t)]α is a fuzzy number.
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Theorem 2.12 If [f ′1 (t, α) , f ′2 (t, α)] are α-levels of a fuzzy function, then [SDf (t)]α exists and [SDf (t)]α =
[f ′1 (t, α) , f ′2 (t, α)] .

Proof. See [6].

Theorem 2.13 If d
dt [f (t)]α exists, then [SDf (t)]α = d

dt [f (t)]α .

Proof. See [6].

Remark 2.14 Buckely and Feuring in [Theorem 4.2 [6]] claimed that the Seikkala solution is the most general
solution to the fuzzy differential equation. Hence in this paper, we focus on Hukuhara and Seikkala derivatives.

2.3 A Fuzzy Cauchy Problem

In this paper, we consider the first order fuzzy differential equation y′ = f (t, y) where y is a fuzzy function
of t, f (t, y) a fuzzy function of crisp variable t and fuzzy variable y , and y′ is the fuzzy derivative of y . If
an initial value y (t0) = y0 ∈ En is given, we obtain a fuzzy Cauchy problem of first order,

y′ = f (t, y (t)) , y (t0) = y0 . (2)

Sufficient conditions for existence of a unique solution to Eq.(2) are:

1. continuity of f ,

2. Lipschitz condition which declares,

D (f (t, x) , f (t, y)) ≤ LD (x, y) , for some L > 0 .

Now, for y(t) to be a solution of fuzzy Cauchy problem, we need that y′ exists but also Eq.(2) must hold. To
check Eq.(2), first we have to compute f (t, y). α−levels of f (t, y) can be found as follows:

[f (t, y)]α = [f1 (t, α) , f2 (t, α)]

with

f1(t, α) = min {f (t, y) |y ∈ [y (t)]α}
f2(t, α) = max {f (t, y) |y ∈ [y (t)]α}

for t ∈ I , α ∈ [0, 1] .

We say that y is a solution to Eq.(2), if y′ exists and

y′1 (t, α) = f1 (t, α) , y1 (t0, α) = y1
0 (α) , (3)

y′2 (t, α) = f2 (t, α) , y2 (t0, α) = y2
0 (α) , (4)

where, y(t0, α) =
[
y1
0 (α) , y2

0 (α)
]

.

3 Numerical Method

In this section, we assume that the solutions of Eqs.(3)-(4) can be written as follows,

yi(t, α) = yi(t0, α) + eα
i t, i = 1, 2. (5)

here, eα
i , i = 1, 2 are scalar functions. Substituting (5) into Eqs.(3)-(4) and neglecting higher order terms, we

have the linear equation of eα = (eα
1 , eα

1 ) of the form,

Aeα = B, (6)
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where, A and B are constant matrices.
Solving Eq.(6), the coefficients of t in (5) can be determined. By repeating the mentioned procedure for

higher order terms, power series of the solutions of Eqs.(3)-(4), can be obtained in any arbitrary order.
In other words and more details, we define another type of power series for fi(t, α), i = 1, 2, of the form,

fi(t, α) = fα
i,0 + fα

i,1t + fα
i,2t

2 + · · ·+ (fα
i,n + pi,1e

α
1 + pi,2e

α
2 )tn, (7)

where, pi,j , i, j = 1, 2 are constants, eα
1 and eα

2 are basis of vector eα.

Let yα be a vector with two elements in (5), every element of yα can be represented by the power series
in (7),

yi(t, α) = yα
i,0 + yα

i,1t + yα
i,2t

2 + · · ·+ eα
i tn, i = 1, 2. (8)

Substituting (8) into Eq.(2) or equivalently Eqs.(3)-(4), we can get the following,

fα
i =

(
fα

i,n + pi,1e
α
1 + pi,2e

α
2

)
tn−1 + Q(tn), i = 1, 2. (9)

From (9) and Eq.(6), we can determine the linear equation in Eq.(6) as follows

Ai,j = pi,j , (10)

Bi = −fi,n. (11)

After solving this linear equation, eα
1 and eα

2 are at hand. By substituting eα
i into (8), we obtain yα

i (i = 1, 2)
which are polynomials of degree n. Repeating this procedure from (8) to (11), we can get the power series of
the solution in any arbitrary order for a fuzzy Cauchy problem in Eq.(2).

4 Numerical Examples

In this section, we solve two fuzzy Cauchy Problems in [3, 4, 5],and we compare the obtained results with the
results in them.

Example 4.1 Consider the fuzzy Cauchy problem [3, 4, 5],

y′(t, α) = −y(t, α) + t + 1,

y(0, α) = (0.96 + 0.04α, 1.01− 0.01α).

The exact Seikkala solution is ([5] Example 1, section 4)

Y1(t, α) = (t + (0.985 + 0.015α) exp(−t) + (−0.025 + 0.025α) exp(t)) ,

Y2(t, α) = (t + (0.985 + 0.015α) exp(−t) + (0.025− 0.025α) exp(t))

for 0 ≤ α ≤ 1.

We put y1(0, α) = 0.96+0.04α and y2(0, α) = 1.01− 0.01α. Hence, the following problems must be solved
(for more details see[5]),

y′1(t, α) = −y2(t, α) + t + 1,
y′2(t, α) = −y1(t, α) + t + 1,

(12)

with initial conditions, respectively
y1(0, α) = 0.96 + 0.04α,
y2(0, α) = 1.01− 0.01α.

From boundary condition, the solution of (12) can be supposed as

y1(t, α) = y1(0, α) + eα
1 t ⇒ y1(t, α) = 0.96 + 0.04α + eα

1 t,
y2(t, α) = y2(0, α) + eα

2 t ⇒ y2(t, α) = 1.01− 0.01α + eα
2 t.

(13)
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Substituting (13) into (12) and neglecting higher order terms, we have,

eα
1 − (−0.01 + 0.01α) + Q(t) = 0,
eα
2 − (0.04− 0.04α) + Q(t) = 0.

(14)

These formulas corresponding to (9). The linear equation which corresponds to (6) can be given in the
following, [

1 0
0 1

] [
eα
1

eα
2

]
=

[ −0.01 + 0.01α
0.04− 0.04α

]

where

A =
[

1 0
0 1

]
, B =

[ −0.01 + 0.01α
0.04− 0.04α

]
, eα =

[
eα
1

eα
2

]
.

Solving this equation, we get eα =
[ −0.01 + 0.01α

0.04− 0.04α

]
and

y1(t, α) = (0.96 + 0.04α) + (−0.01 + 0.01α)t,
y2(t, α) = (1.01− 0.01α) + (0.04− 0.04α)t. (15)

According to (15), the solution of (12) can be supposed as,

y1(t, α) = (0.96 + 0.04α) + (−0.01 + 0.01α)t + eα
1 t2,

y2(t, α) = (1.01− 0.01α) + (0.04− 0.04α)t + eα
2 t2.

(16)

In this manner, by substituting (16) into (12) and neglecting higher order terms, we have

(2eα
1 − 0.96− 0.04α)t + Q(t2) = 0,

(2eα
2 − 1.01 + 0.01α)t + Q(t2) = 0,

(17)

here,

A =
[

2 0
0 2

]
, B =

[
0.96 + 0.04α
1.01− 0.01α

]
, eα =

[
eα
1

eα
2

]
,

and (17) can be written in the matrix form
[

2 0
0 2

] [
eα
1

eα
2

]
=

[
0.96 + 0.04α
1.01− 0.01α

]
.

By solving the linear equation, we obtain

eα =
[

0.48 + 0.02α
0.505− 0.005α

]
.

Therefore,
y1(t, α) = (0.96 + 0.04α) + (−0.01 + 0.01α)t + (0.48 + 0.02α)t2,
y2(t, α) = (1.01− 0.01α) + (0.04− 0.04α)t + (0.505− 0.005α)t2. (18)

Repeating the above procedure, we have

y1(t, α) = (0.96 + 0.04α) + (−0.01 + 0.01α)t + (0.48 + 0.02α)t2

+ (−0.1683 + 0.0017α)t3 + (0.04 + 0.0017α)t4 + · · · ,

y2(t, α) = (1.01− 0.01α) + (0.04− 0.04α)t + (0.505− 0.005α)t2

+ (−0.16− 0.0067α)t3 + (0.0421− 0.0004α)t4 + · · · .

(19)

The Power series solutions of the given Eq.(12) are coinciding with the exact solutions. The results for t = 0.1
are illustrated in Tables 1-2 and Figure 1.



312 O.S. Fard: A Numerical Scheme for Fuzzy Cauchy Problems

Table 1: Comparison of results of the presented method and the method in [4] for t = 0.1.

α y1 (n = 5) y1 (in[4]) Y1 (real solution) Error

0 0.9636355825 0.9617093838 0.9636355838 0.13135289×10−8

0.1 0.9677557659 0.9660225287 0.9677557672 0.13191051×10−8

0.2 0.9718759493 0.9703356737 0.9718759506 0.13246816×10−8

0.3 0.9759961327 0.9746488186 0.9759961340 0.13302580×10−8

0.4 0.9801163161 0.9789619636 0.9801163175 0.13358345×10−8

0.5 0.9842364995 0.9832751085 0.9842365009 0.13414107×10−8

0.6 0.9883566830 0.9875882534 0.9883566843 0.13469871×10−8

0.7 0.9924768664 0.9919013984 0.9924768677 0.13525636×10−8

0.8 0.9965970498 0.9962145433 0.9965970511 0.13581401×10−8

0.9 1.0007172332 1.000527688 1.0007172346 0.13637164×10−8

1 1.0048374166 1.004840833 1.004837418 0.13692929×10−8

Table 2: Comparison of results of the presented method and the method in [4] for t = 0.1.

α y2 (n = 5) y2 (in[4]) Y2 (real solution) Error

0 1.0188941283 1.020827058 1.0188941297 0.13839780×10−8

0.1 1.0174884571 1.019228436 1.0174884585 0.13825094×10−8

0.2 1.0160827860 1.017629813 1.0160827873 0.13810410×10−8

0.3 1.0146771148 1.016031191 1.0146771162 0.13795722×10−8

0.4 1.0132714436 1.014432568 1.0132714450 0.13781038×10−8

0.5 1.0118657725 1.012833946 1.0118657738 0.13766352×10−8

0.6 1.0104601013 1.011235323 1.0104601027 0.13751666×10−8

0.7 1.0090544301 1.009636701 1.0090544315 0.13736982×10−8

0.8 1.0076487590 1.008038078 1.0076487603 0.13722298×10−8

0.9 1.0062430878 1.006439456 1.0062430892 0.13707612×10−8

1 1.0048374166 1.004840834 1.0048374180 0.13692929×10−8

Figure 1: The results of Example 4.1 .

Example 4.2 Consider the fuzzy Cauchy problem [3, 4, 5],

y′(t, α) = −y(t, α),

y(0, α) = (0.96 + 0.04α, 1.01− 0.01α).
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The exact Seikkala solution is ([5] Example 2, section 4)

Y1(t, α) = ((0.985 + 0.015α) exp(−t) + (−0.025 + 0.025α) exp(t)) ,

Y2(t, α) = ((0.985 + 0.015α) exp(−t) + (0.025− 0.025α) exp(t))

for 0 ≤ α ≤ 1.

If we apply the presented method to the given equation, the following solution is obtained,

y1(t, α) = 24
25 + 1

25 α +
(− 101

100 + 1
100 α

)
t +

(
12
25 + 1

50 α
)
t2 +

(− 101
600 + 1

600 α
)
t3

+
(

1
25 + 1

600 α
)
t4 +

(− 101
12000 + 1

12000 α
)
t5 + · · · ,

y2(t, α) = 101
100 − 1

100 α +
(− 24

25 − 1
25 α

)
t +

(
101
200 − 1

200 α
)
t2 +

(− 4
25 − 1

150 α
)
t3

+
(

101
2400 − 1

2400 α
)
t4 +

(− 1
125 − 1

3000 α
)
t5 + · · · .

The numerical results are illustrated in Tables 3-4 and Figure 2.

Table 3: Comparison of results of the presented method and the method in [4] for t = 0.1.

α y1 (n = 5) y1 (in[4]) Y1 (real solution) Error

0 0.8636355825 0.8612677593 0.8636355838 0.13135289×10−8

0.1 0.8677557659 0.8655594514 0.8677557672 0.13191052×10−8

0.2 0.8718759493 0.8698511436 0.8718759506 0.13246818×10−8

0.3 0.8759961327 0.8741428358 0.8759961340 0.13302580×10−8

0.4 0.8801163161 0.8784345279 0.8801163175 0.13358345×10−8

0.5 0.8842364995 0.8827262200 0.8842365009 0.13414108×10−8

0.6 0.8883566830 0.8870179122 0.8883566843 0.13469871×10−8

0.7 0.8924768664 0.8913096044 0.8924768677 0.13525636×10−8

0.8 0.8965970498 0.8956012965 0.8965970511 0.13581400×10−8

0.9 0.9007172332 0.8998929886 0.9007172346 0.13637164×10−8

1 0.9048374166 0.9041846808 0.9048374180 0.13692929×10−8

Table 4: Comparison of results of the presented method and the method in [4] for t = 0.1.

α y2 (n = 5) y2 (in[4]) Y2 (real solution) Error

0 0.9188941283 0.920407787 0.9188941297 0.13839779×10−8

0.1 0.9174884571 0.918816840 0.9174884585 0.13825094×10−8

0.2 0.9160827860 0.917225894 0.9160827873 0.13810409×10−8

0.3 0.9146771148 0.915634948 0.9146771162 0.13795724×10−8

0.4 0.9132714436 0.914044002 0.9132714450 0.13781039×10−8

0.5 0.9118657725 0.912453056 0.9118657738 0.13766354×10−8

0.6 0.9104601013 0.910862110 0.9104601027 0.13751668×10−8

0.7 0.9090544301 0.909271163 0.9090544315 0.13736984×10−8

0.8 0.9076487590 0.907680217 0.9076487603 0.13722298×10−8

0.9 0.9062430878 0.906089271 0.9062430892 0.13707615×10−8

1 0.9048374166 0.9044983225 0.9048374180 0.13692929×10−8
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Figure 2: The results of Example 4.2 .
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