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Abstract 

 
Density cluster methods have elevated computational complexity and are used in spatial analysis for the 

determination of impact areas. We propose the extended fuzzy c-means (EFCM) algorithm like alternative method 
because it has three advantages: robustness to noise and outliers, linear computational complexity and automatic 
determination of the optimal number of clusters. We implement the EFCM algorithm inside a geographic information 
systems (GIS) for the determination of buffer areas as hypersphere volume prototypes which are circles in the case of 
bidimensional pattern data. Indeed we have applied this algorithm in the spatial analysis of buffer areas called hotspots, 
including fire point-events of the Santa Fè district (NM), downloaded from http://www.fs.fed.us/r3/gis/sfe_gis.shtml.  

 © 2009 World Academic Press, UK. All rights reserved. 
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1 Introduction 
 
In spatial analysis a buffer area is an area at a specified distance around to features of a theme. This area is determined 
as a polygon by defining distance parameters that can be set as constants or variables, determined by feature attributes: 
for instance, circular buffer areas are obtained around a feature of the theme by using the radius of the circle as 
distance parameter. Buffer areas are calculated in many fields of the spatial analysis and they can determine 
dangerous bounded zones: for examples, areas around an epicenter of an earthquake, areas of industrial pollution, 
urban areas where the construction of buildings is forbidden from the local legislation. 

The buffering primitive operations in a geographical information system (GIS) concern points, lines and 
polygons. In spatial analysis, an area having dimensions of a continent can be considered, with a good approximation, 
as a plane and we apply the Euclidean geometry in the calculus of distances. For this reason the buffer area around a 
point on the map is formed by a circle (“circular polygon” in terms of analysis spatial) centered in that point. For 
instance, the epicentre of an earthquake or the location of a criminal event can be represented from a point. The radius 
of this circle is called the buffer distance which is assumed by the user either as a constant value for all the point data 
or as the value of a field in the point data table. Moreover the user has two options: to separate these circular buffer 
areas (cfr. Fig.1) or to merge some of them by obtaining new polygonal areas (cfr. Fig.2). 

When the number of event-points is elevated, the classical density methods are not suitable for the determination 
of impact areas because of high computational complexity. Then the usage of cluster algorithms seems more 
appropriate: it is well known that the clusters contain similar data and the degree of association is weak between data 
of different clusters. Clustering algorithms (e.g., [8, 9, 11, 12, 13, 14]) are useful for the determination of buffer areas, 
called hotspots in crime analysis, car crash analysis, disease diffusion analysis, etc. For instance, the National Institute 
of Justice at Washington DC (USA) has developed a statistical tool, CrimeSTAT [9], for the GIS analysis of crime 
incident locations. We refer to [6] for an exhaustive list of clustering techniques which determine hotspots.  

In order to determine the shape of each hotspot we have to use a density estimation method ([8, 13]), whereas the 
fuzzy c-means (FCM) algorithm [3] uses punctual cluster prototypes. However in many cases is not necessary to 
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determine the exact shape of an hotspot; besides the FCM method has a linear computational complexity O(N) with 
respect to the number N of input vector data while the density estimation clustering methods have a computational 
complexity approximately equal to O(N2). Indeed the FCM algorithm has been used by many authors for determining 
areas with high concentrations of crimes (e.g., [9, 10, 15, 16, 17]). 

 

 
 

Figure 1: Example of separated circular buffer areas 
 

 
 

Figure 2: Example of merged circular buffer areas 
 
The important parameters in a clustering algorithm are as follows: 1) the number of clusters is defined a priori in 

K-means [4] and FCM algorithms [3]; 2) the similarity (or the distance method) which reflects the nature of the 
dataset. In fact we adopt the distance that returns the best bidimensional geometrical shape of the clusters. In spatial 
analysis (e.g., [1, 2]) the Euclidean metric is used for small areas, such as in crime analysis [5] and incident analysis. 

In the extended fuzzy c-means (EFCM), presented in [11, 12], the shape of the clusters are hyperspheres. The 
advantages in the usage of the EFCM algorithm are essentially two: 1) the determination of the number of the clusters 
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is precise; 2) the shape of every cluster volume prototype on the geographic map is circular because the Euclidean 
distance is used and it can be considered as an hotspot.  

This paper is organized as follows: in Section 2, we describe the FCM and EFCM algorithms, respectively. In 
Section 3, we give an application of the EFCM algorithm in the specific problem of fire prevention of a forest area, 
located in New Mexico: indeed we construct buffer circular areas which represent dangerous areas of fire events. 
Section 5 gives our conclusions. 
 
2   The FCM and EFCM Algorithms: An Overview 
Let X={x1,...,xN}⊂Rn be the data set composed by N elements represented with the following matrix: 
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where xj = (x1j ,x2j,…,xnj)T is the j-th feature vector for j=1,…,N. In the FCM algorithm the minimization of the 
following objective function is achieved:  
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where m≥1 is the fuzzifier parameter, uij is the membership degree of xj to the i-th cluster, i=1,…,C. The set 
V={v1,…,vC}⊂Rn is the set of the centers of the C clusters, dij is the distance between the center vi =(v1i, v2i,…,vnj)T of 
the i-th cluster and the j-th feature vector xj, calculated as 

)v(x)v(x j
T

ij iij Sd −−= ,                                                                              (3) 

 
where S is a positive and symmetric norm matrix. By definition, we have the following constraints: 

{ Nj ,...,1 ,1u
C

1i
 ij ∈∀=∑

=

},         

}

                                                                    (4) 

{ Ci ,...,1 , N u
N

1j
ij ∈∀<∑

=

.                                                                              (5) 

It is not difficult to prove that the center of each volume prototype is obtained with the following: 
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for i=1,…,C and the membership degrees of belongness are given by 
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Precisely speaking, initially the uij and the centers of the clusters are assigned randomly, moreover the uij are updated 
in each iteration. The iterative process stops when 
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where ε >0 is a prefixed parameter and U(s) = ( ))(s
iju  is the matrix U of the membership degrees calculated at the s-th 

step. The algorithm FCM presents two shortcomings: 1) a priori the number C of prototypes must be defined or one 
calculates C as minimum or maximum of a suitable function [6]; 2) the cluster centers tend to locate in areas with 
high concentrations of features and the zones with low density data points could be relevant. Generally speaking, the 
distribution of the data is sensitive to the initialization phase.  
The EFCM algorithm was firstly proposed in [11, 12]. In general, the volume prototypes are hyperellissoids which 
become hyperspheres in case of Euclidean distance. If dij is the distance between the feacture vector xj and the volume 
prototype Vi and if ri is the radius of Vi, we say that xj belongs to Vi if iij rd ≤ . The covariance matrix Pi associated to 
the i-th cluster Vi is calculated as [11] 
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whose determinant gives the volume of the i-th cluster. Pi is symmetric and positive, hence it is decomposed in the 
form:  

T
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where Qi is an orthonormal matrix and Δi = (λij) is a diagonal matrix. Generally a value between the minimal and the 
maximum values of the diagonal matrix Λi can be used to estimate the radius ri. Indeed we have that [11]: 
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The parameter s is inserted in order to control the error introduced from the aggregation of the dimensions of λij. 
For , formula (11) gives the radius of the largest hypersphere included in the hyperellipsoid that constitutes 
the cluster volume and for , formula (11) gives the radius of the smallest hypersphere including such volume. 
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In EFCM algorithm, the objective function to be minimized is the following [11]: 
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The update equation for uij is given by 
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The terms ( ) 2'222 ,0max kjkkjkjkj drdwd =−=  is seen as a squared distance of xj from Vk. For each xj, we consider 

the value ϕj equal to the number of clusters for which  with k={1,…,C}; thus u0' =kjd ij is given by [11]: 
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The use of the formulas (15) produces the negative effect of diminishing the objective function when a 
meaningful number of features is placed in a cluster: this fact can prevent the separation of the clusters. In order to 
overcome this problem, the radius ri starts with a small value and then gradually is increased with the factor 

)()( ll Cβ , where C(l) is the number of clusters at the l-th iteration and β(l) is a parameter defined recursively as 

).1,min(,1 )1()1()()0( +== −− lll C βββ                                                                     (16) 
The determination of the number of clusters is achieved by adopting the following measure of inclusion of the i-

th cluster in the k-th one: 
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For symmetry, we use the following measure of cluster merging given by 
.),max( kiikik IIS =                                                                                           (18) 

The merging between the two clusters i and k is done when at the l-th iteration we have that  
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The EFCM algorithm determines two indexes i* and k* such that Si*k*≥ α(l) , then i* and k* are merged by setting  
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and by removing the k*-th row from the matrix U. Thus the EFCM algorithm can be summarized in the following 
procedure: 
1) The user assigns the initial number of clusters C(0), m>1, ε >0, the initial value  and β1)0(

max =S (0) =1. 

2) The membership degree  for j∈{1,…, N} and I={1,…,C)0(
iju (0)} are assigned randomly. 

3) The centers of the clusters vi are calculated by using formula (6). 
4) The radii of the clusters are calculated by using formula (12). 
5) The elements ui,j of the matrix U are calculated by using formula (15). 
6) The elements si,k of the similarity matrix S are calculated by using formula (18) and are determined i* and k* for 
which Si*,k* has the maximum value. 
7) If ε<− − )1(
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kiS (l) = 1/(M(l-1)–1), then the i*-th and the k*-th clusters are merged via (21). 

8) If ||U(s) – U(s-1)||<ε at the s-th iteration, then the process stops otherwise go to 3) for the (s+1)-th iteration. 
 
3    Tests with Hotspot Fire Events 
 
The authors of [6, 7]) have implemented the EFCM method in a GIS environment created with the tools 
ESRI/ARCGIS and ESRI/ARCVIEW.  

In [6] it is proved that the EFCM algorithm finds the optimal number C of clusters during the iteration process 
while the use of a validity index in a pre-processing phase of the FCM algorithm does not supply always optimal 
values of C (e.g., [18, 19]). 

 

 
 

Figure 3: “Fire History” Santa Fe National Forest and related point data 
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As reported in Section 1, a circle on the geographic map can represent a prototype volume obtained with the 
usage of the EFCM algorithm and it can be considered as a good approximation of an hotspot. Indeed the exact shape 
of the clusters could be determined by using the density based clustering method as in crime analysis (cfr., e.g., [5, 16, 
17]), but this method is more expensive than EFCM in terms of computational complexity. The patterns included in 
the i-th volume prototype have a membership value equal to 1 for the i-th cluster and 0 for the remaining clusters. 

One of the main problems in the use of the FCM algorithm is the determination of the optimal number of clusters 
C. In [6] the authors compared several results (cfr., also [8, 18, 19]) and they pointed out that the EFCM algorithm 
finds the exact number of clusters during the iteration process.  

Here we experiment the use of this algorithm on point-events considered as input data of the theme “Fire 
History” of USDA Santa Fe Service National Forest, downloaded from URL http://www.fs.fed.us/r3/gis/sfe_gis.shtml. 
The “Fire History” data (points) represent the locations at which the fires began in the last three years. The latitude 
and longitude of each point (location) were considered as X, Y coordinates. The data-test is made about 5000 features 
distributed in the geographic area of New Mexico, mainly covered by the counties of Los Alamos, Sandoval, San 
Miguel, Mora, Rio Arriba and Santa Fe. The “Fire History” data are shown on the map of Fig.3, where are displayed 
also the stream routes, the water bodies, the base vegetation location and the surveyed forest areas in New Mexico. 

Our aim is to use the EFCM algorithm in the determination of circular areas with high fire frequencies 
considered as dangerous buffer areas.  

In Fig.4 we show the “Fire History” data (points), the Santa Fe National Forest visitor map revised in 2005, the 
roads, the trial routes and the recreation opportunity areas. We are interested to analyze fire dangerous buffer areas: 
indeed we study, for instance, their impact with the recreation opportunity areas.  

We have tested the use of the EFCM algorithm varying the initial number of clusters as shown in Table 1.  
 

 
 

Figure 4: Santa FE Visitor Map, roads, trial routes and recreation opportunity areas 
 

Table 1: Number of clusters and corresponding number of features 
Initial number of clusters Final number of clusters Difference ||U(s) – U(s-1) || 

130 38 0.69 × 10-4

120 38 0.71 × 10-4

110 38 0.67 × 10-4

100 38 0.85 × 10-4

90 38 0.53 × 10-4

80 38 0.49 × 10-4

70 38 0.66 × 10-4

60 38 0.88 × 10-4

50 38 0.72 × 10-4
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The results in Table 1 prove that the EFCM algorithm is quite stable; indeed, the final number of clusters is 
always 38. The circular volume prototypes are geographically situated on the map given in Fig.5. 

In Fig.6 we show the intersection of the recreation opportunity areas with the cluster prototypes used as circular 
buffer areas. So we can consider the intersection of an opportunity area with a cluster prototype as a recreation zone 
with high fire hazard.  

 

 
 

Figure 5: Cluster volume prototypes for the “Fire History” data (points) 
 

 
 

Figure 6: Fire dangerous recreation opportunity areas included in cluster prototypes 
 
In Fig.7 we show the intersection of the base vegetation sites with the cluster prototypes and we obtain the areas 

(evidenced in red) considered as base vegetation zones with high fire hazard.  
Sometimes the extension of the high fire hazard zones is augmented for safety reasons. Indeed we show the 

intersection of the base vegetation sites with circular buffer areas having radius of km. 2 more longer than the radius 
of the cluster prototypes in Fig.8.  
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Figure 7: Base vegetation areas included in cluster prototypes 
 

 
                                 

Figure 8: Base vegetation sites inside circular buffer areas having a radius of km. 2 
more longer than the radius of the clusters 

 
4   Conclusions 
 
In spatial analysis usually impact areas are determined by using density clustering algorithms which have an elevated 
computational complexity. Here we propose the EFCM algorithm because it has the following advantages: robustness 
to noise and outliers, linear computational complexity and automatic determination of the optimal number of clusters. 
We derive dynamic buffer areas as hypersphere volume prototypes which become circles in the case of bidimensional 
pattern data, like in the case of point-events in a GIS. Indeed we have implemented the EFCM algorithm in a GIS 
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created with the usage of ESRI/ARCGIS and ESRI/ARCVIEW software tools and we have determined hotspots of 
fire events in the Santa Fè district (NM). All the data were downloaded from URL www.fs.fed.us/r3/gis/sfe_gis.shtml. 

The above experiments have pointed out that we can use the EFCM algorithm in spatial analysis for the 
determination of circular buffer areas. These areas can be considered on the geographic map as a good approximation 
of classical hotspots. Applications to other frameworks like crime analysis, industrial pollution, etc. shall be tried in 
future works. 
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