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Abstract

Optimal control is a very important field of study not only in theory but in applications, and stochastic
optimal control is also a significant branch of research in theory and applications. Based on the concept
of fuzzy process, a fuzzy optimal control problem presented. Applying Bellman’s Principle of Optimality,
the principle of optimality for fuzzy optimal control is derived, and then a fundamental result called the
equation of optimality is given in fuzzy optimal control. Finally, as an application, by using the equation
of optimality, a portfolio selection model is solved.
c©2009 World Academic Press, UK. All rights reserved.
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1 Introduction

Since 1950’s, optimal control theory has been an important branch of modern control theory. The study
of optimal control greatly attracted the attention of many mathematician because of the necessity of strict
expression form in optimal control theory. With the more use of methods and results on mathematics and
computer science, optimal control theory has greatly achieved development, and been applied to many fields
such as production engineering, programming, economy and management.

The study of stochastic optimal control initiated in 1970’s such as in Merton [6] for finance. Some investi-
gations on optimal control of Brownian motion or stochastic differential equations and applications in finance
may be found in some books such as Fleming and Rishel [3], Harrison [4] and Karatzas [5]. One of the main
methods to study optimal control is based on dynamic programming. The use of dynamic programming in
optimization over Ito’s process was discussed in Dixit and Pindyck [1].

The complexity of the world makes the events we face uncertain in various forms. Besides randomness,
fuzziness is also an important uncertainty, which plays an essential role in the real world. Fuzzy set theory
has been developed very fast since it was introduced by scientist on cybernetics Zadeh [16] in 1965. A fuzzy
set was characterized with its membership function by Zadeh. For the purpose of measuring fuzzy events,
Zadeh [17] presented the concept of possibility measure and the term of fuzzy variable in 1978. In order to
give a self-dual measure for fuzzy events, Liu and Liu [11] introduced the concept of credibility measure in
2002. Based on credibility measure, credibility theory was founded by Liu [8] in 2004 and refined by Liu [9]
as a branch of mathematics for dealing with the behavior of fuzzy phenomena. A fuzzy variable may be
redefined as a function from a credibility space to the set of real numbers. As fuzzy counterpart of stochastic
process and Brownian motion, fuzzy process and C process were introduced by Liu [10] recently. We may call
C process to be Liu process.

In order to handle an optimal control problem with fuzzy process, in the paper we will introduce and
deal with a fuzzy optimal control problem by using dynamic programming. In next section, we will review
some concepts such as credibility space, expected value of fuzzy variable, fuzzy process, Liu process, and fuzzy
differential equation. In Section 3, we will introduce a fuzzy optimal control problem, and present the principle
of optimality for fuzzy optimal control based on Bellman’s principle of optimality in dynamic programming.
In Section 4, we will obtain a fundamental result called the equation of optimality in fuzzy optimal control.
In the last section, we will solve a portfolio selection model by using the equation of optimality.
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2 Preliminary

In convenience, we give some useful concepts at first. Let Θ be a nonempty set, and P the power set of Θ
(i.e., all subsets of Θ).

Definition 2.1 (Liu and Liu [11]) A set function Cr defined on the power set P is called a credibility
measure if it satisfies the following four axioms:

Axiom 1. Cr{Θ} = 1;

Axiom 2. Cr{A} ≤ Cr{B} whenever A ⊂ B;

Axiom 3. Cr{A}+ Cr{Ac} = 1 for any A ∈ P, where Ac is the complementary set of A;

Axiom 4. Cr{∪iAi} = supi{Cr{Ai} for any {Ai} with supi Cr{Ai} < 0.5.

Definition 2.2 Let Θ be a nonempty set, P the power set of Θ and Cr a credibility measure. Then the triplet
(Θ,P,Cr) is said to be a credibility space.

A fuzzy variable is defined as a function from a credibility space to the set of real numbers. If ξ is a fuzzy
variable, then we may get its membership function via

µ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ R.

Conversely, if a fuzzy variable ξ is given by a membership function µ, then we may get the credibility value
via

Cr{ξ ∈ B} =
1
2

(
sup
x∈B

µ(x) + 1− sup
x∈Bc

µ(x)
)

, B ⊂ R.

Membership function represents the degree of possibility that the fuzzy variable ξ takes some prescribed value.

Definition 2.3 (Liu and Liu [11]) Let ξ be a fuzzy variable. Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr (1)

provided that at least one of the two integrals is finite.

Definition 2.4 (Liu and Liu [11]) Let ξ be a fuzzy variable with finite expected value e. Then the variance
of ξ is defined by V [ξ] = E[(ξ − e)2].

Definition 2.5 (Liu [8]) The fuzzy variables ξ and η are said to be identically distributed if Cr{ξ ∈ B} =
Cr{η ∈ B} for any set B ⊂ R.

Definition 2.6 (Liu [8], Liu and Gao [13]) The fuzzy variables ξ1, ξ2, · · · , ξm are said to be independent
if

Cr

{
m⋂

i=1

{ξi ∈ Bi}
}

= min
1≤i≤m

Cr{ξi ∈ Bi}

for any sets B1, B2, · · · , Bm of R.

Theorem 2.1 (Liu and Liu [12]) Let ξ and η be independent fuzzy variables with finite expected values.
Then for any numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

Based on the credibility space, Liu introduced the concepts of fuzzy process, Liu process, fuzzy differential
equation, and etc.

Definition 2.7 (Liu [10]) Let T be an index set and let (Θ,P,Cr) be a credibility space. A fuzzy process is
a function from T × (Θ,P,Cr) to the set of real numbers.
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Definition 2.8 (Liu [10]) A fuzzy process, simply denoted by Xt, is said to have independent increments if
Xt1 −Xt0 , Xt2 −Xt1 , · · · , Xtk

−Xtk−1 are independent fuzzy variables for any times t0 < t1 < · · · < tk. A
fuzzy process Xt is said to have stationary increments if, for any given t > 0, the increments Xs+t −Xs are
identically distributed fuzzy variables for all s > 0.

Definition 2.9 (Liu [10]) A fuzzy process Ct is said to be Liu process if
(i) C0 = 0,
(ii) Ct has stationary and independent increments,
(iii) every increment Cs+t − Cs is a normally distributed fuzzy variable with expected value et and variance
σ2t2, whose membership function is

µ(x) = 2
(

1 + exp
(

π|x− et|√
6σt

))−1

, x ∈ R. (2)

The parameters e and σ are called the drift and diffusion coefficients, respectively. The Liu process is said
to be standard if e = 0 and σ = 1. The Liu process plays the role of Brownian motion or Wiener process.

Based on Liu process, a new kind of fuzzy differential was introduced by Liu [10]. As the inverse of fuzzy
differential, a kind of integral, called Liu integral, was also introduced by Liu [10]. Liu integral is different from
the fuzzy integral based on fuzzy measure given by Sugeno [15]. The following concept of fuzzy differential
equation is important in theory and applications, and essential in the study of this paper.

Definition 2.10 (Liu [10]) Suppose Ct is a standard Liu process, and g1 and g2 are some given functions.
Then

dXt = g1(Xt, t)dt + g2(Xt, t)dCt (3)

is called a fuzzy differential equation. A solution is a fuzzy process Xt that satisfies (3) identically in t.

Based on the concept of fuzzy differential equation, Liu [10] established a stock model for fuzzy financial
market as a fuzzy counterpart of Black-Scholes stock model. Qin and Li [14] formulated an European option
pricing formula for fuzzy financial market.

3 Problem of Fuzzy Optimal Control

Fuzzy optimal control problem is to choose the best decision such that some objective function related to a
fuzzy process provided by a fuzzy differential equation is optimized. Because the objective function is a fuzzy
variable for any decision, we can not optimize it as a real function. A question is how to compare two different
fuzzy variables, or how to decide which is larger of them. In fact, there are many methods to do so but there
is no single best method. These methods are established due to some criteria including, for example, expected
value, optimistic value, pessimistic value, and credibility [7]. Now we make use of the expected value-based
method to optimize the fuzzy objective function. That is, we assume that a fuzzy variable is larger than the
other if the expected value of it is larger than the expected value of the other.

Unless stated otherwise, we assume that Ct is a standard Liu process. We consider the following fuzzy
expected value optimal control problem




J(0, x0) ≡ sup
D

E

[∫ T

0

f(Xs, D, s)ds + G(XT , T )

]

subject to
dXs = ν(Xs, D, s)ds + σ(Xs, D, s)dCs and X0 = x0.

(4)

(5)

In the above problem, Xs is the state variable, D the decision variable (represents the function D(t,Xt)
of time t and state Xt), f the objective function, and G the function of terminal reward. For a given D, dXs

is defined by the fuzzy differential equation (5), where ν and σ are two functions of Xs, D and time s. The
function J(0, x0) is the expected optimal reward obtainable in [0, T ] with the initial condition that at time 0
we are in state x0.
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For any 0 < t < T , J(t, x) is the expected optimal reward obtainable in [t, T ] with the condition that at
time t we are in state Xt = x. That is, we have





J(t, x) ≡ sup
D

E
[∫ T

t
f(Xs, D, s)ds + G(XT , T )

]

subject to
dXs = ν(Xs, D, s)ds + σ(Xs, D, s)dCs and Xt = x.

(6)

Now we present the following principle of optimality for fuzzy optimal control.

Theorem 3.1 (Principle of optimality) For any (t, x) ∈ [0, T )×R, and ∆t > 0 with t+∆t < T , we have

J(t, x) = sup
D

E

[∫ t+∆t

t

f(Xs, D, s)ds + J(t + ∆t, x + ∆Xt)

]
, (7)

where x + ∆Xt = Xt+∆t.

Proof: We denote the right side of (7) by J̃(t, x). It follows from the definition of J(t, x) that

J(t, x) ≥ E

[∫ t+∆t

t

f(Xs, D|[t,t+∆t), s)ds +
∫ T

t+∆t

f(Xs, D|[t+∆t,T ], s)ds + G(XT , T )

]
(8)

for any D, where D|[t,t+∆t) and D|[t+∆t,T ] are the values of decision variable D restricted on [t, t + ∆t)
and [t + ∆t, T ], respectively. Since the fuzzy processes dCs (s ∈ [t, t + ∆t)) and dCs (s ∈ [t + ∆t, T ]) are
independent, we know that

∫ t+∆t

t

f(Xs, D|[t,t+∆t), s)ds and
∫ T

t+∆t

f(Xs, D|[t+∆t,T ], s)ds

are independent. Thus

J(t, x) ≥ E

[∫ t+∆t

t

f(Xs, D|[t,t+∆t), s)ds + E

[∫ T

t+∆t

f(Xs, D|[t+∆t,T ], s)ds + G(XT , T )

]]
(9)

by Theorem 2.1. Taking the supremum with respect to D|[t+∆t,T ] first, and then D|[t,t+∆t) in (9), we get
J(t, x) ≥ J̃(t, x).

On the other hand, for all D, we have

E

[∫ T

t

f(Xs, D, s)ds + G(XT , T )

]

= E

{∫ t+∆t

t

f(Xs, D, s)ds + E

[∫ T

t+∆t

f(Xs, D|[t+∆t,T ], s)ds + G(XT , T )

]}

≤ E

[∫ t+∆t

t

f(Xs, D, s)ds + J(t + ∆t, x + ∆Xt)

]

≤ J̃(t, x).

Hence, J(t, x) ≤ J̃(t, x), and then J(t, x) = J̃(t, x). The theorem is proved.

4 Equation of Optimality

Also, we assume Ct is a standard Liu process. Consider the fuzzy optimal control problem (6). Now let us
give a fundamental result called equation of optimality in fuzzy optimal control.
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Theorem 4.1 (Equation of optimality) Let J(t, x) be twice differentiable on [0, T ]×R. Then we have

−Jt(t, x) = sup
D
{f(x,D, t) + Jx(t, x)ν(x,D, t)} . (10)

Proof: For any ∆t > 0, we have
∫ t+∆t

t

f(Xs, D, s)ds = f(x,D(t, x), t)∆t + o(∆t) (11)

By using Taylor series expansion, we get

J(t + ∆t, x + ∆Xt) = J(t, x) + Jt(t, x)∆t + Jx(t, x)∆Xt +
1
2
Jtt(t, x)∆t2

+
1
2
Jxx(t, x)∆Xt

2 + Jtx(t, x)∆t∆Xt + o(∆t) (12)

Substituting Equations (11) and (12) into Equation (7) yields

0 = sup
D
{f(x,D, t)∆t + Jt(t, x)∆t + E[Jx(t, x)∆Xt +

1
2
Jtt(t, x)∆t2

+
1
2
Jxx(t, x)∆Xt

2 + Jtx(t, x)∆t∆Xt] + o(∆t)} (13)

Let ξ be a fuzzy variable such that ∆Xt = ξ + ν(x,D, t)∆t. It follows from (13) that

0 = sup
D
{f(x,D, t)∆t + Jt(t, x)∆t + Jx(t, x)ν(x,D, t)∆t + E[(Jx(t, x)

+Jxx(t, x)ν(x,D, t)∆t + Jtx(t, x)∆t)ξ +
1
2
Jxx(t, x)ξ2] + o(∆t)}

= sup
D
{f(x,D, t)∆t + Jt(t, x)∆t + Jx(t, x)ν(x,D, t)∆t + E[aξ + bξ2] + o(∆t)}, (14)

where a ≡ Jx(t, x)+Jxx(t, x)ν(x,D, t)∆t+Jtx(t, x)∆t, and b ≡ 1
2Jxx(t, x). It follows from the fuzzy differential

equation, the constraint in (6), that ξ = ∆Xt − ν(x,D, t)∆t is a normally distributed fuzzy variable with
expected value 0 and variance σ2(x,D, t)∆t2. Simply denote σ = σ(x,D, t) in sequel. Let

x0 =
|a|
2|b| , z =

πx√
6σ∆t

, z0 =
π|a|

2
√

6|b|σ∆t
.

Formula (20) in the Appendix implies that

E[aξ + bξ2] =
∫ +∞

0

(a + 2bx)
(

1 + exp
(

πx√
6σ∆t

))−1

dx−
∫ x0

0

(a− 2bx)
(

1 + exp
(

πx√
6σ∆t

))−1

dx

=
√

6aσ∆t

π

∫ +∞

z0

1
1 + ez

dz +
12bσ2∆t2

π2

∫ z0

0

z

1 + ez
dz +

12bσ2∆t2

π2

∫ +∞

0

z

1 + ez
dz

= o(∆t).

Formula (21) in the Appendix implies that

E[aξ + bξ2] =
∫ x0

0

(a + 2bx)
(

1 + exp
(

πx√
6σ∆t

))−1

dx−
∫ +∞

0

(a− 2bx)
(

1 + exp
(

πx√
6σ∆t

))−1

dx

= −
√

6aσ∆t

π

∫ +∞

z0

1
1 + ez

dz +
12bσ2∆t2

π2

∫ z0

0

z

1 + ez
dz +

12bσ2∆t2

π2

∫ +∞

0

z

1 + ez
dz

= o(∆t).
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Hence

E[aξ + bξ2] = ±
√

6aσ∆t

π

∫ +∞

z0

1
1 + ez

dz +
12bσ2∆t2

π2

∫ z0

0

z

1 + ez
dz +

12bσ2∆t2

π2

∫ +∞

0

z

1 + ez
dz

= o(∆t). (15)

Substituting Equation (15) into Equation (14) yields

−Jt(t, x)∆t = sup
D
{f(x,D, t)∆t + Jx(t, x)ν(x,D, t)∆t + o(∆t)} . (16)

Dividing Equation (16) by ∆t, and letting ∆t → 0, we can obtain the result (10).

Remark 4.1 The equation of optimality in fuzzy optimal control gives a necessary condition for an extremum.
If the equation has solutions, then the optimal decision and optimal expected value of objective function are
determined. If function f is convex in its arguments, then the equation will produce a minimum, and if f
is concave in its arguments, then it will produce a maximum. We note that the boundary condition for the
equation is J(T, XT ) = G(XT , T ).

Remark 4.2 We note that in the equation of optimality for stochastic optimal control (called Hamilton-
Jacobi-Bellman equation), there is an extra term 1

2Jxx(t, x)σ2(x,D, t).

Example 4.1 Consider the following fuzzy optimization problem:




J(t, x) ≡ min
D

E
[∫ T

0
e−βs(aX2

s + bXsD + cD2)ds
]

subject to
dXs = (νD + αXs)ds + σXsdCs,

where a > 0, c > 0, σ > 0, b2 − 4ac ≤ 0, ν 6= 0, α ∈ R, β is a discount factor, T is the terminal time.
We see that f(Xs, D, s) = e−βs(aX2

s + bXsD + cD2). It follows from Equation (10) that

−Jt = min
D
{e−βt(ax2 + bxD + cD2) + Jx(νD + αx)} = min

D
L(D), (17)

where L(D) denotes the term in the braces. The optimal decision D satisfies

dL(D)
dD

= bxe−βt + 2cDe−βt + Jxν = 0 or D = −Jxeβtν + bx

2c
.

Equation (17) becomes

−Jt = e−βt

[
ax2 + bx

(
−Jxeβtν + bx

2c

)
+ c

(
Jxeβtν + bx

2c

)2
]

+ Jx

(
−Jxeβtν2 + bνx

2c
+ αx

)
.

That is

−Jte
βt =

(
a− b2

4c

)
x2 − J2

xe2βtν2

4c
+

(
α− bν

2c

)
xJxeβt. (18)

We conjecture that J(t, x) = kx2e−βt. Thus, we have

Jt = −βkx2e−βt, Jx = 2kxe−βt.

Substituting them into Equation (18) yields

βkx2 =
(

a− b2

4c

)
x2 − ν2

4c
(2kx)2 − bν

2c
(2kx2) + α(2kx2),

or
ν2

c
k2 +

(
β − 2α +

bν

c

)
k +

(
b2

4c
− a

)
= 0.
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The solution of the parameter k (selecting k such that J(t, x) ≥ 0) is

k =
(2cα− cβ − bν) +

√
(2cα− cβ − bν)2 + ν2(4ac− b2)

2ν2
.

Hence, the optimal decision and the optimal value of the objective function are given as follows, respectively

D = − (2kν + b)x
2c

, J(t, x) = kx2e−βt.

5 A Portfolio Selection Model

Portfolio selection problem is a classical problem in financial economics of allocating personal wealth among
consumption, investment in a single risk asset, and investment in a risk-free security. Under the assumption
that the risk asset earns a random return, Merton [6] studied a portfolio selection model by stochastic optimal
control, and Kao [2] considered a generalized Merton’s model. If we assume that the risk asset earns a fuzzy
return, this generalized Merton’s model may be solved by fuzzy optimal control.

Let Xt be the wealth of an investor at time t. The investor allocates a fraction w of the wealth in a risk
asset and remainder in a sure asset. The sure asset produces a rate of return b. The risk asset is assumed to
earn a fuzzy return, and yields a mean rate of return ν along with a variance of σ2 per unit time. That is to
say, the risk asset earns a return drt in time interval (t, t + dt), where drt = νdt + σdCt, and Ct is a standard
Liu process. Thus

Xt+dt = Xt + b(1− w)Xtdt + drt(wXt)
= Xt + b(1− w)Xtdt + (νdt + σdCt)(wXt)
= Xt + [νw + b(1− w)]Xtdt + σwXtdCt.

If we consider the consumption rate by an amount p, we obtain

dXt = [νwXt + b(1− w)Xt − p]dt + σwXtdCt.

Assume that investor is interested in maximizing the expected utility over an infinite time horizon. Then a
portfolio selection model is provided by





J(t, x) ≡ max
p,w

E

[∫ ∞

0

e−βt pλ + [(ν − σ2)wXt]λ

λ
dt

]

subject to
dXt = [νwXt + b(1− w)Xt − p]dt + σwXtdCt,

where β > 0, 0 < λ < 1. By the equation of optimality (10), we have that

−Jt = max
p,w

{
e−βt pλ + [(ν − σ2)xw]λ

λ
+ (ν − b)xwJx + bxJx − pJx

}
= max

p,w
L(p, w),

where L(p, w) represents the term in the braces. The optimal (p, w) satisfies

∂L(p, w)
∂p

= e−βtpλ−1 − Jx = 0,

∂L(p, w)
∂w

= e−βt[(ν − σ2)xw]λ−1[(ν − σ2)x] + Jx(ν − b)x = 0,

or

p = (Jxeβt)
1

λ−1 , w =
[
(b− ν)Jxeβt

ν − σ2

] 1
λ−1 1

(ν − σ2)x
.

Hence

−Jt =
1
λ

e−βt

{
(Jxeβt)

λ
λ−1 +

[
(b− ν)Jxeβt

ν − σ2

] λ
λ−1

}
+

ν − b

ν − σ2
Jx

[
(b− ν)Jxeβt

ν − σ2

] 1
λ−1

+bxJx − Jx(Jxeβt)
1

λ−1 ,
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or

−Jte
βt =

(
1
λ
− 1

) [
1 +

(
b− ν

ν − σ2

) λ
λ−1

]
(Jxeβt)

λ
λ−1 + bxJxeβt. (19)

We conjecture that J(t, x) = kxλe−βt. Then

Jt = −kβxλe−βt, Jx = kλxλ−1e−βt.

Substituting them into Equation (19) yields

kβxλ =
(

1
λ
− 1

) [
1 +

(
b− ν

ν − σ2

) λ
λ−1

]
(kλ)

λ
λ−1 xλ + kbλxλ,

or

(kλ)
1

λ−1 =
β − bλ

(1− λ)
[
1 +

(
b−ν

ν−σ2

) λ
λ−1

] .

So we get

kλ =





β − bλ

(1− λ)
[
1 +

(
b−ν

ν−σ2

) λ
λ−1

]





λ−1

.

Therefore the optimal consumption rate and the optimal fraction of investment on risk asset is determined,
respectively, by

p = x(kλ)
1

λ−1 , w =
(

b− ν

ν − σ2

) 1
λ−1 (kλ)

1
λ−1

ν − σ2
.

Remark 5.1 Note that the optimal consumption rate calls for the investor to consume a constant fraction
of wealth at each moment, and optimal fraction of investment on risk asset is independent of total wealth.
These conclusions are similar to that in the case of randomness [2].

Appendix

Let us give a formula for computing the expected value of aξ + bξ2 if ξ is a fuzzy variable.

Theorem 5.1 Let ξ be a fuzzy variable with an even and integrable membership function µ(x) which is
decreasing on [0,+∞) and µ(0) = 1. Then

E[aξ + bξ2] =
1
2

∫ +∞

0

µ(x)(a + 2bx)dx− 1
2

∫ x0

0

µ(x)(a− 2bx)dx (20)

if a ≥ 0, b > 0, or a ≤ 0, b < 0; and

E[aξ + bξ2] =
1
2

∫ x0

0

µ(x)(a + 2bx)dx− 1
2

∫ +∞

0

µ(x)(a− 2bx)dx (21)

if a ≥ 0, b < 0, or a ≤ 0, b > 0, where x0 = |a|/(2|b|).

Proof: (1) If b > 0, then aξ + bξ2 ≥ −a2

4b ≡ y0. For any y ≥ y0, let

x1 =
−a +

√
a2 + 4by

2b
, x2 =

−a−
√

a2 + 4by

2b
.

Then
{aξ + bξ2 = y} = {ξ = x1} ∪ {ξ = x2}.
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Thus, the membership function of fuzzy variable aξ + bξ2 is that if y < y0, µaξ+bξ2(y) = 0, if y ≥ y0,

µaξ+bξ2(y) = 2Cr{aξ + bξ2 = y} ∧ 1

= 2(Cr{ξ = x1} ∨ Cr{ξ = x2}) ∧ 1

= (2Cr{ξ = x1} ∧ 1) ∨ (2Cr{ξ = x2} ∧ 1)

= µ(x1) ∨ µ(x2).

If a ≥ 0, then µ(x2) ≤ µ(x1). So, µaξ+bξ2(y) = µ(x1) for y ≥ y0. Thus

E[aξ + bξ2] =
∫ +∞

0

Cr{aξ + bξ2 ≥ y}dy −
∫ 0

y0

Cr{aξ + bξ2 ≤ y}dy

=
∫ +∞

0

1
2
µ(x1)dy −

∫ 0

y0

1
2
µ(x1)dy (let x1 = x, then ax + bx2 = y)

=
1
2

∫ +∞

0

µ(x)(a + 2bx)dx− 1
2

∫ 0

−x0

µ(x)(a + 2bx)dx

=
1
2

∫ +∞

0

µ(x)(a + 2bx)dx− 1
2

∫ x0

0

µ(x)(a− 2bx)dx.

where x0 = a/(2b). We obtain the formula (20). If a ≤ 0, then µ(x2) ≥ µ(x1). So, µaξ+bξ2(y) = µ(x2) for
y ≥ y0. Thus

E[aξ + bξ2] =
∫ +∞

0

Cr{aξ + bξ2 ≥ y}dy −
∫ 0

y0

Cr{aξ + bξ2 ≤ y}dy

=
∫ +∞

0

1
2
µ(x2)dy −

∫ 0

y0

1
2
µ(x2)dy (let x2 = x, then ax + bx2 = y)

=
1
2

∫ −∞

0

µ(x)(a + 2bx)dx− 1
2

∫ 0

x0

µ(x)(a + 2bx)dx

=
1
2

∫ x0

0

µ(x)(a + 2bx)dx− 1
2

∫ +∞

0

µ(x)(a− 2bx)dx

where x0 = −a/(2b). The formula (21) is proved.
(2) If b < 0, then aξ + bξ2 ≤ −a2

4b . The formula (20) and (21) can be proved same as in (1).

Remark 5.2 When b = 0, define x0 = +∞. Letting a = 1, the formula (20) or (21) reduces to the formula
of computing the expected value E[ξ] provided by Definition 2.3. If a = 0, the formula (20) or (21) reduces
to the formula of computing the expected value E[bξ2] as

E[bξ2] = b

∫ +∞

0

xµ(x)dx.

6 Conclusion

Based on the concept of Liu process, we studied a fuzzy optimal control problem: optimizing the expected
value of an objective function subject to a fuzzy differential equation. By using the Bellman’s Principle of
Optimality in dynamic programming, we presented the principle of optimality and a fundamental result called
equation of optimality for fuzzy optimal control. As an application of the equation of optimality, we solved a
portfolio selection model.
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