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Abstract

This paper analyzes a multicriteria matrix goal game under entropy environment. Here a new game
model known as multicriteria entropy matrix goal Game is formulated. Multiobjective non-linear pro-
gramming model for each player is established. The concept of Pareto-optimal security strategy assures
the property of security in the individual criteria against an opponent’s deviation in strategy; however
the idea is based on expected values, so that this security might be violated by mixed strategy when
replications are not allowed. To avoid this inconvenience, we propose the G-goal security strategy, which
includes as a part of solution with the probability of obtaining presanctified values of the payoff functions
when the players are want to maximize the information about their strategies. A numerical example is
included to illustrate the results in the paper.
c©2009 World Academic Press, UK. All rights reserved.
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1 Introduction

Nowadays more attention has been paid to multicriteria matrix game because it gives better realistic appli-
cation of game theory. In fact, each competitive situation that can be modeled as a scaler zero-sum game
has its counterpart as a multicriteria zero-sum game when more than one scenario has to be compared simul-
taneously. In this situation, once the same strategy has to be used in different scenarios, conflicting interest
appear between different decision markers as well as within each individual. For instance, the production
policies of two firms which are competing for a market can be seen as a scalar game. However, when they
compete simultaneously in several markets, the multicriteria approach is to be adopted.

Again each player is interested in making moves which will be as surprising and as uncertain to the other
player as possible. For this reason, the two players are involved in maximizing their entropies. Consequently,
in the mathematical models of multicriteria game we introduce entropy function as one of their objectives.

In this paper, some references are presented including their work. Fernandez, Puerto and Monroy [9]
considered to solve the two-person multicriteria zero-sum games. As they have considered a multicriteria
game, the solution concept was based on Pareto optimality and finally they obtained the Pareto efficient
solution for their proposed games. Fernandez and Puerto [8] developed a methodology to get the whole set
of Pareto-optimal security strategies which are based on solving a multiple criteria linear program. This
approach shows the parallelism between these strategies in multicriteria games and minimax strategies in
scalar zero-sum matrix games. This notion of security is based on expected payoffs. For this reason, only
when the game has been played many times, can these strategies provide us a real sense of security. On
the contrary, if the game has been played only once; as in one shot games, a better analysis should consider
not only the payoffs but also the probability to get them. Ghose and Prasad [11] have proposed a solution
concept based on Pareto-optimal security strategies for these games. They also introduced the concept based
on the similarity with security levels determined by the saddle points in scalar matrix games. This concept
is independent of the notion of equilibrium so that the opponent is only taken into account to establish the
security levels for one’s own payoffs. When it is used to select strategies, the concept of security levels has
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important property that the payoff obtained by these strategies cannot be diminished by the opponent’s
deviation in strategy. Roy [17] presented the study of two different solution procedures for the two-person
bimatrix game. The first solution procedure was applied to the game on getting the probability to achieve
some specified goals along the player’s strategy. The second specified goals along with the player’s strategy
by defining the fuzzy membership function defined on the pay-off matrix of the bimatrix game. Das and Roy
[2] proposed a new solution concept by considering the entropy function to the objectives of the player. These
models are known as entropy optimization models on two-person zero-sum game. Solution concept is based
on the Kuhn-Tucker conditions, maximum entropy principle, and minimum cross-entropy principle. Without
considering the pay-offs of the players, we have shown that the optimal strategy and the value of the game for
each player are equivalent to the results of classical game theory. Das and Roy [3] proposed a new solution
concept by considering the entropy function into the objectives of the players to the matrix goal game and
then formulated some models known as entropy matrix goal game model. Basically, the paper develops on
G-goal security strategy (GGSS) and obtains the probability of getting at least goal value of the players.

Several methodologies have been proposed to solve multicriteria game. Most of these methods are based
on the concept of Pareto-optimal security strategies and equilibrium solution for linear models. However,
no studies have been made on multicriteria entropy matrix goal game and the corresponding G-goal security
strategy (GGSS). Genetic algorithm and fuzzy programming technique are applied for determining the solution
of the proposed model.

2 Mathematical Model

In a matrix game, a payoff matrix of the player PI and player PII are defined as follows:

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn


 .

Each element aij of matrix A is a k-dimensional vector [aij(1), . . . , aij(k)]. We define individual matrix of m
rows and n columns as A(l) = [aij(l)] for l = 1, . . . , k.

The players are represented by PI (the maximizer, who chooses rows) and PII (the minimizer, who chooses
columns). As usual, the mixed strategy for players PI and PII are Y = {y ∈ Rm;

∑m
i=1 yi = 1; yi ≥ 0, i =

1, 2, . . . , m} and Z = {z ∈ Rn;
∑n

j=1 zj = 1; zj ≥ 0, j = 1, 2, . . . , n}. We remark that the pure strategies for
both players are the extreme points of Y and Z. We analyze the problem under PI point of view.

Let G = (G1, . . . , Gk) be a goal specified by PI. In order to determine the strategies which are based on
the probability to achieve the goal G, we formulate a model nameed multicriteria matrix goal game model.

Definition 2.1 The expected payoff of the multicriteria matrix goal game with goal G = (G1, . . . , Gk) and
the matrix A(l) = [aij(l)], l = 1, . . . , k for each strategy pair y ∈ Y and z ∈ Z, is v(y, z) = ytAGz =
[v1(y, z), . . . , vk(y, z)], where vl(y, z) = ytAG(l)z, AG(l) = [δij(l)], and

δij(l) =

{
1 if aij(l) ≥ Gl

0 otherwise

for l = 1, . . . , k.

Definition 2.2 The G-goal security level for PI of a multicriteria matrix game with goal G = (G1, . . . , Gk),
and matrices A(l) = [aij(l)], l = 1, . . . , k, for each y ∈ Y is v(y) = (v1, . . . , vk), where

vl(y) = minz∈Z vl(y, z) = minz∈Z ytAG(l)z = min1≤j≤n

∑m
i=1 yiδij(l), l = 1, . . . , k,

vl, l = 1, . . . , k is the probability to achieve at least goal value Gl in each game when PI chooses strategy y.

Definition 2.3 A strategy y∗ ∈ Y is a G-goal security strategy for player PI if there is no y ∈ Y that
v(y∗) ≤ v(y), v(y∗) 6= v(y).
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2.1 Determination of G-goal Security Strategies

We consider the following multi-objective linear problem

max : v1, . . . vk

subject to:
∑m

i=1 yiδij(l) ≥ vl, j = 1, 2, . . . , n; l = 1, . . . , k
∑m

i=1 yi = 1; yi ≥ 0, i = 1, 2, . . . , m.

(1)

Definition 2.4 A solution (v∗, y∗) is an efficient solution of above model (1) if there does not exist any (v, y)
such that (v, y) dominates (v∗, y∗).

Theorem 2.1 A strategy y∗ ∈ Y is a G-goal security strategies (GGSS) and v∗ = (v1
∗, . . . , vk

∗) is its G-goal
security level vector iff (v∗, y∗) is an efficient solution of model (1).

Proof: Let y∗ be a GGSS. Then there is no y ∈ Y such that v(y∗) ≤ v(y), v(y∗) 6= v(y). This is equivalent to

(min ytAG(1), . . . ,min ytAG(k)) ≥ (min y∗tAG(1), . . . ,min y∗tAG(k)),

(min ytAG(1), . . . ,min ytAG(k)) 6= (min y∗tAG(1), . . . ,min y∗tAG(k)).

Hence, (v∗, y∗) is an efficient solution of model (1).
Consequently the above solution is equivalent to the solution of model (1).
Conversely, suppose that an efficient solution (v∗, y∗) of model (1) is not a GGSS. Then there exists y ∈ Y

such that
(min ytAG(1), . . . ,min ytAG(k)) ≥ (min y∗tAG(1), . . . ,min y∗tAG(k)),

(min ytAG(1), . . . ,min ytAG(k)) 6= (min y∗tAG(1), . . . ,min y∗tAG(k)).

Taking v = (v1, . . . , vk), where vl = min ytAG(l), l = 1, . . . , k, then the vector (v, y) is a feasible solution of
model (1) which dominates (v∗, y∗). This is a contradiction. Hence the theorem is proved.

Similarly, we introduce the following multiple-objective linear program called the multicriteria linear game
problem for player PII as follows

min : w1, . . . wk

subject to:
∑n

j=1 zj(l)δij(l) ≤ wl, i = 1, 2, . . . , m; l = 1, . . . , k
∑n

j=1 zj = 1; zj ≥ 0, j = 1, 2, . . . , n.

(2)

Theorem 2.2 A strategy z∗ ∈ Z is a GGSS for player PII and w∗ = (w∗1 , . . . , w∗k) is its G-goal security level
vector iff (w∗, z∗) is an efficient solution of model (2).

Proof: Let z∗ be a GGSS. Then there is no z ∈ Z such that w(z) ≤ w(z∗), w(z) 6= w(z∗), which is equivalent
to

(max AG(1)z, . . . ,max AG(k)z) ≤ (max AG(1)z∗, . . . ,max AG(k)z∗),

(max AG(1)z, . . . ,max AG(k)z) 6= (max AG(1)z∗, . . . ,max AG(k)z∗).

Hence (w∗, z∗) is an efficient solution of model (2).
Consequently, the above solution is equivalent to the solution of model (2).
Conversely, suppose that an efficient solution (w∗, z∗) of model (2) is not a GGSS. Then there exists z ∈ Z

such that
(max AG(1)z, . . . ,max AG(k)z) ≤ (max AG(1)z∗, . . . ,max AG(k)z∗),

(max AG(1)z, . . . ,max A(Gk)z) 6= (max AG(1)z∗, . . . ,max AG(k)z∗).

Taking w = (w1, . . . , wk), where wl = max AG(l)z, l = 1, . . . , k, then the vector (w, z) is a feasible solution
of model (2) which dominates (w∗, z∗). This is a contradiction. Hence the theorem is proved.

Again each player is interested in making moves which will be as surprising and uncertain to the other player
as possible. For this reason, the two players are involved in maximizing their entropies. The mathematical
form of entropies are as follows:

H1 = −∑m
i=1 yi ln(yi), (3)

H2 = −∑n
j=1 zj ln(zj), (4)

i.e., they are interested in making their strategies as spread out as possible. However they are primarily
interested in maximizing their expected payoffs.
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2.2 Multicriteria Entropy Matrix Goal Game Models

Without loss of generality, let us combine the model (1) and the entropy function (3) to formulate a new
mathematical model. This model is named as multicriteria entropy matrix goal game model, which is a
multi-objective non-linear programming model. This model is defined for player PI as follows:

max v1, . . . vk

max vk+1 = H1

subject to:
∑m

i=1 yiδij(l) ≥ vl, j = 1, 2, . . . , n; l = 1, . . . , k

H1 = −∑m
i=1 yi ln(yi)

∑m
i=1 yi = 1; yi ≥ 0, i = 1, 2, . . . , m.

(5)

Definition 2.5 A solution y∗ ∈ Y of model (5) is an efficient solution iff there does not exist a feasible y
such that v(y) ≥ v(y∗), v(y) 6= v(y∗), where v(y) = [ v1(y), . . . , vk+1(y) ].

Theorem 2.3 A strategy y∗ ∈ Y is a GGSS in model (5) for player PI and v∗ = (v∗1 , . . . , v∗k+1) are its
security level vector iff (v∗, y∗) is an efficient solution of model (5).

Proof: Let y∗ be a GGSS. Then there is no y ∈ Y such that v(y) ≥ v(y∗), v(y) 6= v(y∗). This is equivalent to

(min ytAG(1), . . . ,min ytAG(k)) ≥ (min y∗tAG(1), . . . ,min y∗tAG(k)),

(min ytAG(1), . . . ,min ytAG(k)) 6= (min y∗tAG(1), . . . ,min y∗tAG(k)).

Thus, vk+1(y) ≥ vk+1(y∗), i.e., H1(y) ≥ H1(y∗). Hence (v∗, y∗) is an efficient solution of model (5).
Consequently, the above solution is equivalent to the solution of model (5).
Conversely, suppose that an efficient solution (v∗, y∗) of model (5) is not a GGSS. Then there exists y ∈ Y

such that
(min ytAG(1), . . . ,min ytAG(k)) ≥ (min y∗tAG(1), . . . ,min y∗tAG(k)),

(min ytAG(1), . . . ,min ytAG(k)) 6= (min y∗tAG(1), . . . ,min y∗tAG(k)).

vk+1(y) ≥ vk+1(y∗) i.e., H1(y) ≥ H1(y∗). Taking v = (v1, . . . , vk), where vl = min ytAG(l), l = 1, . . . , k,
vk+1(y) = H1 = H1(y), then the vector (v, y) is a feasible solution of model (5) dominating (v∗, y∗). This is
a contradiction. Hence the theorem is proved.

Similarly, the multicriteria entropy matrix goal game model for player PII is as follows:

min w1, . . . wk

max H2

subject to:
∑n

j=1 zj(l)δij(l) ≤ wl, i = 1, 2, . . . , m; l = 1, . . . , k

H2 = −∑n
j=1 zj ln(zj)

∑n
j=1 zj = 1; zj ≥ 0, j = 1, 2, . . . , n.

(6)

Theorem 2.4 A strategy z∗ ∈ Z is a GGSS for player PII and w∗ = (w∗1 , . . . , w∗k), H∗
2 is its security level

vector iff (w∗,H∗
2 , z∗) is an efficient solution of model (6).

Proof: Let z∗ be a GGSS. Then there is no z ∈ Z such that w(z) ≤ w(z∗), w(z) 6= w(z∗), H2(z) ≥ H2(z∗).
This is equivalent to

(max AG(1)z, . . . , max AG(k)z) ≤ (max AG(1)z∗, . . . , max AG(k)z∗),

(max AG(1)z, . . . , max AG(k)z) 6= (max AG(1)z∗, . . . , max AG(k)z∗),

H2(z) ≥ H2(z∗). Hence (w∗,H∗
2 , z∗) is an efficient solution of model (6).

Consequently the above solution is equivalent to the solution of model (6).
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Conversely, suppose that an efficient solution (w∗,H∗
2 , z∗) of model (6) is not a GGSS. Then there exists

z ∈ Z such that

(max AG(1)z, . . . , max AG(k)z) ≤ (max AG(1)z∗, . . . , max AG(k)z∗),

(max AG(1)z, . . . , max AG(k)z) 6= (max AG(1)z∗, . . . , max AG(k)z∗).

H2(z) ≥ H2(z∗). Taking w = (w1, . . . , wk), where wl = max AG(l)z, l = 1, . . . , k, H2 = H2(z), then the
vector (w, H2, z) is a feasible solution of model (6) which dominates (w∗,H∗

2 , z∗). This is a contradiction.
Hence the theorem is proved.

3 Solution Procedure

3.1 Basic Concepts of Fuzzy Set and Membership Function

Fuzzy sets was first introduced by Zadeh [18] in 1965 as a mathematical way to represent impreciseness or
vagueness in everyday life.
Fuzzy set: A fuzzy set A in a discourse X is defined as the following set of pairs A = (x, µA) : x ∈ X,
where µA : X −→ [0, 1] is a mapping, called membership function of the fuzzy set A and µA(x) is called the
membership value or degree of membership of x ∈ X in the fuzzy set A. The larger µA(x) is the stronger
grade of membership form in A.
Fuzzy number: A fuzzy number is a fuzzy set in the universe of discourse X that is both convex and
normal. A fuzzy number A is a fuzzy set of real line R whose membership function µA(x) has the following
characteristic with a < b

µA(x) =





0 if x ≤ a
x−a
b−a if a ≤ x ≤ b

1 if x ≥ b,
(7)

and any one may form other type of fuzzy number.

3.2 Fuzzy Programming Technique

Fuzzy programming technique to conversion single objective non-linear problem from multi-
objective non-linear problem( MONLP ):
A MONLP or a vector maximization problem( VMP ) may be taken in the following form:

max f(x) = [f1(x), . . . , fk(x)]T

subject to: x ∈ X = {x ∈ Rn; gj ≤ or =≥ bj for j = 1, . . . , m;x ≥ 0}.
(8)

Zimmermann [19] showed that fuzzy programming technique could be used nicely to solve the multi-objective
non-linear programming problem. To convert VMP (8) to a single objective, following steps are used:

Step 1. Solve the VMP (8) as a single objective non-linear programming problem using only one objective
at a time and ignoring the others. These solutions are known as ideal solutions.

Step 2. From the results of Step 1., determine the corresponding values for every objectives at each solution
derived. Let x1, . . . , xk be the ideal solutions of the objectives f1(x), . . . , fk(x) respectively. Then
Ur = max{fr(x1), . . . , fr(xk)} and Lr = min{fr(x1), . . . , fr(xk)}, where Lr and Ur are the lower and
upper bounds of the r-th objective function fr(x) for r = 1, . . . , k, respectively.

Step 3. Using aspiration levels of each objective of VMP to the problem (8), formulate a new problem as
follows: Find x to satisfy

fr(x) ≥ Ur, r = 1, . . . , k, x ∈ X.
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Here the objective functions in (8) are considered as constraints. This type of constraints can be quantified
by eliciting a corresponding membership functions as follows:

µr{fr(x)} =





0 if fr(x) ≤ Lr
fr(x)−Lr

Ur−Lr
if Lr ≤ fr(x) ≤ Ur, r = 1, . . . , k

1 if fr(x) ≥ Ur.

(9)

Having elicited the above membership functions µr{fr(x)} for r = 1, . . . , k, the VMP (8) can be defined as

max : λ
subject to: λ ≤ µr{fr(x)}, for r = 1, . . . , k

x ∈ X, 0 ≤ λ ≤ 1.

(10)

In the previous section, we can see that the models (5) and (6) are multi-objective non-linear programming
(MONLP) problem. In fuzzy programming technique, first we construct the membership function for each
objective function in model (5). Let µ1l(vl), l = 1, . . . , k, and µ1(H1) be the membership functions for objective
functions respectively and they are defined as

µ1l(vl) =





0 if vl ≤ v−l
vl−v−

l

v+
l
−v−

l

if v−l ≤ vl ≤ v+
l ,

1 if vl ≥ v+
l

l = 1, . . . , k, (11)

and

µ1(H1) =





0 if H1 ≤ H−
1

H1−H−
1

H+
1 −H−

1
if H−

1 ≤ H1 ≤ H+
1

1 if H1 ≥ H+
1 ,

(12)

where v+
l , v−l represent upper and lower bounds of vl, l = 1, . . . , k, respectively, and H+

1 ,H−
1 represent upper

and lower bounds of H1, respectively, for player PI.
Similarly we can construct the membership functions for objective functions in model (6). Let µ2l(wl), l =

1, . . . , k, µ2(H2) be the membership functions for objective functions respectively and they are defined as

µ2l(wl) =





1 if wl ≤ w−l
w+

l
−wl

w+
l
−w−

l

if w−l ≤ wl ≤ w+
l

0 if wl ≥ w+
l

(13)

for l = 1, . . . , k, and

µ2(H2) =





0 if H2 ≤ H−
2

H2−H−
2

H+
2 −H−

2
if H−

2 ≤ H2 ≤ H+
2

1 if H2 ≥ H+
2 ,

(14)

where w+
l , w−l represent upper and lower bounds of wl, l = 1, . . . , k, respectively, and H+

2 ,H−
2 represent upper

and lower bounds of H2, respectively for player PII.
Applying fuzzy programming technique in model (5) and using the membership functions (11) and (12),

we formulate the following model

max λ

subject to: λ ≤ vl−v−
l

v+
l
−v−

l

, l = 1, . . . , k

λ ≤ H1−H−
1

H+
1 −H−

1∑m
i=1 δij(l)yi ≥ vl, j = 1, 2, . . . , n; l = 1, . . . , k

H1 = −∑m
i=1 yi ln(yi)

∑m
i=1 yi = 1; yi ≥ 0, i = 1, 2, . . . , m,

(15)
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and for player PII, by the help of (13), (14) and model (6), the similar model can be built as

max δ

subject to: δ ≤ w+
l
−wl

w+
l
−w−

l

, l = 1, . . . , k

δ ≤ H2−H−
2

H+
2 −H−

2∑n
j=1 δij(l)zj ≤ wl, i = 1, 2, . . . , m; l = 1, . . . , k

H2 = −∑n
j=1 zj ln(zj)

∑n
j=1 zj = 1; zj ≥ 0, j = 1, 2, . . . , n.

(16)

To solve models (15) and (16), we apply fuzzy programming technique as stated above but we determine the
upper and lower bounds of vl, wl, l = 1, . . . , k, H1 and H2 by genetic algorithm depicted in the next subsection.

3.3 Genetic Algorithm

The revised genetic algorithm for the matrix game of order 4 ( any order may be consider also ) is illustrated
as follows.

Gene Type: The gene is defined as (ya
1 , ya

2 , ya
3 , ya

4 ) in this study: ya
1 , ya

2 , and ya
3 are randomly given

values. Please notice a gene must satisfy that ya
1 + ya

2 + ya
3 + ya

4 = 1.
Generating genes: This process randomly generates each element in (ya

1 , ya
2 , ya

3 , ya
4 ) and ya

1+ya
2+ya

3+ya
4 =

1. Moreover, the number of gene is limited to 25 when each new run begins.
Crossover; Since it is not easy to design a crossover between genes such that ya

1 + ya
2 + ya

3 + ya
4 = 1, no

crossover is applied in this study.
Mutation: Mutation is designed as a order of elements in (ya

1 , ya
2 , ya

3 , ya
4 ) by randomly determined cut-

point. Consider an example: if the original gene is (ya
1 , ya

2 , ya
3 , ya

4 ) and cut-point is randomly determined
between the string: ya

1 and ya
2 , ya

3 , ya
4 , then moreover newly mutated gene (y

′
1, y

′
2, y

′
3, y

′
4) is (ya

2 , ya
3 , ya

4 , ya
1 ).

Reproduction: The reproduction is also omitted to prevent the early- matured solution, which will limit
the variety of solution.

Evaluation: Once (ya
1 , ya

2 , ya
3 , ya

4 ) is determined, the corresponding va
l , l = 1, . . . , k and Ha

1 can be com-
puted by the first constraint of (1) and (3).

Optimum 1: For 25 genes we get 25 values of va
l , l = 1, . . . , k, and 25 values of Ha

1 . Among these values
of va

l for l = 1, . . . , k, we store maximum in va+
l and minimum in va−

l . In each iteration, these maximum
and minimum values are globally stored in V MAXl and V MINl, respectively for l = 1, . . . , k. Similarly,
among 25 values of Ha

1 we store maximum in Ha+
1 and minimum in Ha−

1 and then they are stored in another
locations HMAX1 and HMIN1, respectively in each iteration.

Iteration: The number of iteration is set to 800 runs, each of which begins with different random seed.
Optimum 2: After completing all the iterations, we determine v+

l as the maximum among all V MAXl, l =
1, . . . , k, and v−l as the minimum among all V MINl, l = 1, . . . , k. Similarly, H+

1 is the maximum among all
HMAX1, and H−

1 is the minimum among all HMIN1 are determined.
Similar technique can also be applied for player PII.

4 Numerical Example

Consider the following payoff matrix

A =




(1, 3) (2, 1)
(3, 1) (1, 2)
(1, 1) (3, 3)


 .

Let G = (3, 2) be a vector of goal specified by PI. Then

AG(1) =




0 0
1 0
0 1


 , AG(2) =




1 0
0 1
0 1


 .
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Table 1: Results computed by genetic algorithm

Maximum value Minimum value
v1 v+

1 = 0.4774 v−1 = 0.001850
v2 v+

2 = 0.48594 v−2 = 0.001850
w1 w+

1 = 0.99795 w−1 = 0.501595
w2 w+

2 = 0.99795 w−2 = 0.501595
H1 H+

1 = 1.097173 H−
1 = 0.108341

H2 H+
2 = 0.6931472 H−

2 = 0.014737

The following results are summarized in Table 1, which is computed by genetic algorithm.
With the values in Table 1, the mathematical models for the players PI and PII are redefined as

max λ
subject to: λ ≤ v1−0.001850

0.4774−0.001850

λ ≤ v2−0.001850
0.48594−0.001850

λ ≤ H1−0.108341
1.097173−0.108341

y2 ≥ v1, y3 ≥ v1, y1 ≥ v2, y2 + y3 ≥ v2

H1 = −∑3
i=1 yiln(yi)

∑3
i=1 yi = 1; yi ≥ 0, i = 1, 2, 3,

(17)

and

max δ
subject to: δ ≤ 0.99795−w1

0.99795−0.501595

δ ≤ 0.99795−w2
0.99795−0.501595

δ ≤ H2−0.014737
0.6931472−0.014737

z1 ≤ w1, z2 ≤ w1, z1 ≤ w2, z2 ≤ w2

H2 = −∑2
j=1 zj ln(zj)

z1 + z2 = 1, z1, z2 ≥ 0,

(18)

respectively. The aspiration levels with two objectives for a given solution λ∗ and δ∗ are obtained from above
models (17) and (18) by Lingo package. The efficient solutions for players PI and player PII are represented in
the following Table 2. Hence we conclude that when players want to maximize the uncertainty for their moves,
then if PI plays strategy (0.3372, 0.3314, 0.3314), he/she gets G1 = 3 with a probability at least .3313609 and
G2 = 2 with a probability at least .3372783; and if PII plays strategy (.5, .5) he/she gets G1 = 3 with a
probability at least 0.52295 and G2 = 2 with a probability at least 0.52295.

Table 2: Efficient solutions for player PI and player PII

Aspiration Efficient solution
level Probability of goal Entropies GGSS
λ∗ = 0.692905 v∗ = (.3313609, .3372783) H∗

1 = 1.098577 y∗ = (0.3372, 0.3314, 0.3314)
δ∗ = 1.00 w∗ = (0.52295, 0.52295) H∗

2 = 0.6931472 z∗ = (0.5, 0.5)
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5 Conclusions

This paper is the study of a multicriteria matrix goal game and analyzes the game under entropy environment.
Using goal, we considered the solution not only strategy played by the player, but also the probability of getting
at least goal value of the players. Therefore, with this approach, each player has getting the information about
the probability of achieving the possible outcomes of the multicriteria entropy matrix goal game.

A methodology to obtain the GGSS was developed through fuzzy based genetic algorithm and we have
shown that all these strategies, together with their associated probabilities, can be obtained as a G-goal
efficient solution of the formulated models. These models are highly significant to the real world practical
problem.
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