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Abstract 

 
Recently, there has been a significant interest in introducing stochastic dominance relations as constraints into 

stochastic optimization problems. Optimization with first order stochastic dominance constraints in discrete 
distribution case can be formulated as mixed integer programs. In this article, we present a method to safely 
approximate such kinds of mixed integer programs. 
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1   Introduction 
 
The relation of stochastic dominance is a fundamental concept in statistics, decision theory, economics and finance [9, 
10, 13, 14, 16, 18, 22]. This notion was originated from the theory of majorization for the discrete case [11, 17], and 
later extended to general distributions  [20].  

Recently stochastic programming under stochastic dominance constraints has been introduced in  [3]- [7], [15, 19]. 
Most studies in this field are dedicated to the first and second order stochastic dominance relations. One of the 
important applications of stochastic programming with stochastic dominance constraints is in portfolio optimization. 
The aim of such problems is choosing investments on the available assets to maximize the expected return, under the 
condition that the return rate stochastically dominates a given benchmark return rate. Stochastic dominance 
constraints have also been used in intensity-modulated radiation therapy treatment planning. In this problem, the aim 
is to provide superior tumor coverage and conformity, while maintaining a low irradiation to important critical and 
normal tissues [12, 21]. Another application of stochastic dominance constraints can be found in risk modeling in 
power systems with dispersed generation  [8]. In  [2], stochastic dominance rules are applied to analyze the One Day 
International (ODI) batting performance of cricketers. 

First order stochastic dominance constraints present a nonconvex feasible area  [6], which makes challenges to 
efficiently solve optimization problems with such constraints. In  [19] the authors study the problem in the discrete 
case and presents solutions methods based on a mixed integer formulation. In  [15], a new formulation and heuristics 
are developed. In  [1] we introduce a cutting plane method to more efficiently solve the formulation presented in [19]. 
In this paper, we present a method to safely approximate such optimization problems. 

To continue our discussion, we need to establish some notations and definitions used throughout the paper. The 
triple ),,( PFΩ  is a probability space, where Ω  is the entire space, F  is a -σ field of subsets of Ω  and P  is a 
probability measure defined on F . The symbol X  denotes the space of all random variables defined on ),( FΩ  (i.e. 
all finite Borel measurable functions X  from Ω  to ℜ ). For the random variable X∈X , ( )ηη ≤= XFX Pr)( , 

ℜ∈η , is the (right-continuous) cumulative distribution function (CDF). We say that for X∈YX , , X  dominates Y  
in the first order stochastic dominance, denoted by YX )1(f , if ( ) ( ) ℜ∈≤ ηηη   allfor YX FF . 

Generally, we can define stochastic optimization model with a first order stochastic dominance constraint as 
( )

C∈XYX
Xf

 ,    s.t.
  max

)1(f
                                                                       (1) 
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where XC⊆ , ℜ→C:f , and Y  is a random variable. In practice, Y  is an available reference outcome, and our 
intention is to have the new outcome X  preferable over Y  in the sense of the first order stochastic dominance. 
Because the definition of the first order stochastic dominance only depends on the CDFs of the random variables, in 
practice we need not to define the probability space or to know the joint disribtion of X  and Y .  

Here we present a method to approximate the set of feasible solutions of an optimization problem with a first 
order stochastic dominance constraint in the discrete distribution case. Our approximation method is safe, i.e., the 
solutions obtained by this method are necessarily feasible to the original optimization problem. This approximation 
helps us to obtain good feasible solutions for larger instances. The above formulation and the results derived in the 
paper can also be generalized to the optimization models with several first order stochastic dominance constraints. 

The paper is organized as follows. In Section 2, we explain the optimization problem with a first order stochastic 
dominance constraint in the discrete distribution case. Our safe approximation for the dominance constraint is 
introduced in Section 3. In Section 4, we present the numerical results to study the efficiency and accuracy of the 
approximate method. Finally, we give concluding remarks in Section 5. 

 
2   Optimization Problem with First Order Stochastic Dominance Constraint in 

Discrete Distribution Case 
 
The stochastic optimization problem with a first order stochastic dominance constraint for discrete random variables 
can be formulated as a mixed integer linear program. Suppose that the entire space Ω  has finitely many elementary 
events Tωω ,...,1  with probabilities of { }( )ttp ωPr= . Consider that Y  is a discrete random variable in X  with finite 
support, and iy , mi ,...,1= , are its realizations with probability of iq , mi ,...,1= . Without loss of generality assume 
that myyy <<< ...21 . Since YF  is a right-continuous step function, the first order stochastic dominance constraint in 
(1) is equivalent to ( ) ( ) ( )1PrPr −=<≤< iYii yFyYyX , mi ,...,1= , so by defining −∞=0y , relation YX )1(f  can be 
rewritten as  

( ) ( ) .,...,1,Pr 1 miyFyX iYi =≤< −                                                              (2) 
Thus, model (1) can be formulated as follows  

( )
( ) ( )

.        
,...,1,Pr    s.t.

  max

1

C∈
=≤< −

X
miyFyX

Xf

iYi                                                              (3) 

We have ( ) ∑ −

=− =
1

11  i

k kiY qyF ; moreover, we can write ( ) ∑ =
=<

T

t itti zpyX
1

Pr  by introducing binary variables 

{ }1,0∈itz  such that for mi ,...,1 =  and Tt ,...,1 = , 
( )

⎩
⎨
⎧ >−

=
otherwise.0

0 if1 ti
it

Xy
z

ω
                                                                          (4) 

Condition (4) can be expressed as linear mix integer constraints. To do this, it is required to define a big number 
ℜ∈M  satisfying 

( ){ }.max tmt
XyM ω−≥                                                                                (5) 

Then, constraints ( ) ( ) ittiit MzXyzM ≤−≤−− ω1 , mi ,...,1= , Tt ,...,1=  make itz satisfy the condition (4). Therefore, 
model (3) can be reformulated as the following mixed integer program 

( )
( ) ( )

{ }
.        

,...,1,,...,1,1,0        

,...,1,        

,...,1,,...,1,1    s.t.
  max

1

11

C∈
==∈

=≤

==≤−≤−−

∑∑
−

==

X
Ttmiz

miqzp

TtmiMzXyzM
Xf

it

i

k
k

T

t
itt

ittiit ω

                                (6) 

To simplify model (6) we can omit constraints ( ) ( )tiit XyzM ω−≤−− 1 , mi ,...,1= , Tt ,...,1= . Hence, we get 
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( )

{ }
.        

,...,1,,...,1,1,0        

,...,1,        

,...,1,,...,1,    s.t.
)(  max

1

11

C∈
==∈

=≤

==≤−

∑∑
−

==

X
Ttmiz

miqzp

TtmiMzXy
Xf

it

i

k
k

T

t
itt

itti ω

                                                       (7) 

Indeed, the constraints of model (7) do not imply (4), because ( ) 0≤− ti Xy ω  does not imply 0=itz , though 

( ) 0>− ti Xy ω  yields 1=itz . However, we can show that the optimal solutions *X  of models (6) and (7) coincide. 

Consider that ( )**, zX  is the optimal solution of model (7), where *z  is the vector of all Ttmizit ,...,1  ,,...,1 ,* == , and 

in *z  there are some elements *
itz  that do not satisfy (4), i.e. we have ( ) 0* ≤− ti Xy ω , but 1* =itz , which must be 

0* =itz . If we change *z  to **z  such that all the elements of **z  satisfy (4), then *** zz ≤ , and so 

miqzpzp
i

k
k

T

t
itt

T

t
itt ,...,1,

1

11

*

1

** =≤≤ ∑∑∑
−

===

. 

This means that ( )***, zX  is a feasible solution of model (7); furthermore, since model (7) is a relaxation of model (6), 

( )***, zX  is an optimal solution of model (6). Similar formulation to model (7) is also presented in [19] without 
mentioning the relation between models (6) and (7). 

In practice we usually use the following formulation instead of the rather abstract formulation (7) to conveniently 
model and efficiently solve real world problems using the existing rich knowledge in numerical optimization, 

( )

{ }
S∈

==∈

=≤

==≤−

∑∑
−

==

x
Ttmiz

miqzp

TtmiMzXy
Xf

it

i

k
k

T

t
itt

ittxi

x

        
,...,1,,...,1,1,0        

,...,1,        

,...,1,,...,1,    s.t.
)(  max

1

11

ω

                                                       (8) 

where Nℜ⊆S  and xX  is a random variable which depends on x . 
For example, in portfolio optimization NNx xRxRxRxRX +++=≡ ...)( 2211  where NRRR ,...,, 21  are random 

return rates of assets N,...,2,1 . The aim is to invest a certain capital in these assets in order to obtain some desirable 
characteristics of the total return rate on the investment. Denoting by Nxxx ,...,, 21  the fractions of the initial capital 

invested in assets N,...,2,1 , we have { },...,N,jxxxxx jN
N 21,0,1...: 21 =≥=+++ℜ∈=S . If we consider that the 

return rates have a discrete joint distribution with realizations jtr , ,1,2,...,Tt = ,,2,...,1 Nj =  attained with 

probabilities Ttpt 1,2,...,, = , the objective function is the expected return rate, ( ) [ ] ∑ ∑= =
=≡

T

t

N

j jtjtx rxpxRXf
1 1

)(E , 

and Y  is a discrete random variable with realizations iy  and probabilities iq , mi ,...,1= , the portfolio optimization 
problem becomes: 

{ } .,...,1,,...,1,1,0        

,...,1,0        

1        

,...,1,        

,...,1,,...,1,    s.t.

  max

1

1
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1

1 1
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3   Safe Approximation for Optimization Problem with First Order Stochastic 
Dominance Constraint 

 
In the previous section, we see that an optimization problem with a first order stochastic dominance constraint can be 
formulated as a mixed integer program. This causes that such problems in large scales are difficult and usually 
impossible to be solved exactly. In the following, we present a method for providing approximate solutions for such 
integer programs. 

In Model (8) the number of constraints is ( )1+× Tm , and the number of binary variables is mT × , while T  
represents the number of elementary events, and m  is devoted to the number of the benchmark realizations. If the 
number of the benchmark realizations is reduced in a specified percentage, the number of the variables and 
constraints will be reduced accordingly. Denoting the reduction percentage by RP , the number of the constraints is 
reduced to ( ) ( )11 +××− TmRP , and the number of the variables is reduced to ( ) mTRP ××−1 . According to this 
observation, in our proposed method we replace the benchmark random variable Y  by another random variable RPY  
with smaller number of realizations. Hence, by solving the new problem, we can obtain an approximate solution more 
quickly. 

In the following RPY  will be called as RP -reduced benchmark, and we refer to the stochastic optimization 
problem (8), in which Y  is replaced by RPY  as the RP -reduced problem. Let RPm  be the number of the benchmark 
realizations after implementing the reduction. RPm  is calculated by ⎣ ⎦RPmmmRP ×−= , while ⎣ ⎦a  refers to the 
integer part of 0≥a . The new benchmark realizations after implementing the reduction are denoted by iRPy , , 

RPmi ,...,1= . Another symbol we apply in the following is ( )an  specifying the nearest integer number to 0≥a , and 
if the fractional part of a  is 0.5 then ( ) ⎣ ⎦ 1+= aan . 

Now we present two policies to obtain RPY , such that the feasible solutions of the RP -reduced problem remain 
feasible to the initial problem. We refer to such approximation as safe approximation. 

The first policy. In the first policy the benchmark realizations are merged together regularly. The algorithm of 
this policy is given in the following. 

1 For 1=i  to RPm   
2 ( )RPmminiRP yy /, ×=   
3 ( ) ( )( )

RPRP mminYiRPY yFyF /, ×=  
4 Next 
For example, in the case of 50% reduction, the algorithm combines the first and second realizations into one 

realization with the CDF value of the second realization CDF value, third and forth realizations into one realization 
with the CDF value of the fourth realization CDF value, and so on. 

The second policy. In the second policy we merge the benchmark realizations whose values are close to each 
other. The algorithm of this policy is as follows. 

1 For 1=j  to ⎣ ⎦RPm×   
2 Calculate the differences between existing successive realizations: iii yyd −= +1  for jmi −= ,...,1  

3 Sort id , jmi −= ,...,1 , ascending, and set *i as the index of the smallest id  

4 For *ii =  to jm −   
5 1+= ii yy   
6 ( ) ( )1+= iYiY yFyF  
7 Next 
8 Next 
9 For 1=i  to RPm   
10 iiRP yy =,   
11 ( ) ( )iYiRPY yFyF

RP
=,  

12 Next  
In order to illustrate our safe approximate method, we present the following example of portfolio optimization. 
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Illustrative Example. Consider Model (9) for 3=N , 20== mT . Decision variables, 1x , 2x  and 3x  refer to the 
fractions of the initial capital invested in assets 1, 2 and 3. Table 1 contains historical data for returns jtr  of three 
assets in 20 months, and we assume 201=tp , 021,2,...,=t . In addition, the return rates of the benchmark Y  are 
available for each month in the last column. 
We depict the CDF of the benchmark Y in Figure 1 and the CDFs of the 50%-reduced benchmark, obtained by the 
first and second policies, in Figure 2. 

 
The CDF of the benchmark Y  is depicted in Figure 1, and the CDFs of the 50%-reduced benchmark ( %50Y ) 

obtained by the first and second policies are shown in Figure 2. Using Model (9) we have solved this example in the 
exact case and also in the approximate cases with RP =50% and 70% by implementing the first and second policies. 

 
Table 1:Asset returns for the illustrative example in Section 3 

Realization (Month) Asset 1 Asset 2 Asset 3 Benchmark returns 
1 0.649 0.579 0.201 0.346 
2 0.221 0.102 0.383 0.105 
3 0.704 0.294 0.266 0.291 
4 0.095 0.877 0.761 0.448 
5 0.086 0.344 0.532 0.191 
6 0.561 0.23 0.394 0.265 
7 0.979 0.897 0.476 0.654 
8 0.635 0.356 0.662 0.421 
9 0.622 0.286 0.494 0.337 

10 0.735 0.518 0.763 0.542 
11 0.367 0.947 0.848 0.591 
12 0.998 0.721 0.36 0.563 
13 0.21 0.903 0.209 0.311 
14 0.191 0.783 0.441 0.342 
15 0.581 0.052 0.591 0.278 
16 0.851 0.953 0.041 0.485 
17 0.409 0.812 0.681 0.504 
18 0.572 0.488 0.73 0.467 
19 0.761 0.887 0.869 0.709 
20 0.595 0.844 0.03 0.36 

 
 

 
Figure 1: The CDF of the benchmark Y  studied in the illustrative example in Section 3 
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Figure 2: The CDF of the 50%-reduced benchmark ( %50Y ) obtained by the first policy and the second policy in 

comparison with the CDF of the original benchmark (Y ) in the illustrative example in Section 3 
 
Figure 3 shows the feasible regions for 1x  and 2x  in this example (note 213 1 xxx −−= ) for the exact case in 

comparison with the feasible regions of 50% and 70%-reduced problems applying the first and second policies. As 
shown in this figure, the feasible region of the exact problem contains solutions of the approximate problems. The 
optimal solutions and values for the various cases of this example are presented in Table 2. We see that the second 
policy presents better objective values.  

 
Table 2: Optimal solutions and values for the illustrative example in Section 3 

First policy   Second policy 
RP   RP   Exact 

method 
50% 70%   50% 70% 

Optimum objective 58.0% 56.0% 53.2%  57.3% 56.3% 
*x1  0.26 0 0  0.2 0.58 
*x2  0.74 0.68 0.42  0.71 0.42 
*x3  0 0.32 0.58   0.09 0 
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Exact 
problem 

 

 First Policy Second Policy 

50%-
reduced 
problem 

  

70%-
reduced 
problem 

  

 
Figure 3: The feasible regions of the exact problem and the problems with RP  of 50% and 70% 

by applying the first and second policies for the illustrative example in Section 3. 
 (The dashed black lines in the last four figures specify the boundary of the exact feasible region.) 
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4   Numerical Results 
 
To assess the computational efficiency of the presented safe approximation method, we consider a portfolio 
optimization problem with finitely many assets formulated in (9). We define benchmark return Y  as the average of 
the return rates of the assets, i.e., each realization iy  is defined as: 

mir
N

y
N

j
jii ,...,1,1

1
== ∑

=

. 

To compare the proposed policies and their properties, we generate instances of randomly produced data with 
200 assets and 50 realizations. For each scenario in Table 3, we have solved 25 instances using Lingo 8.0 and 
applying the cutting plane method introduced in [1]. 

 
Table 3: The averages of reduction percentages in CPU time and objective  

value obtained by applying the first and second policies 

Scenario Reduction policy RP  (%) Average of reduction 
percentages in CPU time 

Average of reduction 
percentages in 
objective value 

1 First policy 50  77.5443% 0.0503% 
2 Second policy 50 53.5477% 0.0053% 
3 First policy 70 94.3343% 0.1147% 
4 Second policy 70 82.7023% 0.0350% 
5 First policy 90 97.7906% 0.3711% 
6 Second policy  90 95.8712% 0.2487% 

 
Table 3 shows the averages of reduction percentages in CPU time and in objective value for the instances with 

RP  of 50%, 70% and 90% by exploiting the two policies in comparison with the exact results. As it could be seen 
from this table, applying the first policy saves time more than the second one, but the objective values obtained by the 
first policy are worse than those obtained by the second policy. Also, it is interesting that for relatively high values of 
reduction percentage, e.g. see Scenario 4, the reduction percentages in objective value are small in comparison with 
the reduction percentages, particularly when we apply the second policy. 
 
5   Conclusions 

 
Optimization problems with first order stochastic dominance constraints in the case of discrete distribution can be 
formulated as mixed integer programs. In such problems the desirable outcome must dominate an available random 
variable called benchmark in the sense of the first order stochastic dominance. In this paper, we presented a method 
for safely approximating such mixed integer programs by reducing the number of benchmark realizations. We used 
two policies to reduce the number of the benchmark realizations such that the feasible solutions of the new problems, 
attained after implementing these reductions, remain feasible to the initial problem. The numerical results showed that 
in reasonable time our method could lead to good solutions. 
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